

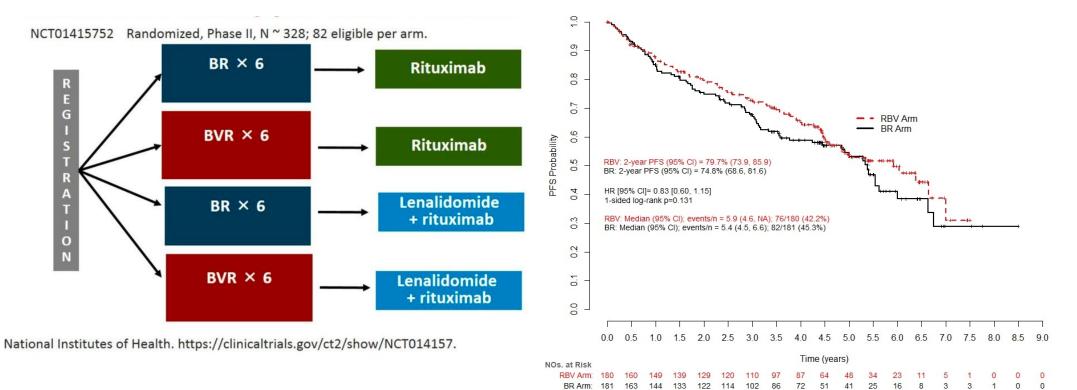
Mantle Cell Lymphoma "The Other Agents"

Peter Martin

June 27, 2022

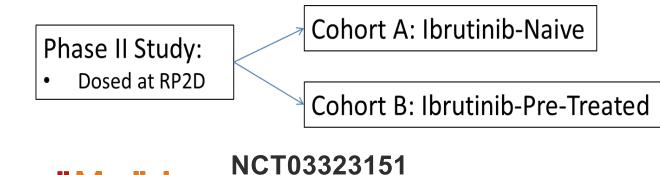
Conflicts of Interest

- Consultant: AstraZeneca, ADCT, Beigene, BMS, Daiichi, Epizyme, Janssen, Takeda
- Research funding: Karyopharm, Roche/Genentech



What do we do with our old "other" drugs?

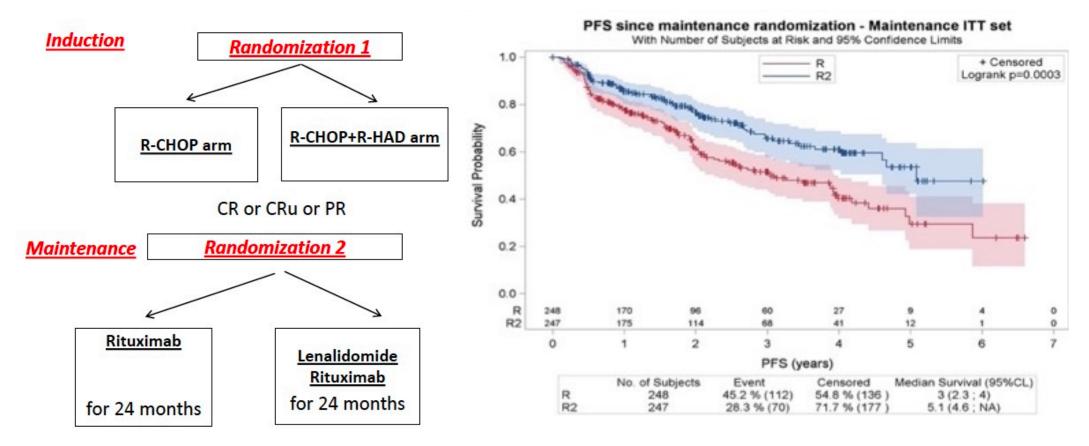
E1411: US Intergroup Trial of Initial MCL Therapy in Older Patients

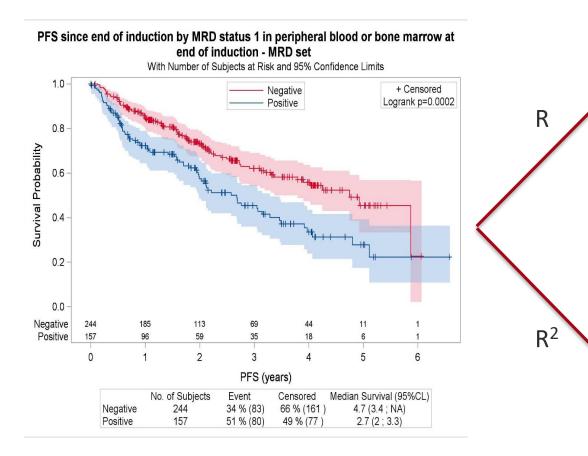

Smith, ASCO 2021

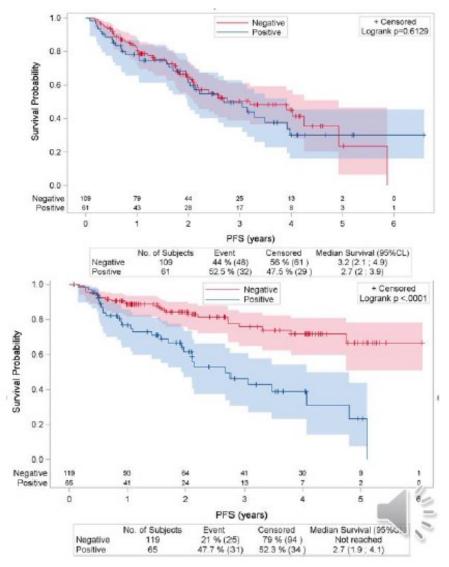
Ibrutinib plus ixazomib is under evaluation

