

Resistance to BCL-2i

- When
- Why
- How to overcome resistance

The DLEU2/Mir-15°/Mir-16-1 locus controls B-cell compartment expansion

Klein U, Cancer Cell, 2010: 17; 1-13.

miR-15/16 target BCL2 expression

Pekarsky Y, et al. Cell Death Differ. 2018;25:21-26.

Klein U, Cancer Cell, 2010: 17; 1-13

Members of the BCL-2 family and their role Schematic representation of the members of BCL-2 family and his subunits

BH: Bcl-2 Homology domain, necessary for protein function

Morales-Martínez M. Int J Mol Sci. 2022 Feb; 23(4): 2193

Targeting the intrinsic pathway of apoptosis

Morales-Martínez M. Int J Mol Sci. 2022 Feb; 23(4): 2193

Cell of origin, pathogenesis and genetic defects in CLL

Yin et al., 2019, Cancer Cell 35, 1–14

Landau D et al Cell 2013; 152: 714–726

Mutations driving CLL and their evolution in progression and relanse

Landau et al, 2 O C T O B E R 2 0 1 5 | VO L 5 2 6 | N AT U R E | 5 2 5

Sequential development of molecular cytogenetic lesions in CLL

Risk Factors for Developing Resistance (early PD) to Venetoclax

Relapsed CLL, continuous ven	Relapsed, 2 yrs ven	Frontline, 1 yr ven
(n = 436 [413/254])	(n = 194 <i>[</i> 155 <i>]</i>)	(n = 216 <i>[</i> 206 <i>]</i>)
 Pre-treatment variables Bulky lymphadenopathy Resistance to BTK inhibitors del(17p) and / or TP53 mutation NOTCH1 mutation 	X Not eval ✓ X	Not eval
 IGHV unmutated* On-treatment variables Failure to achieve CR by 9 mo Failure to achieve uMRD by 24mo 	Not eval ✓ (best) ✓ (@ 2 yrs)	± (@ 3yrs) Not eval √ (@12 mo)
* IGHV status no longer significant when response variables i	ncluded	

Roberts Blood 2019, Kater J Clin Oncol 2020, Tausch Blood 2020, Fischer Lancet Oncol 2020

International Workshop on CLL

Courtesy of Andrew Roberts, Melbourne, Australia

12-13 APRILE 2022 BOLOGNA ROYAL HOTEL CARLTON

Resistance to BCL-2i

• When

• Why

• How to overcome resistance

DA SEIGENTO ANNI SUARDIANO AVANTI

Courtesy of Dr.ssa Lydia Scarfò HSR Milan

Molecular mechanisms of acquired resistance to targeted therapies

Venetoclax Resistance

• BRAF mutation, potentially upregulating MCL-1

Sustained Ven exposure

Modified from: Lew TE et al, Blood 2021

BCL2 Gly101Val is specific for CLL with resistance to Venetoclax

Population	n Number BCL2 assessed Gly101Val detected (%)		BCL2 Phe104Leu detected (%)	
Venetoclax-naïve CLL	96	0 (0%)	0 (0%)	
CLL-type progression on venetoclax	15	7 (46.7%)	0 (0%)	
Other B-cell malignancies				
- Follicular lymphoma	28	0 (0%)	0 (0%)	
- Mantle cell lymphoma	28	0 (0%)	0 (0%)	
- Diffuse large B-cell lymphoma	47	0 (0%)	0 (0%)	
- Lymphoplasmacytic lymphoma	95	0 (0%)	0 (0%)	
- Multiple myeloma	103	0 (0%)	0 (0%)	
Cancer database (COSMIC ^a)	47,628	0 (0%)	2 (0.004%)	
Population database (gnomAD ^b)	30,836	0 (0%)	0 (0%)	

Blombery et al. Cancer Discov 2019

Mechanisms of Resistance to Venetoclax

BCL2 mutations

Blombery Cancer Discovery 2019; Birkinshaw Nat Comms 2019

Courtesy of Andrew Roberts, Melbourne, Australia

International Workshop on CLL

Venetoclax: mechanisms of resistance

BCL2 c.302G>T, p.(G101V) detected in samples from

^aCLL cells harboring G101V at progression; calculated by adjusting the measured VAF by the % of CLL cells in the bone marrow determined by flow cytometry.

