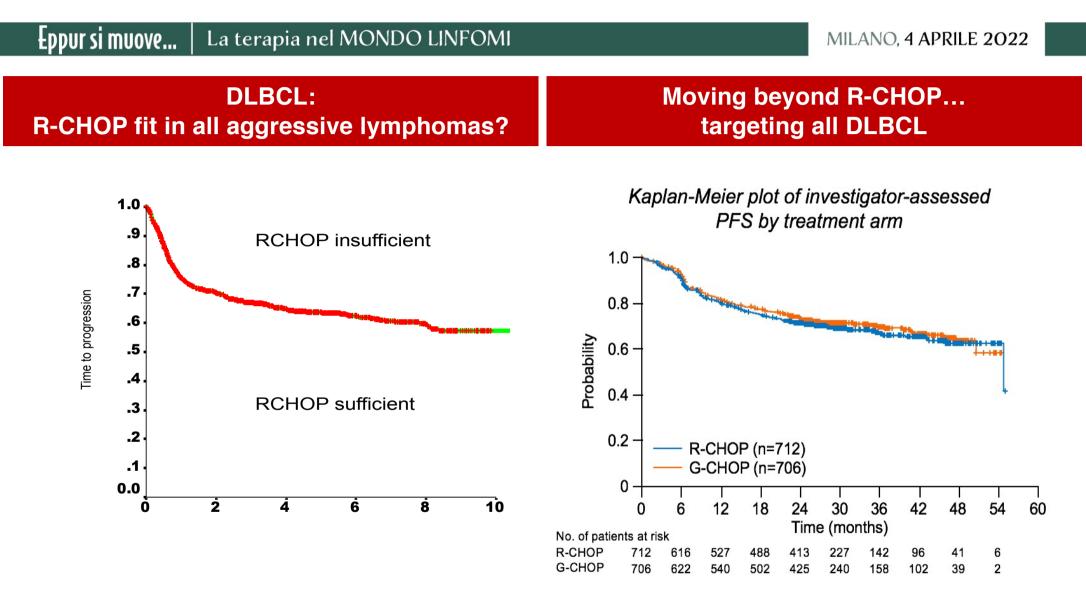
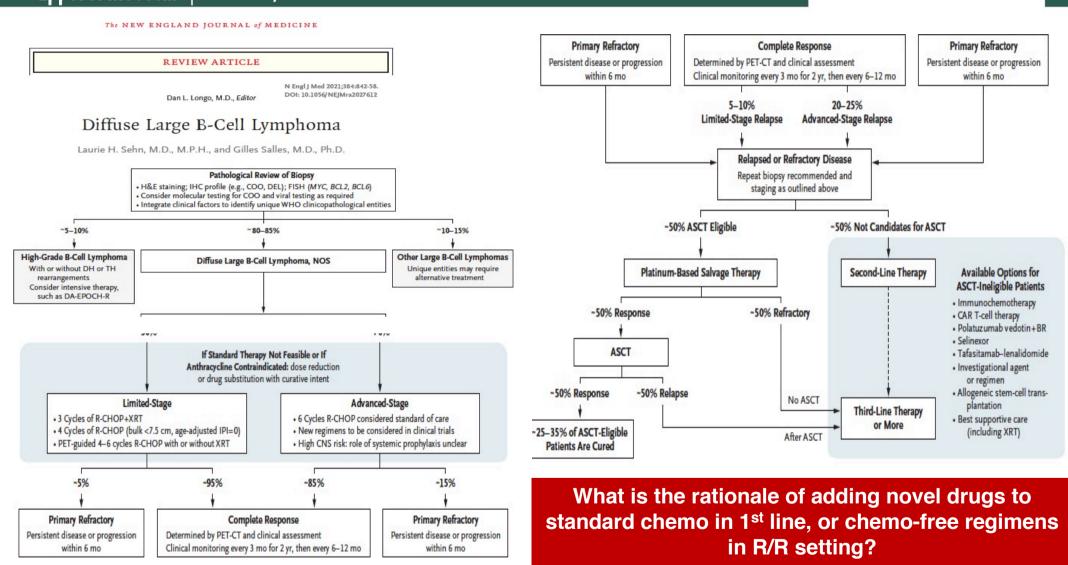
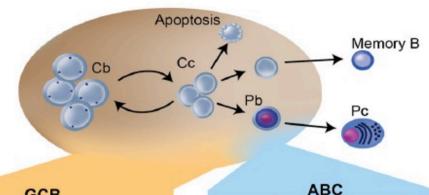
Il razionale biologico delle combinazioni nei linfomi non Hodgkin


Annalisa Chiappella Ematologia, Fondazione IRCCS Istituto Nazionale dei Tumori Milano


MILANO, 4 APRILE 2022

Disclosures, Annalisa Chiappella

Company name	Advisory board	Educational activities/Lecture fees
Astrazeneca		x
Celgene-BMS	x	x
Clinigen	x	x
Gilead-Sciences	x	x
Incyte		x
Janssen-Cilag	x	x
Novartis		x
Roche	x	x
SecuraBIO	x	
Takeda	X	X



Coiffier B, et al. Blood. 2010;116:2040-5; Sehn LH. ASH Education Book. 2012;1:402-9; Vitolo U, et al. J Clin Oncol 2017.