Phase I Study:		I
Open to ibrutinib	-	_
naïve and selected		
pre-treated		•
patients**		-

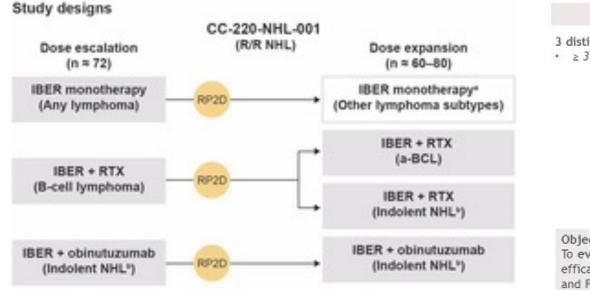
	Dose Level	Ixazomib Days 1, 8, 15 of a 28 day cycle	Ibrutinib Days 1-28 of a 28 day cycle
	(-1)	3mg	420mg
>	1 START	3mg	560mg
	2	4mg	560mg

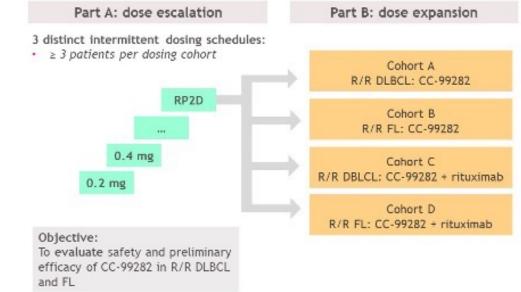

Ibrutinib pre-treated patients must be off ibrutinib at least 3 months for Phase I


Weill Cornell Medicine


Slide courtesy of Jonathon Cohen

R2Elderly Trial, A Mantle Cell Lymphoma Network Study


Ribrag. ASH Annual Meeting 2021



Delfau-Larue. ASH Annual Meeting 2021

New CelMods are in development, but unclear where MCL fits in

Morshchauser. ICML 2021

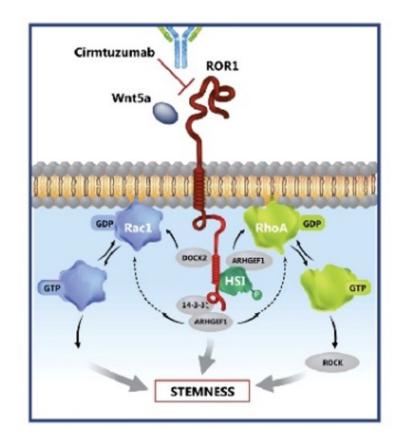
Where do bortezomib and lenalidomide fit?

Bortezomib

- Has a role in VR-CAP, but this regimen is not common
- No role in combination with BR
- Prolonged PFS post ASCT, but too toxic
- Possible role in combination with multiple drugs post BTKi failure

Lenalidomide

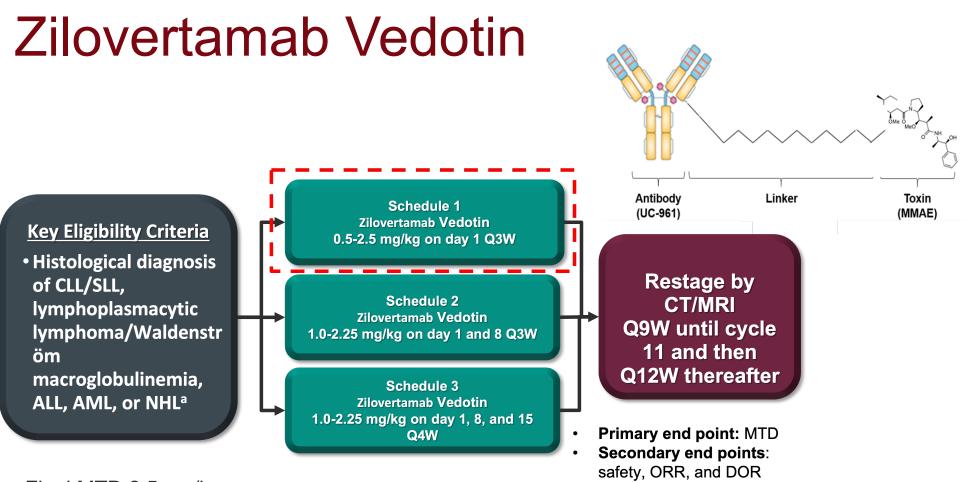
- Lenalidoimde prolongs PFS after R-HDS+ASCT and after R-CHOP-based therapy
 - Implications of MRD?
- Too early to know about maintenance post BR
- R² active in front-line setting, although other combinations may be more attractive
- R² active in combination with BTKi in r/r setting, but other combinations may be more attractive



What do we do with new "other" drugs?

