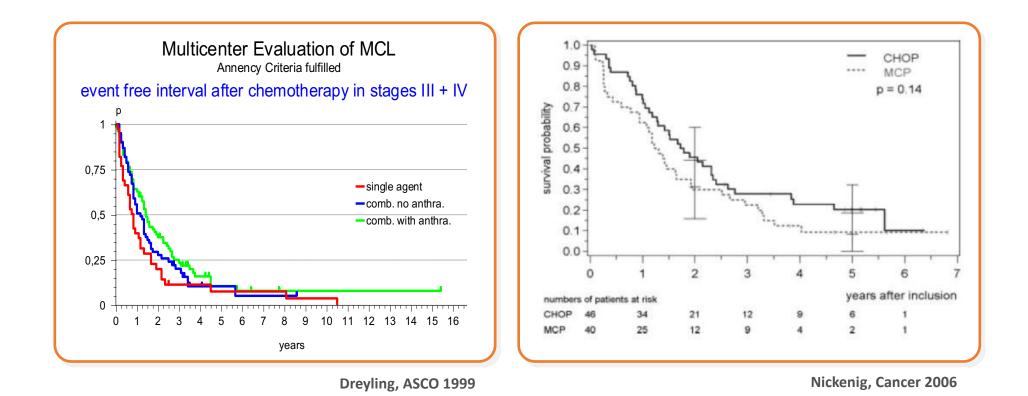

INTERNATIONAL PALERMO WORKSHOP ON: INNOVATIVE THERAPIES FOR LYMPHOID MALIGNANCIES

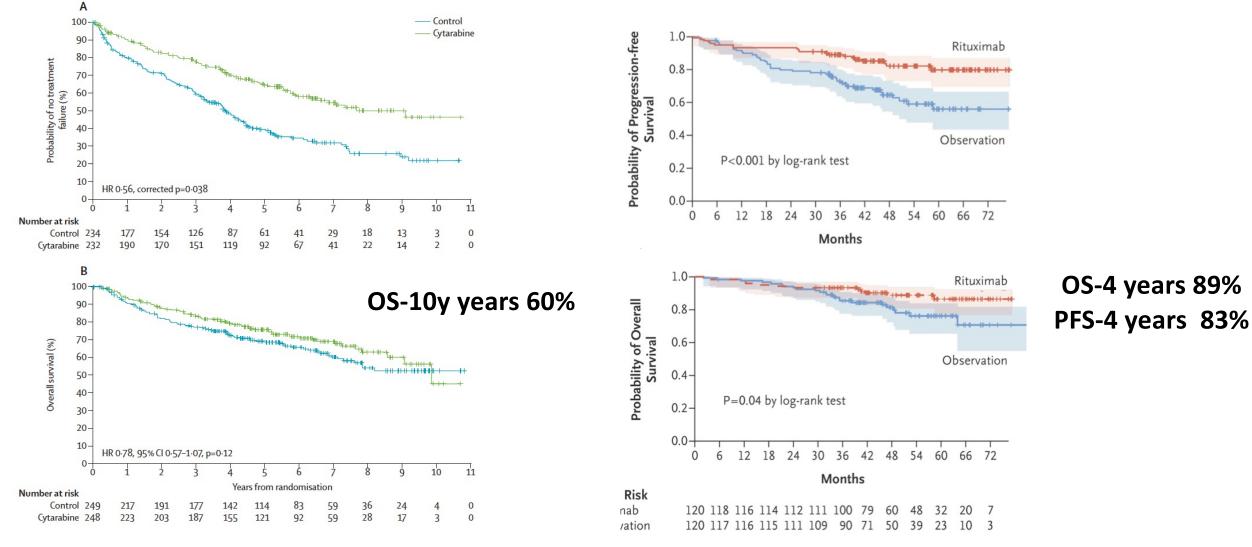
Mantle cell lymphoma New perspectives in relapsing/refractory Mantle Cell Lymphoma


ASSISTANCE PUBLIQUE Olivier Hermine MD, PhD Department of Hematology INSERM 1163, Imagine Institute ARTES Necker Hospital HOPITAUX DE PARIS Paris, France