CLL cells harboring p.G101V are less sensitive to Venetoclax

Blombery et al. Cancer Discov 2019

Mechanisms of Resistance to Venetoclax

BCL2 mutations

- Almost exclusively occur in context of ven exposure
- Maintain pro-survival function
- Reduce ven binding to BCL2
- Multiple sites, multiple clones

Blombery Cancer Discovery 2019; Birkinshaw Nat Comms 2019; Tausch Haematologica 2019; Blombery Blood 2020

Courtesy of Andrew Roberts, Melbourne, Australia

Venetoclax: insights into the clonal dynamics involved in resistance

- Whole-exome sequencing data of eight CLL patients with <u>TP53</u> <u>disruption</u> that developed resistance upon BCL2-inhibition by venetoclax (4 Richter transformation)
- BTG1 (2 patients)*
- Homozygous deletions affecting CDKN2A/B (3 patients)*
- Mutation in BRAF and a high-level focal amplification of CD274 (PD-L1)
- Pinpoint molecular aberrations offering structures for further therapeutic interventions.

Herling et al. Nat comm 2018

•

۲

٠

Heterogeneous clonal evolutions under venetoclax therapy

Clonal evolutions in patients with TP53 disruption who developerd resistance to venetoclax

- Alterations in cancer-related genes: BRAF, CD274, NOTCH1, RB1, SF3B1, and TP53 that evolved during venetoclax treatment
- Genetic alterations in BCL2 or functionally connected genes, such as BAX and BAK were not identified.
- Recurrent mutations in BTG1 and homozygous deletions of CDKN2A/B as recurrent genomic events at the time of relapse under venetoclax exposure
- Complete loss of CDKN2A/B alone is not sufficient to induce venetoclax resistance
- Aside the abrogation of cell cycle control by loss of CDKN2A/B, damaging mutations in BTG1 may provide a survival advantage to CLL cells under targeted BCL2-inhibition

Herling et al. Nat comm 2018

12-13 APRILE 2022 **BOLOGNA** ROYAL HOTEL CARLTON

Resistance to BCL-2i

- When
- Why
- How to overcome resistance lacksquare

Courtesy of Dr.ssa Lydia Scarfò HSR Milan

Strategies to prevent or overcome acquired resistance

Skanland S and Mato AR. Blood Advances 2021

Strategies to prevent or overcome acquired resistance

Skanland S and Mato AR. Blood Advances 2021

Treatment sequencing

BCL2i → BTKi

Lin VS et al, Blood 2020

Strategies to prevent or overcome acquired resistance

Skanland S and Mato AR. Blood Advances 2021

Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): a phase 1/2 study

Α

Mato A et al. Lancet 2021; 397: 892–901

Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): a phase 1/2 study

	Number of lines of previous systemic therapy	Treated	Efficacy, evaluable*	Responders	Overall response rate		
Chronic lymphocytic leukaemia and small lymphocytic lymphoma							
All patients	3 (2-5)	170	139	88	63% (55-71)		
Patients who had previous therapy							
With at least BTK	4 (2-5)	146	121	75	62% (53-71)		
With at least BCL2	5 (4-7)	57	48	31	65% (50-78)		
With at least PI3K	4 (3-6)	36	30	18	60% (41-77)		
With at least BTK and BCL2	5 (4-7)	54	45	29	64% (49-78)		
With at least chemotherapy, CD20, and BTK	4 (3-6)	113	93	62	67% (56–76)		
With at least chemotherapy, CD20, BTK, and BCL2	5 (4-7)	48	39	27	69% (52–83)		
With at least chemotherapy, CD20, BTK, BCL2, and PI3K	6 (4-9)	14	12	7	58% (28-85)		
With at least CAR T-cell therapy	6 (4-9)	10	10	9	90% (56–100)		
BTK mutational status†							
C481 mutant	3 (3-5)	25	24	17	71% (49-87)		
Wild type	4 (2-4)	66	65	43	66% (53-77)		
Reason for previous BTK discontinuation							
Progression	4(3-6)	98	79	53	67% (56-77)		
Toxicity or other	3 (2-4)	48	42	22	52% (36-68)		

Duration of response in patients with CLL or SLL

Mato A et al. Lancet 2021; 397: 892-901

Treatment of progressive disease after venetoclax for CLL

Lew TE et al, Blood 2021