Receptor Tyrosine Kinase-Like Orphan Receptor 1 (ROR1) Provides an Attractive Therapeutic Target in MCL

- ROR1 is an onco-embryonic tyrosine kinase that is re-expressed at high levels on many hematologic cancers but not on normal tissues.
- ROR1 binds Wnt5a, resulting in increased tumor growth, survival, metastasis, cancer cell stemness, etc.
- Zilovertamab (cirmtuzumab) is a humanized monoclonal antibody designed to inhibit the tumor promoting activity of ROR1.


Zilovertamab plus ibrutinib phase 1/2 study design

Treatment naïve (TN) or Relapsed/Refractory (R/R) CLL/SLL; R/R MCL and MZL; prior BTKi allowed for MCL and MZL

Phase 1	Phase	2
Part 1 (MCL & CLL)	Part 2 (MCL, CLL & MZL)	Part 3 (CLL)
 DOSE-FINDING COHORT 2, 4, 8 & 16mg/kg and 300 & 600mg doses of zilovertamab^a evaluated Ibrutinib added after 1 month (420mg CLL, 560mg MCL, qd po) No DLTs, MTD not reached RDR^b: 600mg IV q2wks X 3 then q4wks in combination with ibrutinib at approved doses per indication 	 DOSE-EXPANSION COHORT Confirmed RDR^b of zilovertamab^a (600mg) + ibrutinib at approved dose (420mg CLL, 560mg MCL and MZL) Primary objective: To further characterize safety, pharmacology, and clinical response using RDR^b 	 RANDOMIZED EFFICACY Zilovertamab^a + ibrutinib vs. ibrutinib Randomization ratio = 2:1 Primary objective: Complete Response Rate
Enrolled CLL n = 18 MCL n = 12	Enrolled CLL n = 16 MCL n = 21 MZL soon open for enrollment	n = 31

Zilovertamab plus ibrutinib phase 1/2 activity in MCL

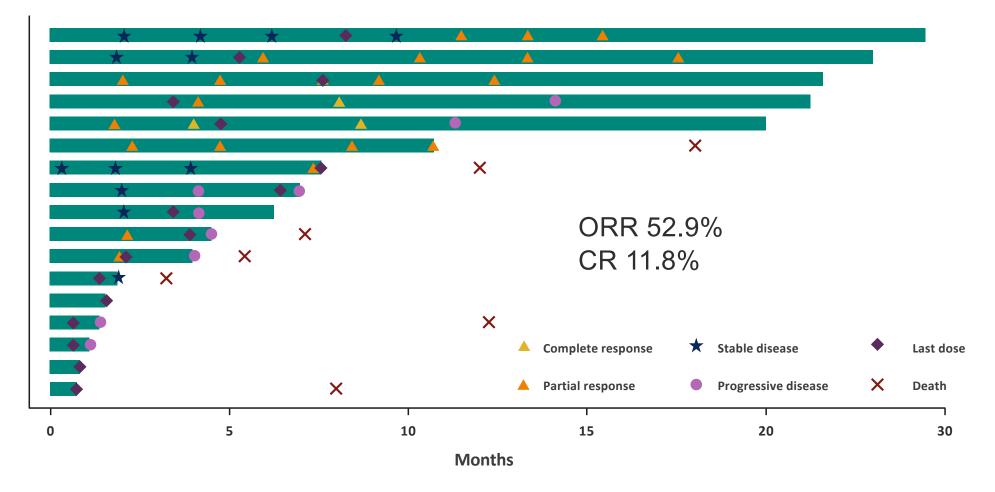
	Overall	Ki67 ≥ 30%	Prior B TKi*	Prior SCT +/- CAR-T ^b	Bulky disease (≥5cm)	Low sMIPI	Int sMIPI	High sMIPI	1 Prior Regimen	2 Prior Regimens	≥ 3 Prior Regimens	p 53 mutation
	N=27	N=14	N=5	N=7	N=4	N=15	N=9	N=3	N=15	N=8	N=4	N=6
ORR, n (%)	23 (85.2)	12 (85.7)	4 (80.8)	7 (100.0)	4 (1 00. 0)	13 (86.7)	8 (88.9)	2 (66.7)	13 (86.7)	6 (75.0)	4 (100.0)	5 (83.3)
CR, n (%)	11° (40.7)	5° (35.7)	2 (40.0)	5 (71.4)	3 (75.0)	5 (33.3)	5° (55.6)	1 (33.3)	4º (26.7)	5 (62.5)	2 (50.0)	1 (16.7)
PR, n (%)	12 (44.4)	7 (50.0)	2 (40.0)	2 (28.6)	1 (25.0)	8 (53.3)	3 (33.3)	1 (33.3)	9 (60.0)	1 (12.5)	2 (50.0)	4 (66.7)
SD, n (%)	2 (7.4)	0	1 (20.0)	0	0	1 (6.7)	0	1 (33.3)	0	2 (25.0)	0	0
PD, n (%)	2 (7.4)	2 (14.3)	0	0	0	1 (6.7)	1 (11.1)	0	2 (13.3)	0	0	1 (16.7)
Median Duration of Response,	34.13	NR	13.67	34.13	23.90	NR	34.13	NR	NR	NR	34.13	13.84
months (95% CI)	(13.67, NE)	(13.67, NE)	(11.93, NE)	(13.84, NE)	(11.93, NE)	(11.93, NE)	(NE)	(13.84, NE)	(11.93, NE)	(1.51, NE)	(13.84, NE)	(11.93, NE)