FONDATION

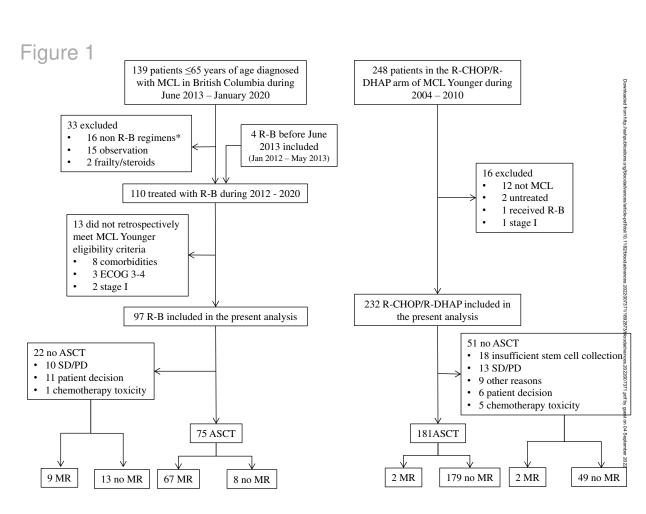
European MCL Network Clinical course (History 2000)

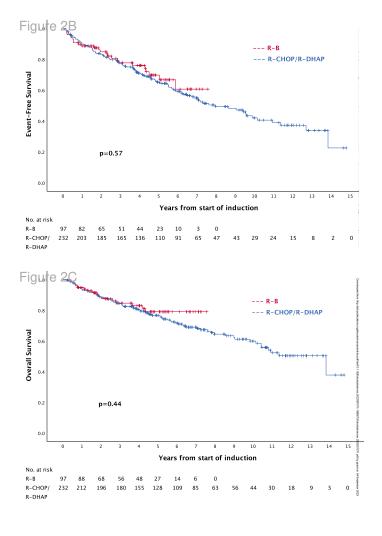
• CR/Cru 25%



Younger patients

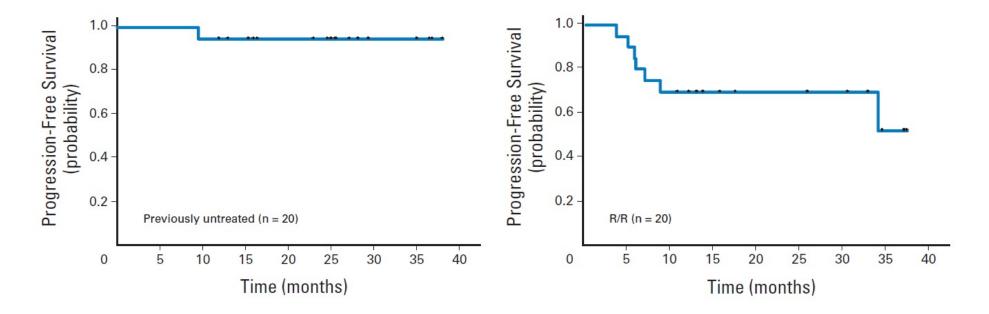
- Autologous SCT
- High-dose cytarabine

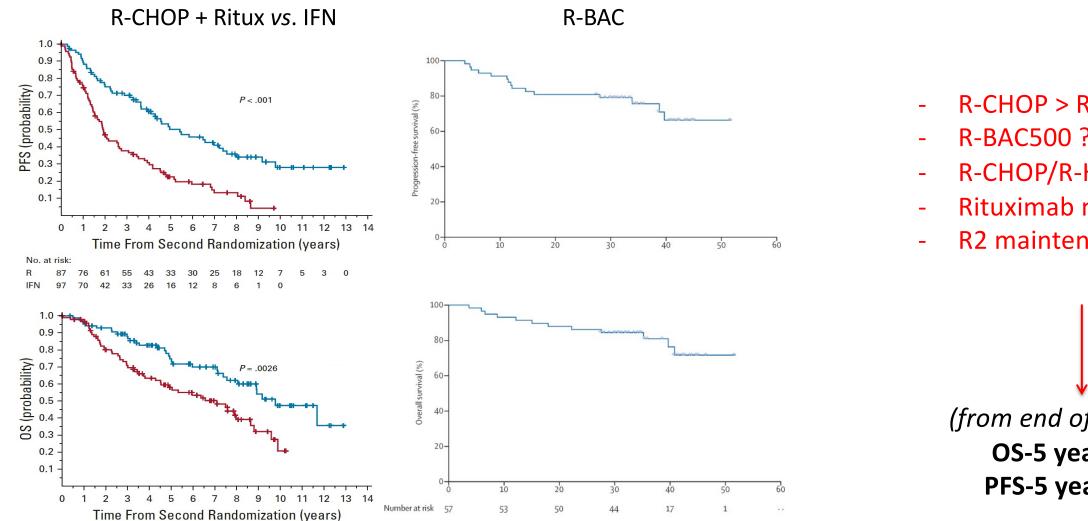




Dreyling Blood 2005; Hermine Lancet 2016; Le Gouill NEJM 2017, Hermine JCO 2023

Bendamustine or high-dose cytarabine-based induction with rituximab in transplant-eligible mantle cell lymphoma