MILANO, 4 APRILE 2022

Eppur si muove... | La terapia nel MONDO LINFOMI

GCB

Histone modification -EZH2 mutations -MLL2 mutations -CREBBP mutations -EP300 mutations

Blocks to terminal differentiation -BCL6 expression, EZH2 mutations

Cell cycle activation +\- blocks to apoptosis -MYC and BCL2 translocations (DHIT) and protein over-expression

MTOR pathway activation

Signaling cascades -PTEN del/loss (PI3K and AKT activation)

BCR/NF-KB signaling -CD79A/B, CARD11, MYD88 mutations, TNFAIP3 (A20) deletions

Histone modification -MLL2 mutations

-CREBBP mutations -EP300 mutations

Blocks to terminal differentiation -BCL6 translocations, PRDM1 loss/ mutations

Cell cycle activation +\- blocks to apoptosis

-MYC translocations, MYC and BCL2 protein over-expression

MTOR pathway activation

Signaling cascades -PI3K and AKT activation

Cytokine signaling/JAK-STAT pathway activation

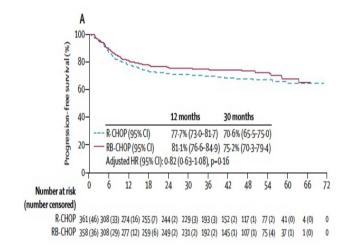
Key oncogenic pathways in DLBCL.

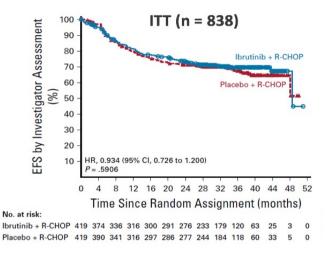
The GCB subtype arises from centroblasts, whereas the ABC subtype arises from a plasmablastic cell just prior to germinal center exit.

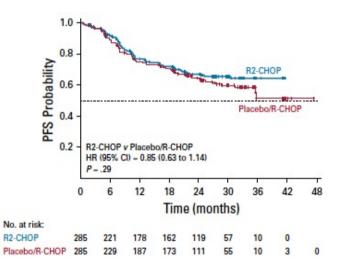
- main oncogenic pathways
- recurrent mutations, gains and losses of genetic material, characteristic translocations that underlie these pathway perturbations.

Agent	Target	Molecular subgroup	
Bortezomib	NF-ĸB	ABC	
Fostamatinib	SYK	ABC	
Ibrutinib	BTK	ABC	
Enzastaurin	ΡΚCβ	ABC	
Idelalisib	PI3K	(?) GCB	
ABT-199	BCL2	(?) GCB, dual expressers	
EZH2 inhibitors	EZH2	GCB	
BCL6 inhibitors	BCL6	GCB	
Lenalidomide	Microenvironment, NF-kB	ABC	
Obinutuzumab	CD20	All	
Ofatumomab	CD20	All	
Polatuzumab vedotin	CD79b	All	

Sehn LH, Gascoyne RD, Blood 2015.