Final MTD 2.5 mg/kg

DLT: Grade 4 neutropenia, Grade 3 diarrhea, Grade 3 febrile neutropenia, Grade 3 pancreatitis

Wang. ASH Annual Meeting 2021

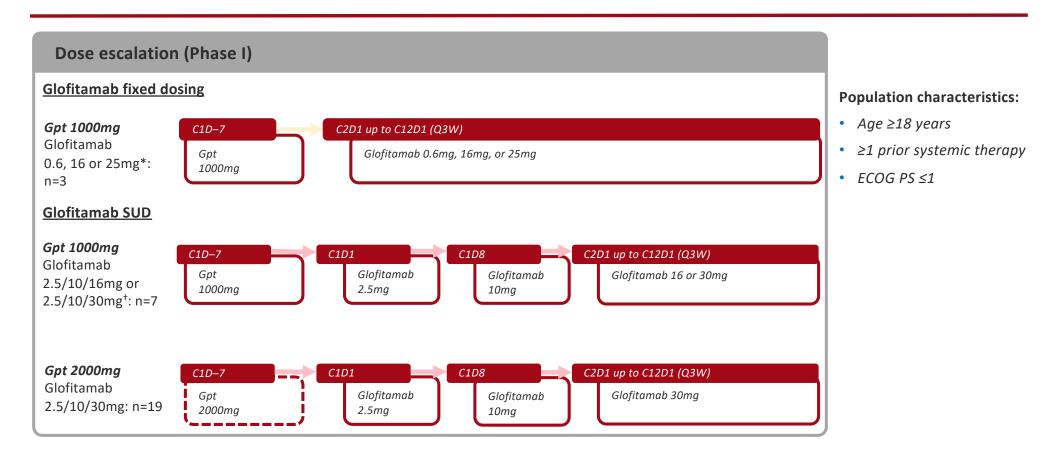
1. Borcherding N et al. Protein Cell. 2014;5:496-502; 2. Danesmanesh AH et al. Leuk Lymphoma. 2013;54:843-850.3. Vaisitti T et al. Blood. 2021;137:3365-3377.


Grade 3 or 4 Adverse Events in ≥3 Patients

		atients = 51
Grade 3 or 4 AEs, n (%)	All-Cause	Treatment-Related
Decreased neutrophil count	16 (31.4)	16 (31.4)
Decreased hemoglobin	8 (15.7)	3 (5.9)
Febrile neutropenia	4 (7.8)	2 (3.9)
Peripheral neuropathy ^b	4 (7.8)	4 (7.8)
Decreased platelet count	4 (7.8)	4 (7.8)
Diarrhea	3 (5.9)	2 (3.9)
Increased lipase	3 (5.9)	2 (3.9)
Pneumonia	3 (5.9)	1 (2.0)

^aNo deaths were attributed to study therapy. 1 patient died due to acute respiratory failure not related to treatment.

^bIncludes the preferred terms peripheral sensory neuropathy, peripheral neuropathy, peripheral motor neuropathy, and peripheral sensorimotor neuropathy. Data cutoff: May 18, 2021.