Diego Villa^{*1}, Eva Hoster^{*2}, Olivier Hermine³, Wolfram Klapper⁴, Michal Szymczyk⁵, André Bosly⁶, Michael Unterhalt⁷, Lisa M. Rimsza⁸, Colleen A. Ramsower⁸, Ciara L. Freeman^{1,9}, David W. Scott¹, Alina S. Gerrie¹, Kerry J. Savage¹, Laurie H. Sehn¹, Martin Dreyling⁷

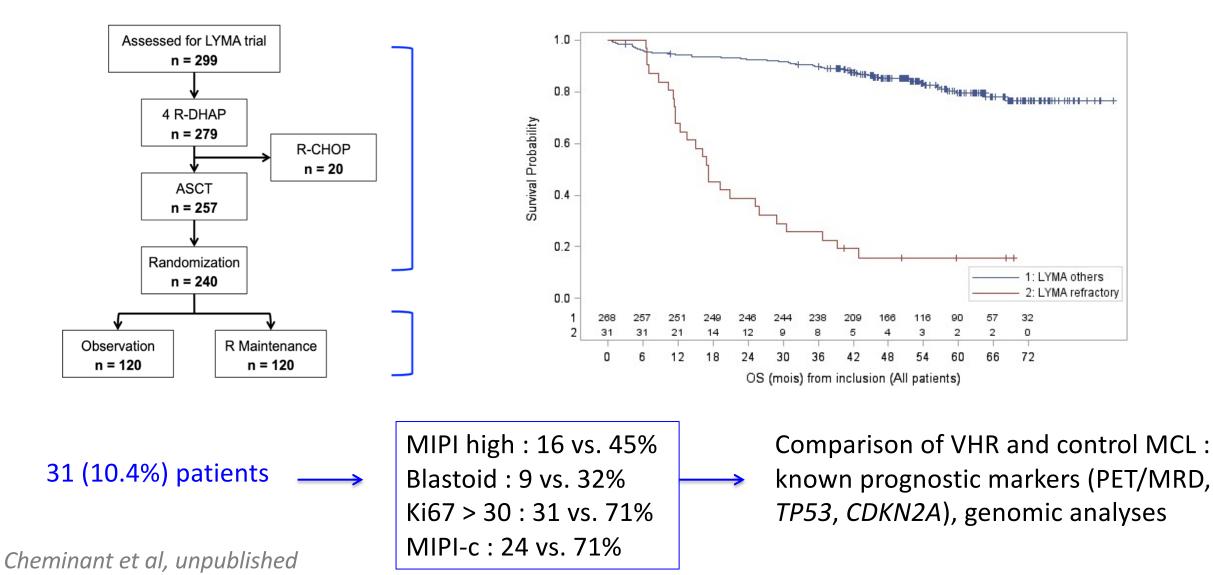

Mantle cell lymphoma R-BAC

	All Patients ($N = 40$)			Untreated $(n = 20)$	R/R Patients (n = 20)	
Characteristic	No.	%	No.	%	No.	%
Response rates						
OR	36	90	20	100	16	80
CR	33	83	19	95	14	70
PR	3	7	1	5	2	10
NR	3	7	0	0	3	15
PD	1	3	0	0	1	5