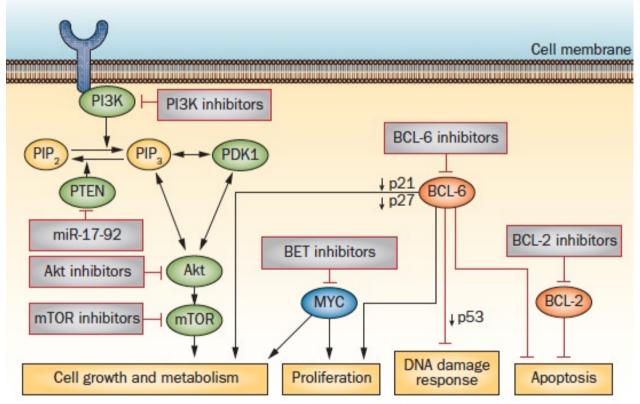

MILANO, 4 APRILE 2022


Moving beyond R-CHOP... targeting ABC DLBCL


R-CHOP + Bortezomib

R-CHOP + iBTK

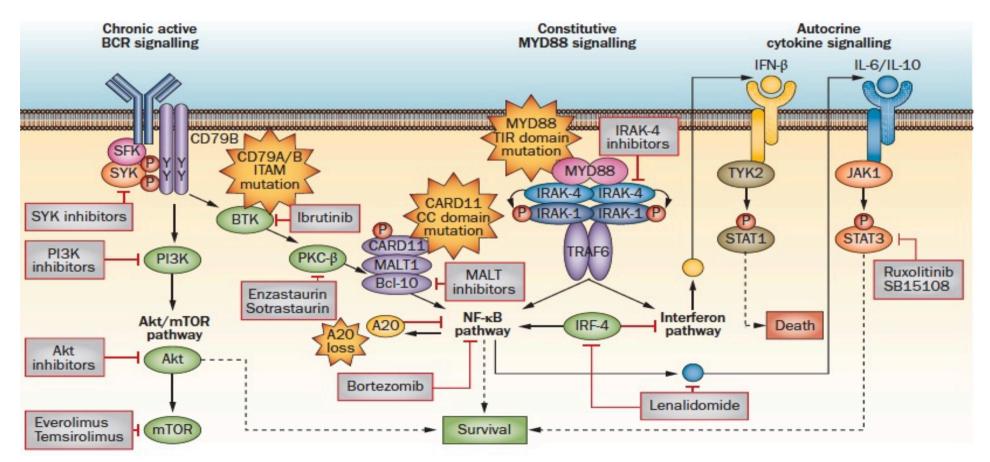
R-CHOP + Lenalidomide



Davies A, et al. Lancet Oncol 2019; Younes A, et al. J Clin Oncol 2019; Nowakowski G, et al. J Clin Oncol 2021.

MILANO, 4 APRILE 2022

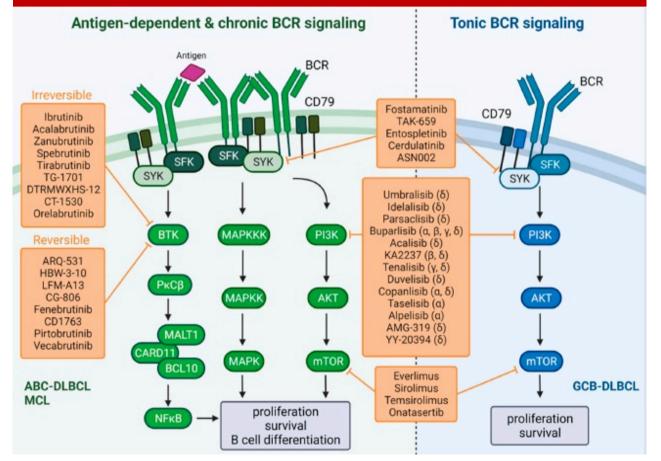
The key signalling pathways implicated in GCB DLBCL



 ✓ Loss of PTEN expression in 55% of cases → activation of PI3K/Akt/mTOR signalling pathway; → small-molecule inhibitors can be effective in GCB with decreased PTEN expression.

- ✓ BCL-6 is frequently activated in GCB DLBCL; BCL6 deregulation results in enhanced tumour proliferation via decreased expression of the cell-cycle checkpoint proteins p21 and p27, impaired DNA damage response through decreased p53 expression, impaired cellular metabolism and resistance to apoptosis. → inhibitors that target key co-repressor proteins of BCL-6. In normal B cells, BCL-6 suppresses transcription of the MYC oncogene.
- BET bromodomain inhibitors represent a novel strategy of epigenetic regulation of MYCdriven tumours.
- ✓ BCL2 translocations are observed in up to 35% of GCB DLBCL cases, resulting in inhibition of apoptosis → Inhibitors of BCL-2.

Roschewski M, Staudt LM, Wilson WH, Nat. Rev. Clin. Oncol. 2013.

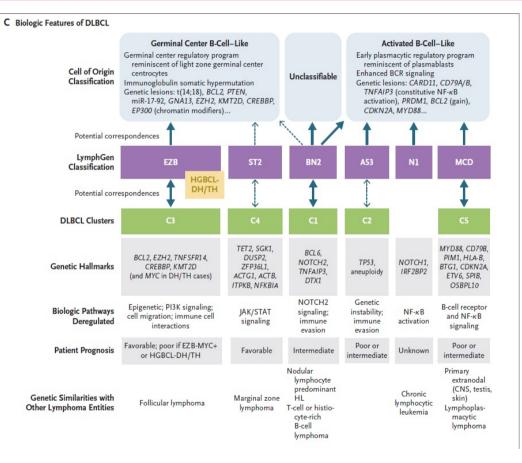

The key signalling pathways implicated in ABC DLBCL

Roschewski M, Staudt LM, Wilson WH, Nat. Rev. Clin. Oncol. 2013.

