

OTTIMIZZAZIONE DIAGNOSTICA

Stefano A. Pileri

Disclosures of Stefano A. Pileri

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
BeiGene						х	
Takeda						x	
Roche					x		
Diatech						x	

Chronic lymphocytic leukaemia/ small lymphocytic lymphoma

Definition

Chronic lymphocytic leukaemia/small lymphocytic lymphoma (CLL/SLL) is a neoplasm composed of monomorphic small mature B cells that coexpress CD5 and CD23. There must be a monoclonal B-cell count $\geq 5 \times 10^{9}$ /L, with the characteristic morphology and phenotype of CLL in the peripheral blood. Individuals with a clonal CLL-like cell count $<5 \times 10^{9}$ /L and without lymphadenopathy, organomegaly, or other extramedullary disease are considered to have monoclonal B-cell lymphocytosis. Although CLL and SLL are the same disease, the term SLL is used for cases with a circulating CLL cell count $<5 \times 10^{9}/L$ and documented nodal, splenic, or other extramedullary involvement {1523}.

Three cellular components: small lymphocytes, prolymphocytes and paraimmunoblasts

Richter Syndrome – Hodgkin type

Phenotype

CD20 + (weak but stronger in pseudo-follicles) CD19, CD22, CD79a (homogeneously strong) CD5 + (variable but stronger in pseudo-follicles) CD23 + (variable but stronger in pseudo-follicles) IgM/IgD+ (weak) CD200 +

LEF1 +

ZAP70 (related to the IGVH mutational status: 85% concordance)

IRF4 (+ in pseudo-follicles)

Cyclin D1 - (rare cases with weak, partial staining in the absence of t(11;14) and SOX11 positivity

IRTA1, MNDA, T-bet -

CD10, BCL6, LMO2 -

Ki-67 + (higher in pseudo-follicles)

Molecular diagnostics

- BCR (IGHV) sequencing:
- Mutated (<98% identity with the germline configuration) (50 -70 %)
- Unmutated (>98% identity with the germline configuration) (30 -50%).
- Stereotyped subsets
- Cytogenetics/FISH
- Sequencing/NGS

Result summary: W299	Productive IC	GH rearra	nged sequence (no stop
	codo	on and in-f	frame junction)
V-GENE and allele	Homsap	score =	identity = <mark>93.54%</mark>
	IGHV3-72*01 F	1299	(275/294 nt)
J-GENE and allele	Homsap	score =	identity = 90.00% (45/50
	IGHJ3*01 F	205	nt)
D-GENE and allele by IMGT/JunctionAnalysis	Homsap IGHD2-2*01 F	D-REGION	N is in reading frame 2
FR-IMGT lengths, CDR- IMGT lengths and AA JUNCTION	[25.17.38.11]	[8.10.17]	CAKVSGCSSIGCYYGLDAW
JUNCTION length (in nt) and decryption	57 nt = (10)- 1{7}-6(22)- 3{7}-8(11)	<u>(3'V)3'{N</u>	1}5'(D)3'{N2}5'(5' <u>)</u>)

Result summary: W86	Productive IGI	H rearran	nged sequence (no stop
	codon	and in-fi	rame junction)
V-GENE and allele	Homsap IGHV5-	score =	identity = 100.00%
	10-1*03 F	1440	(288/288 nt)
J-GENE and allele	<u>Homsap</u>	score =	identity = 89.58%
	IGHJ4*02 F	195	(43/48 nt)
D-GENE and allele by IMGT/JunctionAnalysis	<u>Homsap IGHD6-</u> <u>19*01 F</u>	D-REGIO	N is in reading frame 3
FR-IMGT lengths, CDR- IMGT lengths and AA JUNCTION	[25.17.38.11]	[8.8.14]	CAREQWLGPNSPFDYW
JUNCTION length (in nt) and decryption	48 nt = (9)0{3}- 8(13)0{11}- 5(12)	<u>(3'V)3'{N</u>	\ <u>1}5'(D)3'{N2}5'(5'])</u>

KEY POINTS

- In a series of 29856 CLL patients, the incidence of BcR stereotypy peaked at 41%.
- Higher-order relations exist between stereotyped subsets, particularly for those from U-CLL, for which satellite subsets were identified.