Zilovertamab Vedotin Efficacy in MCL

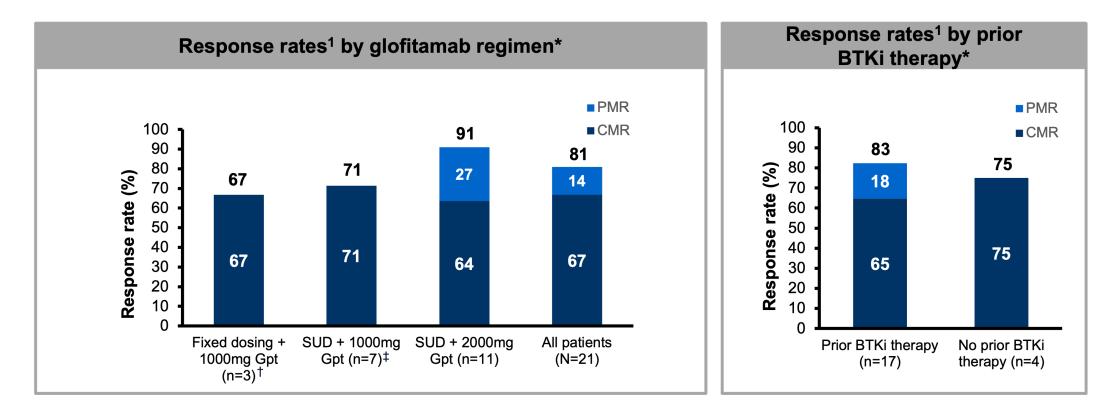
Wang. ASH Annual Meeting 2021

Patients Who Received Study Drug

Glofitamab regimens investigated in R/R MCL

Clinical cut-off date: May 18, 2021. *Two patients received Gpt 1000mg, glofitamab 0.6mg (n=1) or 16mg (n=1) plus obinutuzumab 1000mg on D1 of Cycles 2–12. [†]One patient received extended SUD (0.5/2.5/10/30mg) and one patient received Gpt 1000mg, glofitamab SUD 2.5/10/30mg, plus obinutuzumab 1000mg on D1 of Cycles 2–12 D, day; ECOG PS, Eastern Cooperative Oncology Group performance status; Q3W, every three weeks.

Phillips. ASH Annual Meeting 2021


Baseline characteristics

n (%) of pat	ients unless stated	Glofitamab fixed dosing + 1000mg Gpt (n=3)	Glofitamab SUD + 1000mg Gpt (n=7)	Glofitamab SUD + 2000mg Gpt (n=19)	All patients (N=29*)
Median age	, years (range)	81.0 (66–84)	69.0 (64–75)	66.0 (41–84)	69.0 (41–84)
Male		2 (66.7)	6 (85.7)	12 (63.2)	20 (69.0)
Ann Arbor	stage III–IV at study entry	2 (66.7)	6 (85.7)	16 (84.2)	24 (82.8)
MCL IPI sco	ore ≥6 at study entry	3 (100)	3 (42.9)	12 (63.2)	18 (62.1)
	Median time since last therapy, months (range)	1.1 (1.0–8.5)	3.4 (1.2–53.2)	1.6 (0.1–107.5)	1.7 (0.1–107.5)
	Prior lines of therapy, median (range)	3 (2–5)	4 (3–5)	3 (1–6)	3 (1–6)
	ВТКі	3 (100)	6 (85.7)	11 (57.9)	20 (69.0)
Prior	Lenalidomide	0	1 (14.3)	3 (15.8)	4 (13.8)
therapy	Chemotherapy	3 (100)	7 (100)	18 (94.7)	28 (96.6)
	Alkylator	0	6 (85.7)	7 (36.8)	13 (44.8)
	Anti-CD20 monoclonal antibody	3 (100)	6 (85.7)	14 (73.7)	23 (79.3)
	Refractory to any prior therapy	3 (100)	7 (100)	16 (84.2)	26 (89.7)
Refractory	Refractory to prior anti-CD20 therapy	2 (66.7)	3 (42.9)	10 (52.6)	15 (51.7)
status	Refractory to first-line therapy	2 (66.7)	2 (28.6)	11 (57.9)	15 (51.7)
	Refractory to last prior therapy	2 (66.7)	5 (71.4)	13 (68.4)	20 (69.0)

*Three patients were treated with glofitamab in combination with obinutuzumab (G-combo). IPI, International Prognostic Index.