Eppur si muove... | La terapia nel

Regulation of BCR signaling and the therapeutic inhibition of BTK and PI3K in DLBCL

- ✓ ABC-DLBCL displays chronic active BCR signaling resulting in constitutive NF-kB activity
- ✓ In contrast to antigen and chronic active BCR signaling, the antigen-independent signal, termed 'tonic BCR signaling', is mediated by PI3K + PI3K /AKT/mTOR, but not the NF-kB pathway, to promote the proliferation and survival of malignant B cells. Genomic data have shown that GCB-DLBCL lines exclusively use tonic BCR signaling.


Profitos Peleja et al. Cancers 2022.

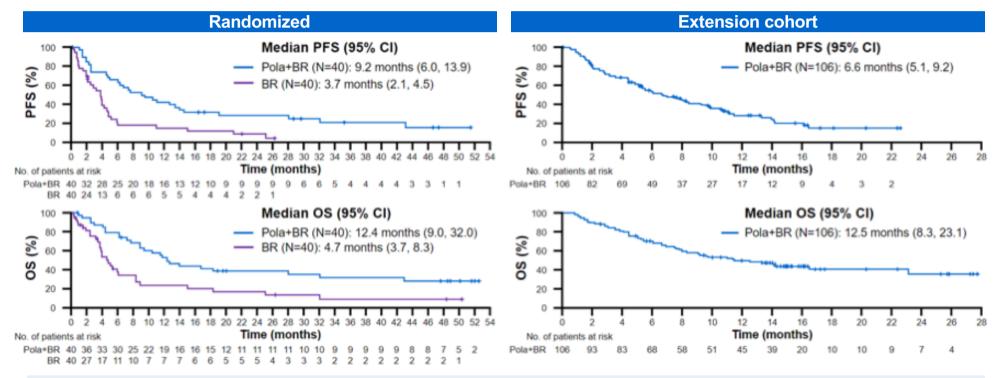
Eppur si muove...

La terapia nel MONDO LINFOMI

MILANO, 4 APRILE 2022

... Targeting Molecular Classification Subgroups?

Genetically defined category	Drugs
MCD/C5	ibrutinib, acalabrutinib, venetoclax
BN2/C1	ibrutinib, bortezomib, carfilzomib
EZB/C3	venetoclax, tazemetostat, idelalisib, copanlisib, duvelisib, umbralisib
C4	idelalisib, copanlisib, duvelisib, bortezomib, carfilzomib, ruxolitinib

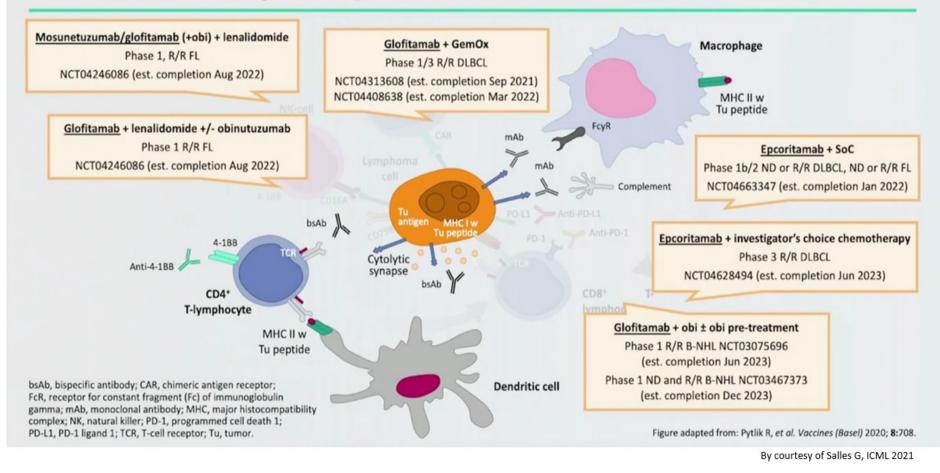

Future directions: "X-Y-Z" +/- R-chemo

- Bispecific Antibodies
- Antibody-Drug Conjugated
- IMIDs, iBTK, iPI3K...
- Monoclonal Antibodies

Sehn LH, Salles G. N Engl J Med. 2021; Chapuy B et al, Nature Medicine 2018.