Chronic lymphocytic leukemia (CLL) is characterized by the existence of subsets of patients with (quasi)identical, stereotyped B-cell receptor (BcR) immunoglobulins. Patients in certain major stereotyped subsets often display remarkably consistent clinicobiological profiles, suggesting that the study of BcR immunoglobulin stereotypy in CLL has important implications for understanding disease pathophysiology and refining clinical decision-making. Nevertheless, several issues remain open, especially pertaining to the actual frequency of BcR immunoglobulin stereotypy and major subsets, as well as the existence of higher-order connections between individual subsets. To address these issues, we investigated clonotypic IGHV-IGHD-IGHJ gene rearrangements in a series of 29856 patients with CLL, by far the largest series worldwide. We report that the stereotyped fraction of CLL peaks at 41% of the entire cohort and that all 19 previously identified major subsets retained their relative size and ranking, while 10 new ones emerged; overall, major stereotyped subsets had a cumulative frequency of 13.5%. Higher-level

relationships were evident between subsets, particularly for major stereotyped subsets with unmutated IGHV genes (U-CLL), for which close relations with other subsets, termed "satellites," were identified. Satellite subsets accounted for 3% of the entire cohort. These results confirm our previous notion that major subsets can be robustly identified and are consistent in relative size, hence representing distinct disease variants amenable to compartmentalized research with the potential of overcoming the pronounced heterogeneity of CLL. Furthermore, the existence of satellite subsets reveals a novel aspect of repertoire restriction with implications for refined molecular classification of CLL. (*Blood.* 2021;137(10):1365-1376)

Cytogentics/FISH

	Frequency			
Aberration(s)	Mutated IGHV n = 132 (44% of cases)	Unmutated IGHV n = 168 (56% of cases)		
Clonal aberrations	80%	84%		
13q deletion*	65%	48%		
Isolated 13q deletion*	50%	26%		
Trisomy 12	15%	19%		
11q deletion*	4%	27%		
17p deletion*	3%	10%		
17p or 11q deletion*	7%	35%		

*Significant difference between cases with and without IGHV mutation.

Gaidano G and Rossi D

Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia

Davide Rossi,¹ Silvia Rasi,¹ Valeria Spina,¹ Alessio Bruscaggin,¹ Sara Monti,¹ Carmela Ciardullo,¹ Clara Deambrogi,¹ Hossein Khiabanian,² Roberto Serra,³ Francesco Bertoni,⁴ Francesco Forconi,^{5,6} Luca Laurenti,⁷ Roberto Marasca,⁸ Michele Dal-Bo,⁹ Francesca Maria Rossi,⁹ Pietro Bulian,⁹ Josep Nomdedeu,¹⁰ Giovanni Del Poeta,¹¹ Valter Gattei,⁹ Laura Pasqualucci,¹²⁻¹⁴ Raul Rabadan,² *Robin Foà,¹⁵ *Riccardo Dalla-Favera,^{12,13,16} and *Gianluca Gaidano¹

(Blood. 2013;121(8):1403-1412)

Lymphoplasmacytic lymphoma

Small lymphocytes + plasmacytoid elements + plasma cells

Exclusion diagnosis as other lymphomas can show plasmacellular differentiation

MYD88 L265P mutation characteristic but not exclusive

IgM paraprotein not necessarily required

WM found in a substantial subset, but not synonymous of LPL

Phenotype

CD19, CD20, CD22, CD79a, CD79b + CD5 -CD23 -/+ lgM+ (CYTOPLASMIC!) lgD-CD38+ IRF4 +/-CD45 +/-CD138 -CD200 -LEF1 -Cyclin D1 -IRTA1, MNDA, T-bet -CD10, BCL6, LMO2 -Ki-67: low

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

MYD88 L265P Somatic Mutation in Waldenström's Macroglobulinemia

Steven P. Treon, M.D., Ph.D., Lian Xu, M.S., Guang Yang, Ph.D., Yangsheng Zhou, M.D., Ph.D., Xia Liu, M.D., Yang Cao, M.D., Patricia Sheehy, N.P., Robert J. Manning, B.S., Christopher J. Patterson, M.A., Christina Tripsas, M.A., Luca Arcaini, M.D., Geraldine S. Pinkus, M.D., Scott J. Rodig, M.D., Ph.D., Aliyah R. Sohani, M.D., Nancy Lee Harris, M.D., Jason M. Laramie, Ph.D., Donald A. Skifter, Ph.D., Stephen E. Lincoln, Ph.D., and Zachary R. Hunter, M.A.

