Eppur si muove... La terapia nel MONDO LINFOMI

Il razionale biologico delle combinazioni nei linfomi non Hodgkin

Umberto Vitolo Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia Candiolo (Torino)

Disclosures

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Abbvie					х		
Bayer					x	x	
Constellation						х	
Genmab						x	
Gilead					x	x	
Incyte					x	x	
Janssen					x	х	
Morphosys	x					x	
Novartis					x		
Regeneron						x	

Heterogeneity of Outcomes in DLBCL

- Target both subgroups
 - Possibly overtreating RCHOP "sufficient group"
- Target RCHOP "insufficient" group provided
 - It can be identified
 - It can be targeted

*Patients with DLBCL treated with R-CHOP-21 at BCCA (n = 1,476).

Sehn LH. ASH Education Book. 2012;1:402-9.

Targeting "Insufficient" R-CHOP Group

Evaluation of unfavourable DLBCL subsets: Cell of Origin profile subgroups by GEP

Eppur si muove... La terapia nel MONDO LINFOMI

The key signalling pathways implicated in ABC DLBCL

Roschewski M, Staudt LM, Wilson WH, Nat. Rev. Clin. Oncol. 2013.

Attempt to improve the outcome with the addition of novel drugs with or after R-CHOP: overall no significative advantage

Drug	Regimen	Subtype or not	Study	Results			
R-CHOP + X as induction	R-CHOP + X as induction						
Bevacizumab ¹	RA-CHOP	DLBCL	Main	No advantage (PFS and OS)			
Bortezomib ²	BorR-CHOP	DLBCL	ReMoDL-B	No PFS advantage			
lbrutinib ³	IR-CHOP	Non-GCB DLBCL	Phoenix	No EFS advantage			
Lenalidomide ⁴	R ² -CHOP	ABC-DLBCL	Robust	No PFS advantage			
Venetoclax⁵	VR-CHOP	DLBCL	Cavalli	Promising results			
R-CHOP + X as maintenan	R-CHOP + X as maintenance						
Rituximab ⁶	Rituximab	DLBCL	NHL-13	No EFS advantage 3-yr			
Enzanstaurin ⁷	Enzanstaurin	DLBCL	Prelude	No DFS advantage 4yr			
Everolimus ⁸	Everolimus	DLBCL	Pillar-2	No DFS advantage 2yr			
Lenalidomide ⁹	Lenalidomide	Elderly DLBCL	Remarc	PFS advantage, no OS			

1. Seymour JF et al, Haematologica 2014; 2. Davies A et al, Lancet Oncol 2019; 3. Younes A et al, J Clin Oncol 2019; 4. Vitolo U et al, Hematol Oncol 2019; 5. Morschhauser F at al, 6 Blood 2021; 6. Jagger U et al, Haematologica 2013; 7. Crump M et al, J Clin Oncol 2016; 8. Witzig T et al, Ann Oncol 2018; 9. Thieblemont C et al, J Clin Oncol 2019.

Moving beyond R-CHOP... targeting ABC DLBCL

R-CHOP + Bortezomib

R-CHOP + iBTK

R-CHOP + Lenalidomide

Davies A, et al. Lancet Oncol 2019; Younes A, et al. J Clin Oncol 2019; Nowakowski G, et al. J Clin Oncol 2021.

Should We Still Care About COO?

- > Yes: the prognosis of ABC is still unsatisfactory
- Yes: subgroups of ABC patients benefit from the addition of specific drugs as ibrutinib in young and lenalidomide in high risk
- No: ABC alone is not the best target; DLBCLs are more heterogenous, mutational alterations, etc
- Maybe: ibrutinib or lenalidomide are not the best drugs, we need better drugs, novel-novel combinations

Genetically-distinct DLBCL Subsets are Predictive for Outcome

Genetically-distinct DLBCLs

Chapuy B, et al. *Nat Med*; 2018; 24(5):679-690.