Phillips. ASH Annual Meeting 2021

Glofitamab Efficacy in MCL

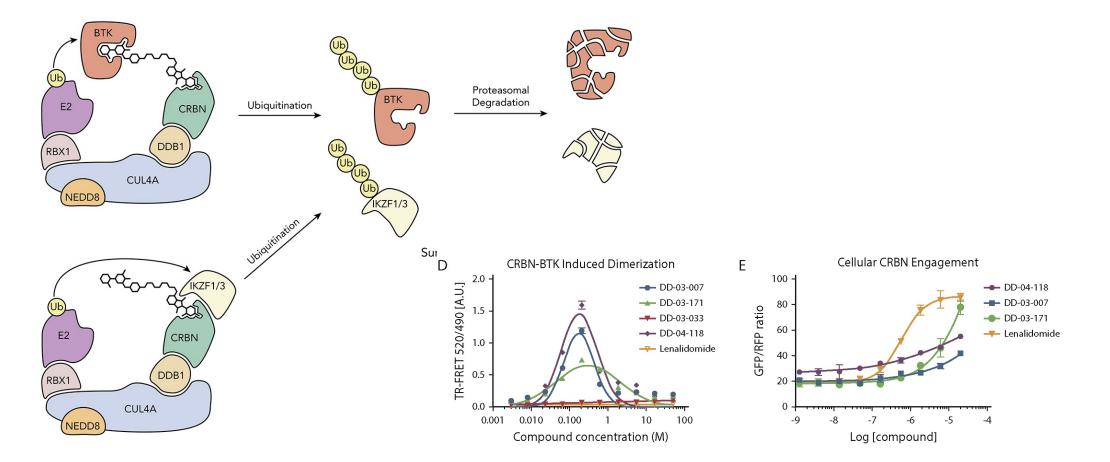
Adverse event overview

	Glofitamab fixed	Glofitamab	Glofitamab	AE, n (%)	All patients (N=29)
n (%) of patients with ≥1 AE unless stated	dosing + 1000mg Gpt (n=3)	SUD + 1000mg Gpt (n=7)	SUD + 2000mg Gpt (n=19)	Any grade ICANS* AE Grade 1	1 (3.4) 1 (3.4)
Any CRS	3 (100)	5 (71.4)	9 (47.4)	Grade 2 Serious	0 0
Grade 1	3 (100)	2 (28.6)	5 (26.3)	Any grade tumor flare	3 (10.3)
Grade 2	0	2 (28.6)	4 (21.1)	Grade 1 Grade 2	2 (6.9) 1 (3.4)
Grade 3	0	0	0	Serious	2 (6.9)
Grade 4 [†]	0	1 (14.3)	0	Any grade neutropenia	9 (31.0)
Serious AE of CRS (any grade)	2 (66.7)	5 (71.4)	4 (21.1)	Grade ≥3 Serious	5 (17.2) 0
Median time to first CRS event, hrs	5.5 (3.0–32.7)	9.6 (6.6–21.7)	12.1 (7.7–19.8)	Febrile neutropenia Serious	2 (6.9) 1 (3.4)
(range)				Any grade infections Grade ≥3	12 (41.4)
Tocilizumab use in patients with CRS	0	4 (57.1)	3 (15.8)	Serious	4 (13.8) [†] 3 (10.3)

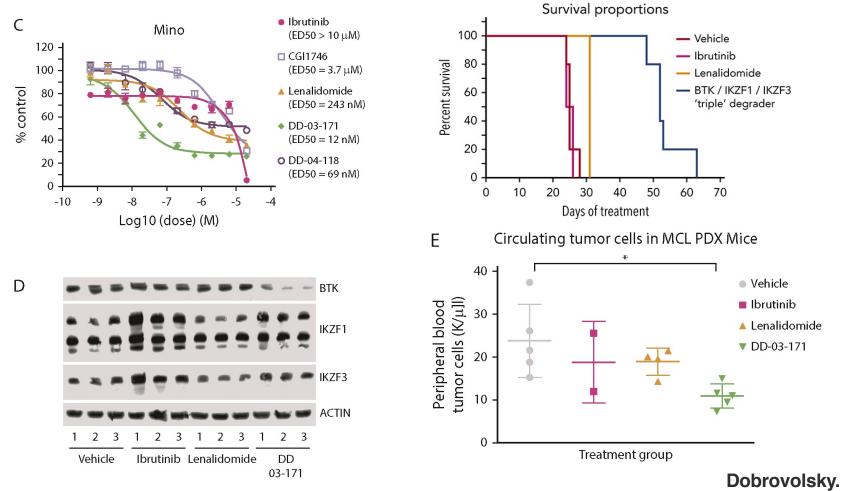
Phillips. ASH Annual Meeting 2021

New immunotherapies

- Bispecific antibodies are clearly active in r/r MCL
 - Initial approval possible in BTKi-pretreated pts
 - Could move up very quickly
- Zilovertamab vedotin appears active
 - Initial approval possible in BTKi-pretreated pts
- Zilovertamab
 - Development is less clear



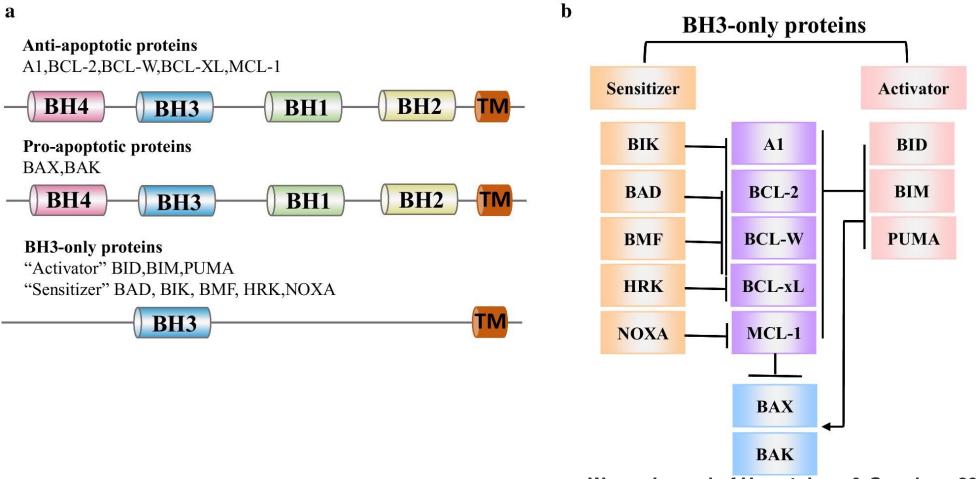
What "other" drugs could we see in MCL?