Lymphoplasmacytic Lymphoma and Nodal Marginal Zone Lymphoma

- MYD88 L265P can distinguish LPL (70-100%) from NMZL (0-20%)
 - Frequency in NMZL may be overstated. Rereview reveals may of the cases are LPL
- Who to test for MYD88 L265P
 - Classic WM diagnosis, testing likely will add little
 - Small B-cell lymphoma with plasmacytic differentiation, where LPL and other small B-cell lymphomas are in the differential diagnosis should be tested
 - CXCR4 mutation may illuminate cases negative for MYD88
 - Further gene mutations: ARID1A, CD79B

Genomic Landscape of Waldenström Macroglobulinemia and Its Impact on Treatment Strategies

Steven P. Treon, MD, PhD^{1,2}; Lian Xu, MS¹; Maria Luisa Guerrera, MD^{1,2}; Cristina Jimenez, PhD^{1,2}; Zachary R. Hunter, PhD^{1,2}; Xia Liu, MD^{1,2}; Maria Demos, BS¹; Joshua Gustine, MPH¹; Gloria Chan, MS¹; Manit Munshi, MS¹; Nicholas Tsakmaklis, BA¹; Jiaji G. Chen, BS¹; Amanda Kofides, BS¹; Romanos Sklavenitis-Pistofidis, MD^{2,3,4}; Mark Bustoros, MD^{2,3}; Andrew Keezer, BS¹; Kirsten Meid, MPH¹; Christopher J. Patterson, MAcc, MPH¹; Antonio Sacco, RN^{3,4}; Aldo Roccaro, MD, PhD⁴; Andrew R. Branagan, MD⁵; Guang Yang, PhD^{1,2}; Irene M. Ghobrial, MD^{2,3}; and Jorge J. Castillo, MD^{1,2}

Mantle cell lymphoma

Definition

Mantle cell lymphoma is a mature B-cell neoplasm usually composed of monomorphic small to medium-sized lymphoid cells with irregular nuclear contours; in > 95% of cases, there is a *CCND1* translocation {245,543,2219,2269,3849, 4018}. Neoplastic transformed cells (centroblasts), paraimmunoblasts, and proliferation centres are absent. Mantle cell lymphoma has traditionally been considered a very aggressive and incurable lymphoma, but more indolent variants, including leukaemic non-nodal mantle cell lymphoma and in situ mantle cell neoplasia, are now also well recognized.

Phenotype

CD19, CD20, CD22, CD79a, CD79b + CD5+ lgM+ lgD+ Cyclin D1+ (>95%) SOX11+ (- in leukemic non nodal) BCL2+ CD23 -**IRF4** -CD200 – (at times + in leukemic non nodal) LEF1 – (at times + in blastoid/pleomorphic) IRTA1, MNDA, T-bet -CD10, BCL6, LMO2 – Ki-67: variable

LYMPHOID NEOPLASIA

CCND2 and CCND3 hijack immunoglobulin light-chain enhancers in cyclin D1⁻ mantle cell lymphoma