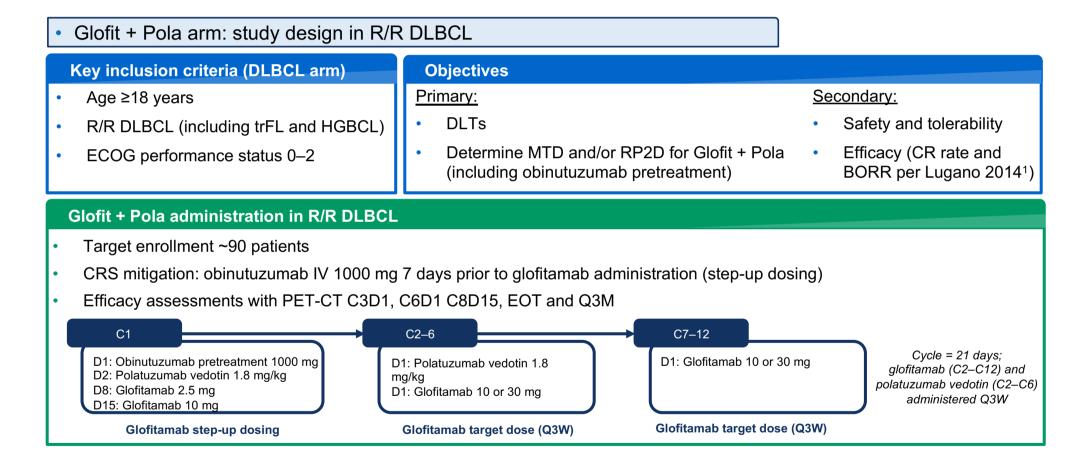
ADC + R-chemotherapy

Rituximab + Bendamustine +/- Polatuzumab Vedotin in R/R DLBCL



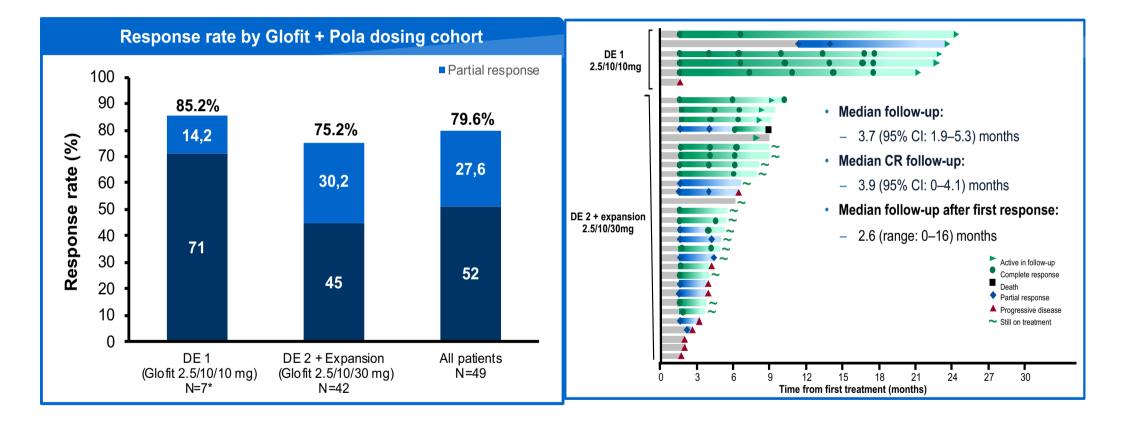
- · The significant survival benefit with Pola+BR persists with longer follow-up
- The 2-year PFS probability was 28.4% and the 2-year OS probability was 38.2% for patients in the randomized Pola+BR cohort

Sehn LH et al, J Clin Oncol 2020; Sehn LH et al. Blood Adv 2021.


CD20xCD3 bispecific antibodies + SoC

Rational combinations of targeted therapies

MILANO, 4 APRILE 2022


Glofitamab in Combination with Polatuzumab Vedotin: Phase Ib/IIb in R/R DLBCL

Hutchings M et al. Abs#525, ASH 2021.

MILANO, 4 APRILE 2022

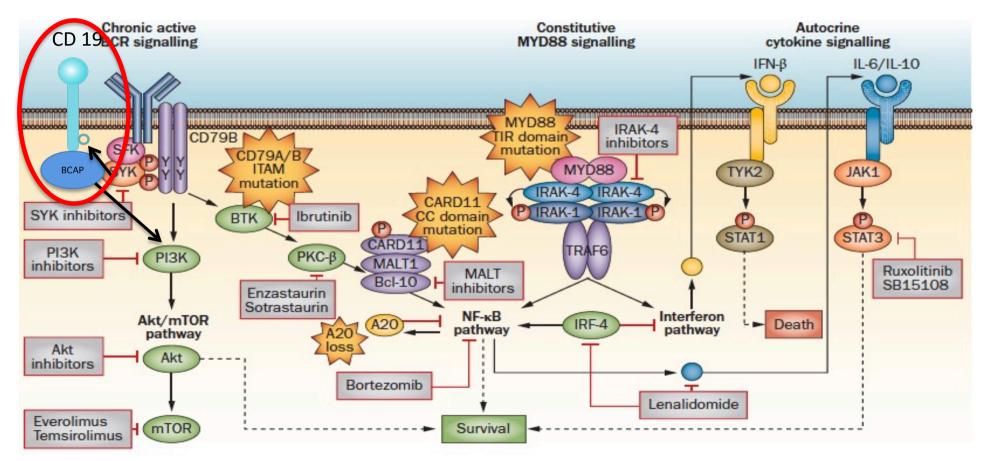
Glofitamab in Combination with Polatuzumab Vedotin: Phase Ib/IIb in R/R DLBCL

Hutchings M et al. Abs#525, ASH 2021.