Predictive for Outcome

Genetic signatures comprised of

- Mutations
- Somatic copy number alterations (SCNAs)
- Structural Variants (SVs)

C1 vs. C5 DLBCLs – Two Genetically Distinct ABC-DLBCLs

С	C1 DLBCLs	C5 DLBCLs
MYD88 mutations	23%(13/56)	44%[28/64]
Type of MYD88 mutations	non-L265P	L265P
Concordant CD79B mutations	no	frequent

• Different types and incidences of MYD88

P = 0.03 P = 0.03 P = 0.03 C1 C5 0 20 40 60 80 100 120 140 Time

ABC-DLBCLs

C5 DLBCLs - highest cAID activity

tumors passaged through the GC

C1 DLBCLs - low to absent cAID activity

suggestive of extrafollicular origin

mutations

→ C1 and C5 ABC-type DLBCLs arise by distinct pathogenetic mechanisms.

Chapuy B, et al. Nat Med; 2018; 24(5):679-690.

Eppur si muove... | La terapia nel MONDO LINFOMI

Regulation of BCR signaling and the therapeutic inhibition of BTK and PI3K in DLBCL

- ✓ ABC-DLBCL displays chronic active BCR signaling resulting in constitutive NF-kB activity
- ✓ In contrast to antigen and chronic active BCR signaling, the antigen-independent signal, termed 'tonic BCR signaling', is mediated by PI3K + PI3K /AKT/mTOR, but not the NF-kB pathway, to promote the proliferation and survival of malignant B cells. Genomic data have shown that GCB-DLBCL lines exclusively use tonic BCR signaling.

Profitos Peleja et al. Cancers 2022.

TORINO, 11 APRILE 2022

Evolving Strategies in the Treatment of DLBCL

Targeting all comers Vs Single gene/single drug model Vs Combination of genes/combination of drugs?

Drugs by Molecular Classification Subgroups

Genetically defined category	Drugs
MCD/C5	ibrutinib, acalabrutinib, venetoclax
BN2/C1	ibrutinib, bortezomib, carfilzomib
EZB/C3	venetoclax, tazemetostat, idelalisib, copanlisib, duvelisib, umbralisib
C4	idelalisib, copanlisib, duvelisib, borezomib, carfilzomib, ruxolitinib

MCD: MYD88^{L265P} and CD79B mutations / C5 predominantly ABC
BN2 : BCL6 fusions and NOTCH2 mutations / C1 both ABC and GCB
N1 : NOTCH1 mutations predominantly ABC
EZB : EZH2 and BCL2 mutations / C3 predominantly GCB

Chapuy B et al, Nature Medicine 2018, 24: 679-690 Schmitz R et al: N Engl J Med 2018;378:1396-407

Courtesy of M. Trneny

Smart Start: R+Len+Ibrutinib Lead-in Prior to Addition of Chemotherapy for Newly Diagnosed DLBCL

- Primary Objectives
 - 1A: To determine the ORR at the end of 2 cycles of RLI alone
 - 1B: To determine the CR rate at the end of RLI x 2 + RLI combined

Westin J, ICML 2019.

Smart Start: Responses

Genetic Subtype Guided Rituximab-based Immunochemotherapy Improves Outcome in Newly Diagnosed Diffuse Large B-cell Lymphoma: First Report of a Randomized Phase 2 Study

Subtype	Drug X	128 patients:			
	ibrutinib		NOS – 50	TP-53 – 21	
			MCD – 26	EZB – 3	
N1, NOS	lenalidomide		BN2 – 23	N1 - 3	
EZB	tucidinostat (HDAC) inhibitor				
TP53	decitabine	•	Outcome: CR 1 yr. PFS	<u>CHOP-R</u> 65% 79%	<u>CHOP-R-X</u> 85% 96%

Zhang M, ICML 2021.

Mechanisms of Action for recent approved novel therapy in R/R DLBCL

Sawalha Y, J Pers Med 2021.