BTK Proteolysis Targeting Chimeras

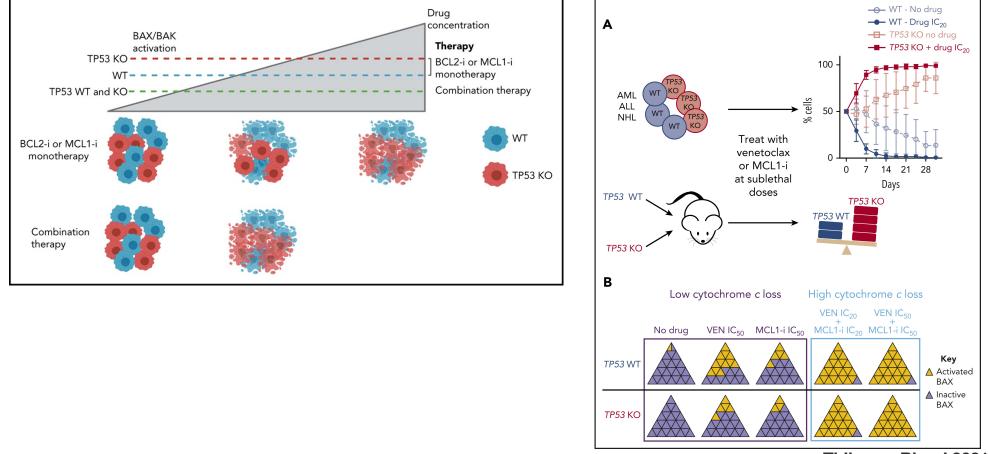
Dobrovolsky. Blood, 2019;133:952

BTK degraders have activity in MCL

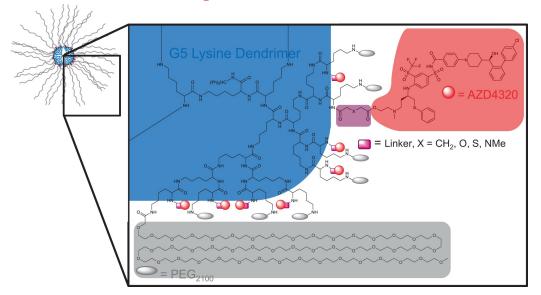

Dobrovolsky. Blood, 2019;133:952

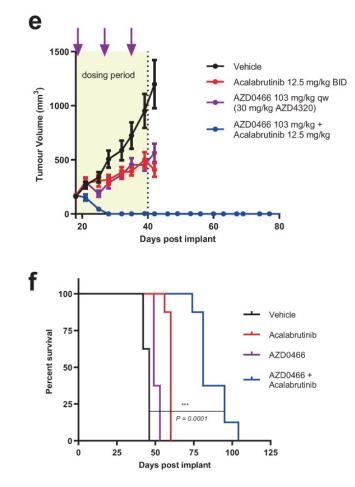
Current BTK PROTACs in Trials

Drug	Phase	Start date	Patients	Identifier
BGB-16673	1	09/2021?	MZL, CLL, FL, MCL, WM	NCT05006716
Nx-2127	I	04/2021	MZL, CLL, FL, MCL, WM, DLBCL	NCT04830137
HSK29116	la/lb	06/2021?	B-cell malignancies	NCT04861779



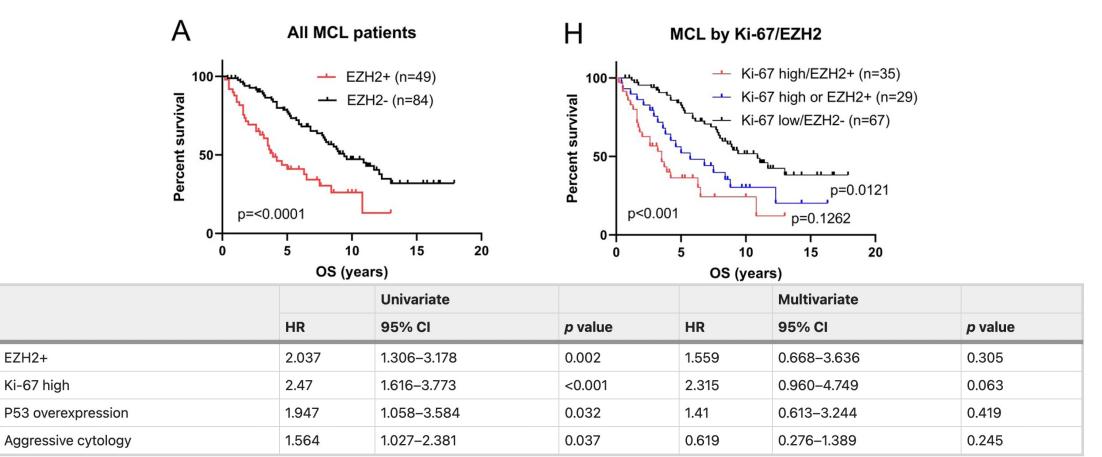
Combination BH3-mimetics


Wang. Journal of Hematology & Oncology 2021;14:67


BCL2i plus MCL1i is active in AML/NHL

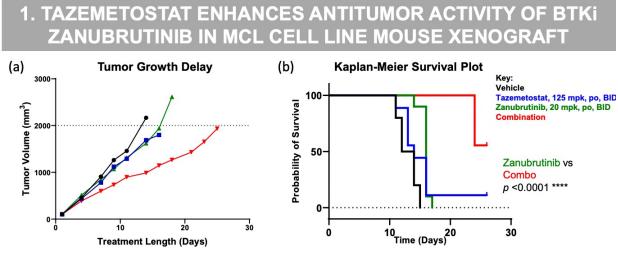
Thijssen. Blood 2021;137:2721 Brown. Blood 2021;137:2711