Clinical trials with targeted BCR inhibition in combination

Targets	Drug/Regimen	Clinical Trial	Phase	Nb Pts	Status	Conditions	Response Data	References
BTK PD1	Acalabrutinib + Pembrolizumab	NCT02362035	1 & 2	161	Active	R/R DLBCL	ORR 26% Discontinuation was due to PD (62%) and AEs (26%)	[153]
BTK	Acalabrutinib + R-CHOP	NCT03571308	1 & 2	39	Active	nHL	NA	NA
BTK	Ibrutinib + R-CHOP	NCT01855750	3	838	Completed	B-cell Lymphomas	ORR 93.6%	[154]
BTK	Ibrutinib + R-ICE	NCT02219737	1	26	Completed	DLBCL	ORR 90%	[155]
BTK	Ibrutinib + CAR-T cell	NCT05020392	3	24	Active	DLBCL, MCL, CLL, SLL, BL	ORR 83%	[156]
BTK PDL1 4-1BB CD20	Ibrutinib + Avelumab + Utomilumab + Rituximab	NCT03440567	1	16	Active	R/R DLBCL, R/R MCL, Transformed FL	NA	NA
втк	Ibrutinib + Immuno-chemotherapy	NCT02055924	1	85	Terminated	B-cell Lymphomas	CR 42% PR 25% Terminated due to due to veno occlusive disease	[157]
BTK JAK1	Ibrutinib + Itacitinib	NCT02760485	1 & 2	33	Active	B-cell Lymphomas	ORR 24%	[158]
BTK	Ibrutinib + Lenalidomide	NCT01955499	1	34	Active	R/R DLBCL, R/R FL, R/R MZL, R/R MCL	NA	NA
BTK CD20	Ibrutinib + Rituximab	NCT01980654	2	80	Completed	B-cell Lymphomas	ORR 85-75%	[159]

Profitos Peleja et al. Cancers 2022.


Clinical trials with targeted BCR inhibition in combination

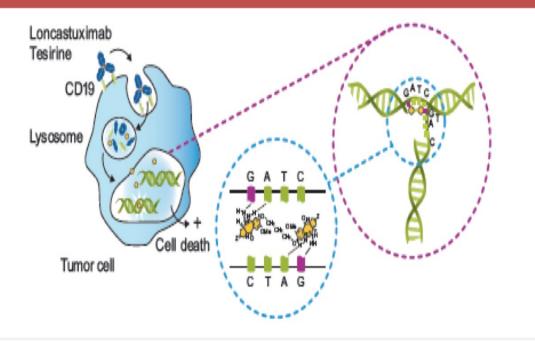
Targets	Drug/Regimen	Clinical Trial	Phase	Nb Pts	Status	Conditions	Response Data	References
BTK CD20	Ibrutinib + Rituximab + Bendamustine	NCT01479842	1	48	Active	MZL, FL, MCL, WM	OR 94% in MCL and 37% in DLBCL CR 76% in MCL and 31% in DLBCL	[160]
BTK	Ibrutinib + Rituximab + Lenalidomide	NCT02636322	2	60	Active	DLBCL	ORR 65% DOR 15.9 months	[161]
BTK CD20	Ibrutinib + Rituximab + Lenalidomide	NCT02077166	1 & 2	134	Completed	R/R DLBCL	ORR 47% CR 28% PFS 21 months AEs grade > 3 in less 30% patients	[162]
BTK CD20	Ibrutinib + Rituximab + Venetoclax	NCT03136497	1	10	Active	R/R DLBCL	NA	NA
BTK	Spebrutinib	NCT01351935	1	113	Completed	B-cell Lymphomas	ORR 53%	[163]
BTK	Spebrutinib + Lenalidomide	NCT01766583	1	18	Completed	R/R B-cell Lymphomas	NA	NA
BTK CD20	Zanubrutinib + Rituximab	NCT03520920	2	41	Completed	MZL, FL, DLBCL	ORR 35% PFS 3.38 months	[164]
BTK mTOR	DTRMWXHS-12 + Everolimus + Pomalidomide	NCT02900716	1	48	Completed	B-cell Lymphomas	Well-tolerated and no DLT achieved	[131]
BTK PI3K	Ibrutinib + Umbralisib	NCT02874404	2	13	Completed	R/R DLBCL	ORR 31% PFS 3 months	[165]

Profitos Peleja et al. Cancers 2022.