David Martín-Garcia,^{1,2,*} Alba Navarro,^{1,2,*} Rafael Valdés-Mas,³ Guillem Clot,^{1,2} Jesús Gutiérrez-Abril,³ Miriam Prieto,^{1,2} Inmaculada Ribera-Cortada,⁴ Renata Woroniecka,⁵ Grzegorz Rymkiewicz,⁶ Susanne Bens,^{7,8} Laurence de Leval,⁹ Andreas Rosenwald,^{10,11} Judith A. Ferry,¹² Eric D. Hsi,¹³ Kai Fu,^{14,15} Jan Delabie,^{16,17} Dennis Weisenburger,¹⁸ Daphne de Jong,¹⁹ Fina Climent,²⁰ Sheila J. O'Connor,²¹ Steven H. Swerdlow,²² David Torrents,^{23,24} Sergi Beltran,²⁵ Blanca Espinet,^{26,27} Blanca González-Farré,^{2,28} Luis Veloza,²⁸ Dolors Costa,^{2,28} Estella Matutes,²⁸ Reiner Siebert,^{7,8} German Ott,^{29,30} Leticia Quintanilla-Martinez,³¹ Elaine S. Jaffe,³² Carlos López-Otín,^{2,3} Itziar Salaverria,^{1,2} Xose S. Puente,^{2,3,†} Elias Campo,^{1,2,28,33,†} and Sílvia Beà^{1,2,†}

(Blood. 2019;133(9):940-951)

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Prognostic Value of Ki-67 Index, Cytology, and Growth Pattern in Mantle-Cell Lymphoma: Results From Randomized Trials of the European Mantle Cell

Lymphoma Network

Eva Hoster, Andreas Rosenwald, Françoise Berger, Heinz-Wolfram Bernd, Sylvia Hartmann, Christoph Loddenkemper, Thomas F.E. Barth, Nicole Brousse, Stefano Pileri, Grzegorz Rymkiewicz, Roman Kodet, Stephan Stilgenbauer, Roswitha Forstpointner, Catherine Thieblemont, Michael Hallek, Bertrand Coiffier, Ursula Vehling-Kaiser, Réda Bouabdallah, Lothar Kanz, Michael Pfreundschuh, Christian Schmidt, Vincent Ribrag, Wolfgang Hiddemann, Michael Unterhalt, Johanna C. Kluin-Nelemans, Olivier Hermine, Martin H. Dreyling, and Wolfram Klapper

Ki-67 index

Variable Expression of Proliferation Signature Genes in Mantle Cell Lymphoma

Rosenwald A et LLMPP, Cancer Cell 2003; 3(2):185-97.

Prognostic impact of 17p del and TP53 mutations in MCL

Royo C et al, Leukemia 2012

Genomic and Gene Expression Profiling Defines Indolent Forms of Mantle Cell Lymphoma

Verònica Fernàndez¹, Olga Salamero², Blanca Espinet³, Francesc Solé³, Cristina Royo¹, Alba Navarro¹, Francisca Camacho⁴, Sílvia Beà¹, Elena Hartmann⁵, Virginia Amador¹, Luis Hernández¹, Claudio Agostinelli⁶, Rachel L. Sargent⁷, Maria Rozman¹, Marta Aymerich¹, Dolors Colomer¹, Neus Villamor¹, Steven H. Swerdlow⁷, Stefano A. Pileri⁶, Francesc Bosch², Miguel A. Piris⁴, Emili Montserrat², German Ott⁸, Andreas Rosenwald⁵, Armando López-Guillermo², Pedro Jares¹, Sergi Serrano³, and Elías Campo¹

Molecular and Cellular Pathobiology

Cancer Research

Molecular Subsets of Mantle Cell Lymphoma Defined by the *IGHV* Mutational Status and SOX11 Expression Have Distinct Biologic and Clinical Features

Alba Navarro¹, Guillem Clot¹, Cristina Royo¹, Pedro Jares¹, Anastasia Hadzidimitriou⁴, Andreas Agathangelidis^{4,5}, Vasilis Bikos⁴, Nikos Darzentas⁴, Theodora Papadaki⁷, Itziar Salaverria^{1,8}, Magda Pinyol¹, Xavier Puig², Jara Palomero¹, Maria Carmela Vegliante¹, Virgina Amador¹, Alejandra Martinez-Trillos¹, Lenka Stefancikova¹², Adrian Wiestner¹³, Wyndham Wilson¹³, Christiane Pott⁹, Maria Jose Calasanz³, Nicola Trim¹⁴, Wendy Erber¹⁵, Birgitta Sander¹⁶, German Ott¹⁰, Andreas Rosenwald¹¹, Dolors Colomer¹, Eva Giné¹, Reiner Siebert⁸, Armando Lopez-Guillermo¹, Kostas Stamatopoulos^{4,6}, Sílvia Beà¹, and Elías Campo¹