Eppur si muove	La terapia nel MONDO LINFOMI			TORINO, 11 APRILE 2022
		Agent/Combination	Phase	Identifier (Trial Name)
		R-GemOx +/ – polatuzumab	III	NCT04182204 (POLARGO)
		Polatuzumab, lenalidomide, rituximab	Ib/II	NCT02600897
		Selinexor plus R-ICE	Ι	NCT02471911
		Selinexor plus R-DHAX or R-GDP	Ib	NCT02741388 (SELINDA)
		Selinexor and ibrutinib	Ι	NCT02303392
Select ongo	ina or	Selinexor and venetoclax	Ib	NCT03955783
		Tafasitamab plus bendamustine vs. BR	II/III	NCT02763319 (B-MIND)
planned cli	nical	Loncastuximab plus ibrutinib	I/II	NCT03684694
trials of p	ovol	Loncastuximab plus venetoclax	Ι	NCT05053659
unais or no	over	Loncastuximab plus rituximab vs. R-GemOx	III	NCT04384484 (LOTIS-5)
agents	in	Glofitamab, RO7227166, and obinutuzumab	I/II	NCT04077723
		Glofitamab or mosunetuzumab plus GemOx	Ib	NCT04313608
relapsed/retr	actory	Glofitamab plus atezolizumab or polatuzumab	Ib/II	NCT03533283
	-	Glofitamab plus GemOx vs. R-GemOx	III	NCT04408638 (STARGLO)
DLDCL	-	Epcoritamab vs. investigator's choice chemotherapy	III	NCT04628494 (GCT3013-05)
		Epcoritamab plus R-DHAX/C or R-GemOx	Ib/II	NCT04663347
		Mosunetuzumab and polatuzumab	Ib/II	NCT03671018
		Mosunetuzumab and atezolizumab	I/II	NCT02500407
		Venetoclax, ibrutinib, and rituximab	Ι	NCT03136497
		Venetoclax, lenalidomide, and obinutuzumab	I	NCT02992522
		Venetoclax plus R-ICE	I/II	NCT03064867
		Magrolimab plus rituximab or R-GemOx	Ib/II	NCT02953509
		Abexinostat and ibrutinib	Ι	NCT03939182

Sawalha Y, J Pers Med 2021.

Loncastuximab Tesirine in R/R DLBCL: a multicentre, open-label, single-arm, phase 2 trial

 humanized anti-CD19 antibody, stochastically conjugated through a cathepsin-cleavable valine-alanine linker to a pyrrolobenzodiazepine (PBD) dimer toxin causing DNA crosslinking

	As-treated population (n=145)
Overall response rate (complete or partial response)	70 (48·3% [39·9–56·7])
Complete response rate	35 (24·1% [17·4–31·9])
Complete response	35 (24%)
Partial response	35 (24%)
Stable disease	22 (15%)
Progressive disease	30 (21%)
Not evaluable*	23 (16%)

As-treated population 145 (0) 124 (15) 85 (23) 55 (37) 44 (45) 33 (54) 29 (57) 23 (62) 20 (63) 16 (65) 8 (73) 6 (75) 4 (0) 4 (75) 3 (76) 1 (77) 0 (78)

(number censored)

As-treated population 145 (0)136 (2)127 (2) 116 (2) 111 (4) 95 (9) 84 (12) 68 (18) 60 (21) 49 (31) 41 (37) 29 (44) 19 (50) 15 (53) 9 (59) 8 (60) 4 (64) 2 (66) 0 (68)

Caimi PF et al, Lancet Oncol 2021, 22:790-800.

Eppur si muove... La terapia nel MONDO LINFOMI

TORINO, 11 APRILE 2022

Phase 2 Study of Loncastuximab Tesirine Plus Ibrutinib in RR-DLBCL (LOTIS-3)

Carlo-Stella C, Abs#0054, ASH 2021

TORINO, 11 APRILE 2022

Phase 2 Study of Loncastuximab Tesirine Plus Ibrutinib in RR-DLBCL (LOTIS-3)

Carlo-Stella C, Abs#0054, ASH 2021

Emerging therapies: Bispecific Antibodies

Investigational CD20×CD3 bispecific antibodies for B-cell lymphomas:

FDA BTD for R/R FL (2020)

CD20xCD3 bispecific antibodies + SoC

Rational combinations of targeted therapies

By courtesy of Salles G, ICML 2021

Glofitamab in R/R B-cell lymphoma patients. CRS 67%, Grade 3-4 6%

Response rate: Aggressive and Indolent NHL

For aggressive NHL, a trend of improved response was observed at the RP2D (2.5/10/30mg; N=14), with a **CMR rate of 71.4%**

- The median duration of response for complete responders have not been reached
- Aggressive NHL: 13/16 CMRs are ongoing, 8 CMRs lasting >3 months; 5 CMRs lasting >6 months
- Indolent NHL: 16/17 CMRs are ongoing, 10 CMRs lasting >3 months; 3 CMRs lasting >6 months

Hutchings M et al, JCO 2021, Carlo-Stella, ICML-16.