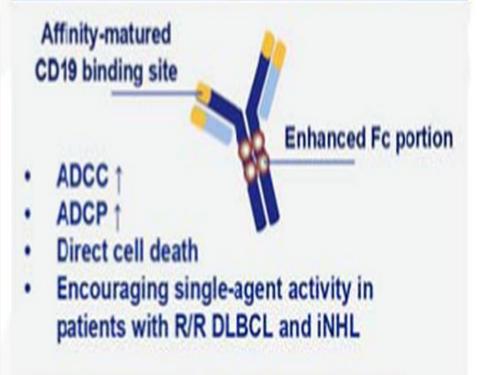
Eppur si muove...

...adding mAb antiCD19?

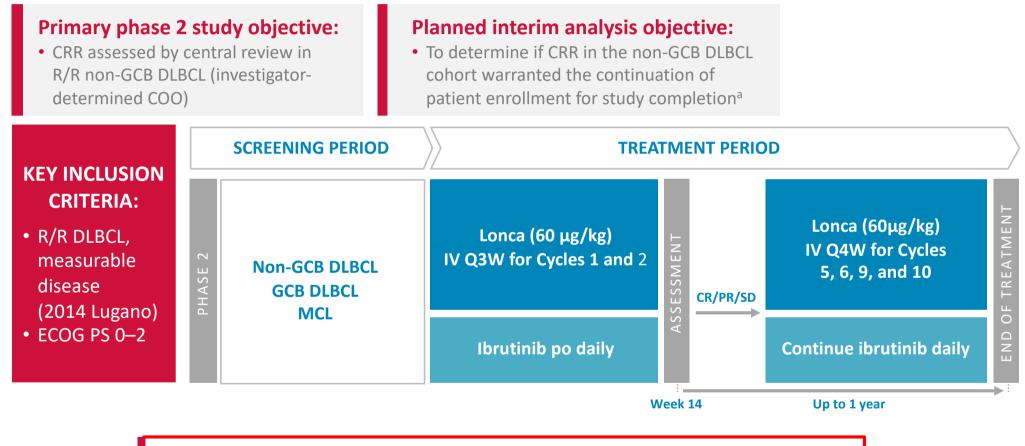
Roschewski M, Staudt LM, Wilson WH, Nat. Rev. Clin. Oncol. 2013.


La terapia nel MONDO LINFOMI

MILANO, 4 APRILE 2022


...adding mAb antiCD19?

Loncastuximab tesirine: humanized anti-CD19 antibody, stochastically conjugated through a cathepsin-cleavable valine-alanine linker to a pyrrolobenzodiazepine (PBD) dimer toxin causing DNA crosslinking.



Tafasitamab (Fc-enhanced, anti-CD19 mAb)¹⁻³

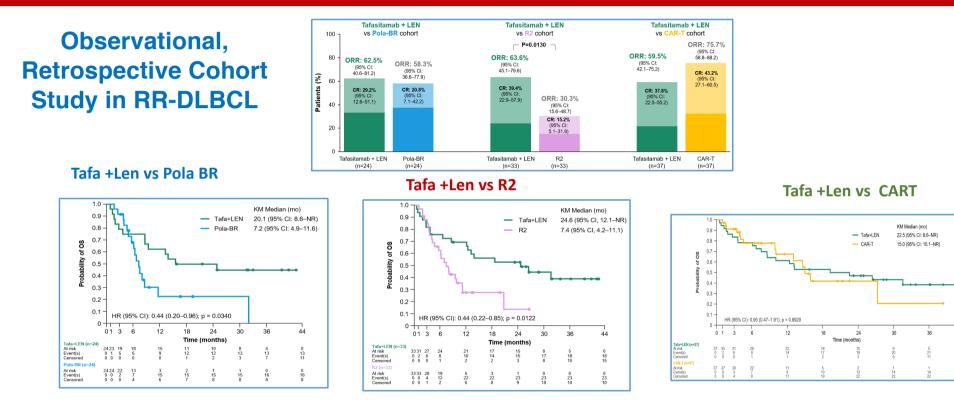
MILANO, 4 APRILE 2022

Phase 2 Study of Loncastuximab Tesirine Plus Ibrutinib in RR-DLBCL (LOTIS-3)

As of Aug 30, 2021, **35 patients with R/R DLBCL** received Lonca 60 μ g/kg plus ibrutinib 560 mg

Carlo-Stella C, Abs#0054, ASH 2021

MILANO, 4 APRILE 2022


Phase 2 Study of Loncastuximab Tesirine Plus Ibrutinib in RR-DLBCL (LOTIS-3)

Median I	_onca cycles: 2 (range: 1–6)	Characteristic	Non-GCB (n=22)	GCB (n=13)	All patients (n=35)
Median ibru	utinib cycles: 3.5 (range: 1–15)	Age, yrs, median (range)	72 (19–82)	66 (53–82)	72 (19–82)
		Prior systemic therapies, n Median (range)	3 (1–6)	3 (2–5)	3 (1–6)
100 80	 Partial Response Complete Response 				
60	-	46,2			
40	27,3			34,3	
20 0	18,2	30,8		22,9	
0	Non-GCB DLBCL (n=22)	GCB DLBCL (n=13)		ll DLBCL (n=35)	
ORR (n/N) (95% Cl) ^b	(10/22)	76.9% (10/13) (46.2, 95.0)		57.1% (20/35) 9.4, 73.7)	