	cMCL (n=15)	iMCL (n=12)	P value
B symptoms (%)	33	0	0.03
Non-ambulatory performance status ECOG≥2 (%)	70	0	0.01
Nodal presentation (lymph nodes >1 cm) (%)*	93	17	<0.001
High serum LDH* (%)	46	0	0.03
Intermediate or high-risk MIPI	46	0	0.016
Morphology	13 74	67 33	0.007
Classical Blastoid	13	-	
IGHV gene hypermutations (>5%)	20	70	< 0.04
Genomic Profile			
1.imbalance ≥ 2 imbalances	13 87	100 0	<0.001
Chemotherapy at any time (%)	100	17	
Dead patients (%)	47	0	<0.001
5-year overall survival (%)	49	100	0.03

LNMCL shows a specific gene signature and SOX11 negativity

LN with Cyclin D1+ In Situ Pattern

SOX11 negative

May be CD5 negative Rare event: <1% of LNs Low risk of Progression (<10%)

SOX11 positive

More often CD5 positive Higher risk of progression Similar pattern can be seen at relapse or at distant sites

Splenic marginal zone lymphoma

Definition

Splenic marginal zone lymphoma (SMZL) is a B-cell neoplasm composed of small lymphocytes that surround and replace the splenic white pulp germinal centres, efface the follicle mantle, and merge with a peripheral (marginal) zone of larger cells, including scattered transformed blasts; both small and larger cells infiltrate the red pulp. Splenic hilar lymph nodes and bone marrow are often involved; lymphoma cells are frequently found in the peripheral blood as villous lymphocytes.

Phenotype

CD19, CD20, CD22, CD79a, CD79b + lgM+ lgD+ MNDA+ DBA44+/-IRF4 -/+ BCL2+ (weak) Annexin A-CD5- (exceptions) CD23-Cyclin D1 – SOX11-CD200 -LEF1 – IRTA1, T-bet -CD10, BCL6, LMO2 -Ki-67: variable

BM involvement

nodular,

Interstitial.

Intra-sinusoidal

Nodal marginal zone lymphoma

Definition

Nodal marginal zone lymphoma (NMZL) is a primary nodal B-cell neoplasm that morphologically resembles lymph nodes involved by marginal zone lymphoma (MZL) of the extranodal or splenic types, but without evidence of extranodal or splenic disease.

Phenotype

CD19, CD20, CD22, CD79a, CD79b + lgM/G+ lgD-/+ IRTA1+, T-bet+ (monocytoid); MNDA+ (splenic-type) IRF4-/+ (plasma cell differentiation) BCL2+ (weak) CD5- (rarely +) CD23-Cyclin D1 – SOX11-CD200 -LEF1 -CD10, BCL6 (colonization), LMO2 – Ki-67: variable

Histopathology 2012, 61, 930-941. DOI: 10.1111/j.1365-2559.2012.04289.x

IRTA1 is selectively expressed in nodal and extranodal marginal zone lymphomas

Brunangelo Falini, Claudio Agostinelli,¹ Barbara Bigerna, Alessandra Pucciarini, Roberta Pacini, Alessia Tabarrini, Flavio Falcinelli, Milena Piccioli,¹ Marco Paulli,² Marcello Gambacorta,³ Maurilio Ponzoni,⁴ Enrico Tiacci, Stefano Ascani,⁵ Maria Paola Martelli, Riccardo Dalla Favera,⁶ Harald Stein⁷ & Stefano A Pileri¹

- V. Tabanelli
- S. Fiori
- D. Lorenzini
- A. Calleri
- F. Melle
- G. Motta
- S. Mazzara
- M.R. Sapienza
- P. Antoniotti
- S. Spagnolo
- M. Giuffrida
- V. Rossi
- E Derenzini