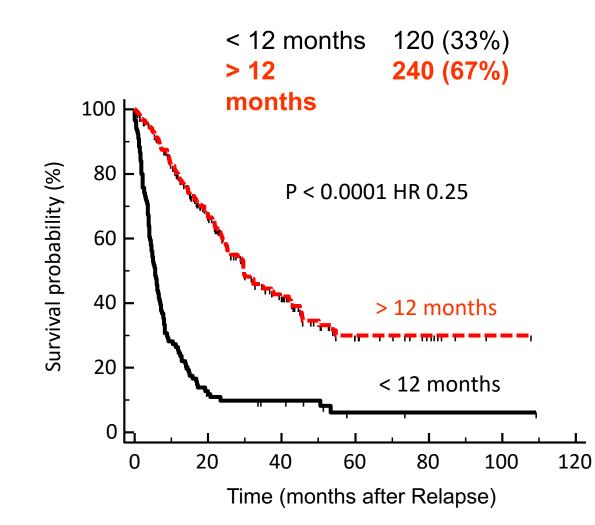
Visco, JCO 2013

Elderly patients

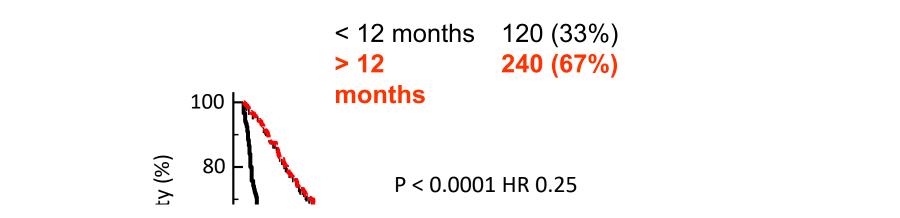
- R-CHOP > RFC
- **R-BAC500**?
- R-CHOP/R-HAD ?
- **Rituximab maintenance**
- R2 maintenance?


(from end of induction) **OS-5 years 75%** PFS-5 years 50%

Kluin-Nelemans NEJM 2012 & JCO 2020; Visco Lancet hematol 2017



Identification of very-high risk MCL?

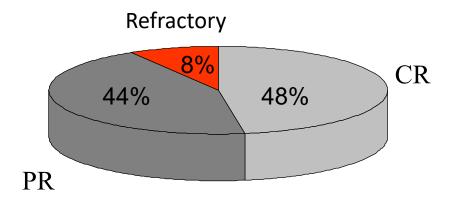


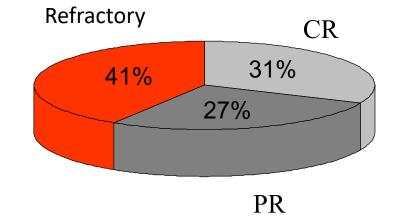
Prognostic factors after autoSCT failure OS by remission duration after autoSCT Before BTKi era

EBMT Registry Analysis, Ann. Onc. 2014, S. Dietrich

Prognostic factors after autoSCT failure OS by remission duration after autoSCT Before BTKi era