Carlo-Stella C, Abs#0054, ASH 2021

MILANO, 4 APRILE 2022

RE-MIND2: Tafa-Len vs. Pola-BR, R2, and CAR T in RR-DLBCL

- ORR: 62.5% for taf + LEN vs 58.3% for pola-BR, 63.6% vs 30.3% for R2, and 59.5% vs 75.7% for CAR-T
- OS: significant benefit was associated with taf + LEN vs pola-BR and vs R2 (HR: 0.44 in both matched comparisons)
 - There was no significant difference in OS benefit between taf + LEN vs CAR-T (HR: 0.95)

Nowakowski G, Abs#183, ASH 2021

Eppur si muove... La terap

MILANO, 4 APRILE 2022

topMIND: PHASE 1B/2A BASKET STUDY TO EVALUATE TAFASITAMAB^a AND THE PI3Kδ INHIBITOR PARSACLISIB IN RELAPSED/REFRACTORY NON-HODGKIN LYMPHOMA OR CHRONIC LYMPHOCYTIC LEUKAEMIA¹

Adult patients with R/R B-cell malignancies, including DLBCL, MCL, FL, MZL and CLL/SLL, with ECOG PS 0–2 and ≥2 prior systemic antilymphoma/antileukemia therapies (N=100) Tafasitamab 12 mg/kg IV QW (Cycles 1–3) then Q2W (Cycle 4 onward), plus parsaclisib 20 mg QD (Cycles 1–2) then 2.5 mg QD (Cycle 3 onward)

	R/R DLBCL	R/R MCL
Phase 1b	n=10	n=10
Phase 2a	n=10	n=10

R/R FL n=10 n=10

R/R MZL n=10 n=10

Primary Endpoint:^b

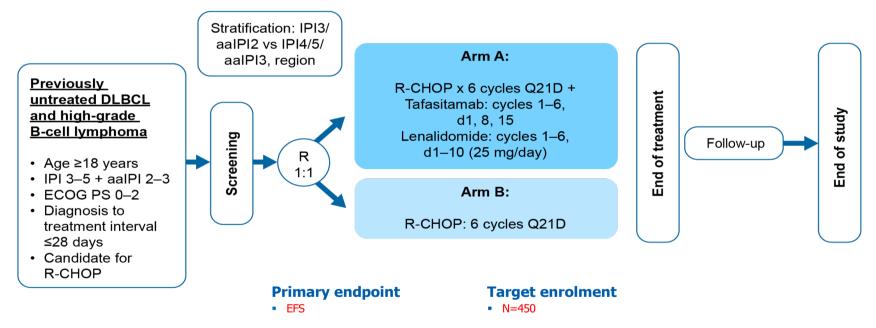
- Phase 1b: incidence and severity of TEAEs and incidence of DLTs
- Phase 2a: ORR

Key Secondary/Exploratory Endpoints:^b

- PK parameters of tafasitamab in combination with parsaclisib
- PK parameters of parsaclisib in combination with tafasitamab
- CRR, DOR, PFS, OS, MRD

- Immunogenicity of tafasitamab
- Cytokine, immune cell and tumour microenvironment response to tafasitamab plus parsaclisib

R/R CLL/SLL


n=10

n=10

• Molecular markers for response or resistance

frontMIND: STUDY DESIGN (MORPHOSYS TRIAL)

INTERNATIONAL, PROSPECTIVE, OPEN-LABEL PHASE 3 STUDY IN 1L DLBCL AND HIGH-GRADE B-CELL LYMPHOMA

1L, first-line; aaIPI, age-adjusted International Prognostic Index; d, day(s); DLBCL, diffuse large B-cell lymphoma; ECOG PS, Eastern Cooperative Oncology Group performance status; EFS, event-free survival; IPI, International Prognostic Index; Q21D, every 21 days; R, randomisation; R-CHOP, rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine and prednisolone.

Conclusions

- DLBCL is a heterogenous disease, and a more accurate recognition of unfavourable
 DLBCL subsets is recommended to better tailor the treatment
- R-chemotherapy is the backbone of treatments with novel drugs, but randomized trials with «X» + R-CHOP have failed.
- New study designs potentially focused on mutational alterations with combination of multiple novel drugs may have a greater chance of success.
- ✓ The addition of mAb anti-CD19 could represent the keystone in the treatment of DLBCL.

MILANO, 4 APRILE 2022

Aknowledgments

Ematologia Fondazione IRCCS Istituto Nazionale dei Tumori Prof Paolo Corradini