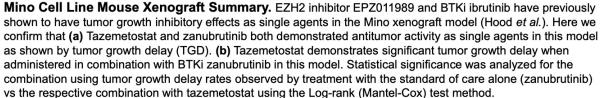
BCL2i plus BCLxLi is active in NHL



Patterson. Communications Biology 2021;4:112

EZH2 overexpression is associated with poor survival


EZH2+



Martinez-Baquero. Modern Pathol 2021

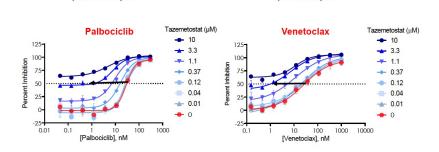
Tazemetostat combinations have preclinical activity in MCL

(b)

Dexamethasone Pomalidomide - 10 - 10 125 + 3.3 + 3.3 100 100 - 1.1 - 1.1 + 0.37 0.37 • 0.12 - 0.12 0.04 0.04 - 0.01 - 0.01 - 0 + 0

> 10 100 1000 10000

[Pomalidomide], nM

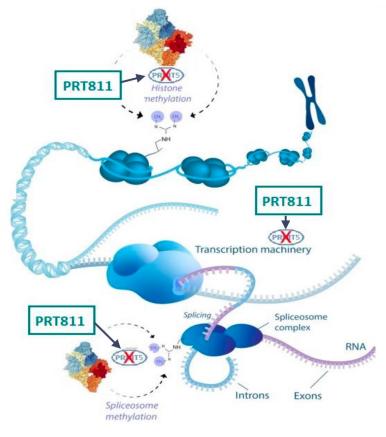

COMBINATORIAL ACTIVITY IN MINO IBRUTINIB-RESISTANT MODEL

Tazemetostat (uM)

100 1000 10000

[Dexamethasone], nM

10


Tazemetostat Shows Combination Benefit in Mino Parental and BTKi Acquired Resistance Cell Lines in the 7-Day Pretreatment Plus 7-Day Cotreatment Model. (a) Table showing combinatorial results when tazemetostat was combined with MCL standards of care, or emerging therapies in the 7-Day Pretreatment plus 7-Day Cotreatment combination assay. (b) Dose response plots depicting the IC₅₀ shifts (leftward arrows) upon addition of tazemetostat to the second agents in the MINO ibrutinib-resistant cell line

Keats, AACR 2021

Tazemetostat (uM)

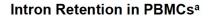
Protein Arginine Methyltransferase 5 (PRMT5)

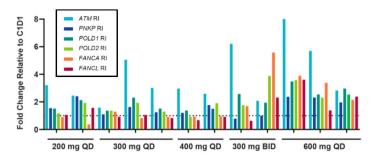
- PRMT5 catalyzes symmetric arginine dimethylation of protein substrates with important roles in the cell cycle, including histone modification, transcription, and spliceosome assembly
- PRMT5 is overexpressed in a variety of cancers
- PRT811 inhibits PRMT5 enzymatic activity
 - In preclinical studies, the biochemical and cellular sDMA IC₅₀ were 3.9 nM and 17 nM, respectively
 - Importantly, PRT811 is brainpenetrant

>2-fold Higher Brain Exposure Compared to Plasma in Rodents

Species	Time (hr)	Plasma (µM)	Brain (µM)	Brain/ plasma
	2	0.196	0.408	2.08
Mouse	4	0.105	0.261	2.49
	8	0.018	0.082	4.56
Rat	4	2.02	4.11	2.26

IC₅₀, half maximal inhibitory concentration; PRMT, protein arginine methyltransferase; sDMA, symmetric dimethylarginine. Adapted from Zhang Y, et al. (2020, June 22-24). AACR Virtual Meeting. Poster 2919; Kim H. and Ronai ZA. *Cell Stress*. 4(8):199-215.


Falchook. AACR 2021


Protein Arginine Methyltransferase 5 (PRMT5)

	All Patients (N=45)			
AE, n (%)	Any Grade	Grade ≥3		
Patients with events	31 (69)	5 (11)		
Nausea	17 (38)	0		
Vomiting	12 (27)	1 (2)		
Fatigue	9 (20)	1 (2)		
Thrombocytopenia ^a	8 (18)	3 (7)		
Anemia	7 (16)	1 (2)		
Anorexia	6 (13)	1 (2)		
Diarrhea	5 (11)	0		
Hypophosphatemia	4 (9)	0		
Pruritus	3 (7)	0		
Weight loss	3 (7)	0		

Dose-dependent Inhibition of Serum sDMA 200 Serum sDMA, ng/mL Mean ± SEM 150 100. 50 mg QD mg QD B B B B B bm bu Bu bu bm 5 30 120 300 00 00 400 8 C1D14 C2D1

 83% decrease observed at 600 mg QD by C2D1

- PRMT5 plays a crucial role in mRNA splicing fidelity
- At higher dose levels, PRT811 treatment induced retention of introns in transcripts regulated by PRMT5

Weill Cornell Medicine