Eppur si muove... | La terapia nel MONDO LINFOMI

TORINO, 11 APRILE 2022

Glofitamab in Combination with Polatuzumab Vedotin: Phase Ib/II in 59 pts with R/R Diffuse Large B-Cell Lymphoma (DLBCL)

Glofit + Pola arm: study design in R/R DLBCL

Hutchings M et al. Abs#525, ASH 2021.

Eppur si muove... La terapia nel MONDO LINFOMI

TORINO, 11 APRILE 2022

Glofitamab in Combination with Polatuzumab Vedotin: response rate and adverse events

Hutchings M et al. Abs#525, ASH 2021.

Eppur si muove... | La tera

TORINO, 11 APRILE 2022

topMIND: PHASE 1B/2A BASKET STUDY TO EVALUATE TAFASITAMAB^a AND THE PI3Kδ INHIBITOR PARSACLISIB IN RELAPSED/REFRACTORY NON-HODGKIN LYMPHOMA OR CHRONIC LYMPHOCYTIC LEUKAEMIA¹

Adult patients with R/R B-cell malignancies, including DLBCL, MCL, FL, MZL and CLL/SLL, with ECOG PS 0–2 and ≥2 prior systemic antilymphoma/antileukemia therapies (N=100) Tafasitamab 12 mg/kg IV QW (Cycles 1–3) then Q2W (Cycle 4 onward), plus parsaclisib 20 mg QD (Cycles 1–2) then 2.5 mg QD (Cycle 3 onward)

R/R MCL n=10 n=10 R/R FL R/R MZL n=10 n=10 n=10 n=10

Primary Endpoint:^b

- Phase 1b: incidence and severity of TEAEs and incidence of DLTs
- Phase 2a: ORR

Key Secondary/Exploratory Endpoints:^b

- PK parameters of tafasitamab in combination with parsaclisib
- PK parameters of parsaclisib in combination with tafasitamab
- CRR, DOR, PFS, OS, MRD

- Immunogenicity of tafasitamab
- Cytokine, immune cell and tumour microenvironment response to tafasitamab plus parsaclisib

R/R CLL/SLL

n=10

n=10

• Molecular markers for response or resistance

A Phase 3, multicenter, randomized, double-blind, placebo-controlled trial comparing the efficacy and safety of **Tafasitamab** plus **Lenalidomide** in addition to **R-CHOP** versus **R-CHOP** in previously untreated, high-intermediate and high-risk patients with newly diagnosed Diffuse Large B-Cell Lymphoma

 $\ensuremath{\mathbb{C}}$ MorphoSys AG, MOR208C310 I Steering Committee , 03-SEP-2020

	Study team	
International Steering Committee Members	<u>MorphoSys</u>	Pathology and Molecular biology team
John Burke	Alok Pachori	• Bjorn Chupey
Annalisa Chiappella	Maeve Waldron-Lynch	Ilaria Del Giudice
Christopher Fox	• Nira Hadar	Simone Ferrero
Georg Lenz	• Aizza Hassan	Gianluca Gaidano
Grzegorz Nowakowski	Johannes Weirather	Marco Ladetto
Marek Trneny	Silvia Stingele	Georg Lenz
Umberto Vitolo	• Fausto Loberiza	Stefano Pileri
FIL Clinical team	Mikhail Akimov	Maurillo Ponzoni

Monica Balzarotti

٠

- Annalisa Chiappella
- Maurizio Martelli
- Umberto Vitolo

• Oliver Manzke (Incyte)

Andreas Rosenwald

Conclusions

- R-CHOP is still the standard of care in DLBCL but we need to move forward to improve the outcome of our patients.
- COO is predictive of the outcome with ABC subtype having a worst prognosis in terms of systemic and also CNS progression but we cannot based anymore on this simple subgrouping
- A single target approach have failed underlining the molecular complexity of DLBCL
- A more accurate recognition of unfavourable DLBCL subsets is recommended to better tailor the treatment
- New study designs potentially focused on mutational alterations with combination of multiple novel drugs may have a greater chance of success.
- Novel-novel combinations as anti-CD19 and immunomodulators, or bispecific antibodies + different novel biological drugs or chemoimmunotherapy represent a step forward the cure of all DLBCL