* Low sMIPI >5y / in high sMIPI (>>1/2 cases) 0.9y

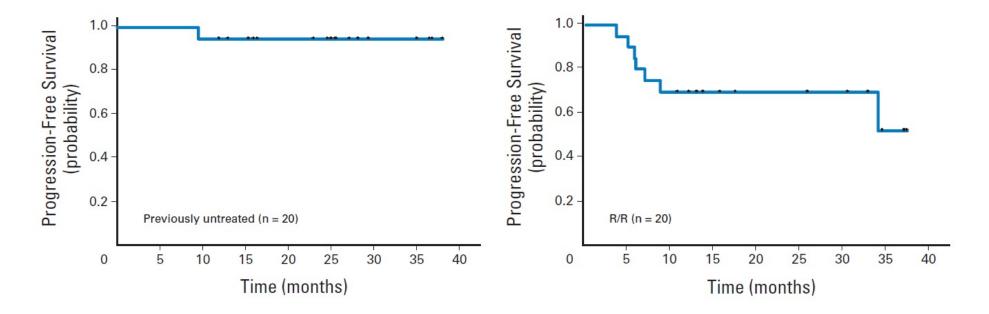



EBMT Registry Analysis, Ann. Onc. 2014, S. Dietrich

Response to salvage chemotherapy Before BTKi era

Before 1st autoSCT

Salvage after autoSCT-relapse

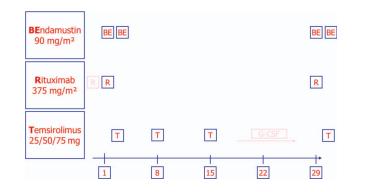


CR	48%
PR	44%
Refractory	8%

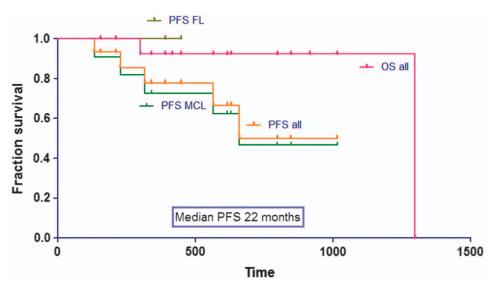
CR	31%
PR	27%
Refractory	42%

Mantle cell lymphoma R-BAC

	All Patients ($N = 40$)			Untreated $(n = 20)$	R/R Patients (n = 20)	
Characteristic	No.	%	No.	%	No.	%
Response rates						
OR	36	90	20	100	16	80
CR	33	83	19	95	14	70
PR	3	7	1	5	2	10
NR	3	7	0	0	3	15
PD	1	3	0	0	1	5



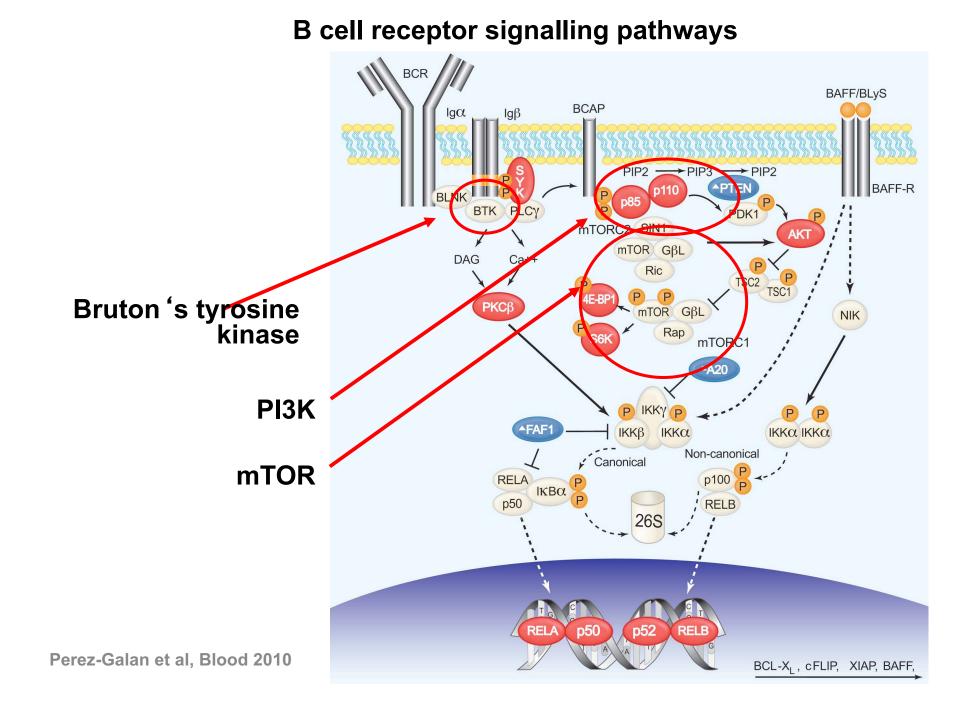
Visco, JCO 2013


ORIGINAL ARTICLE

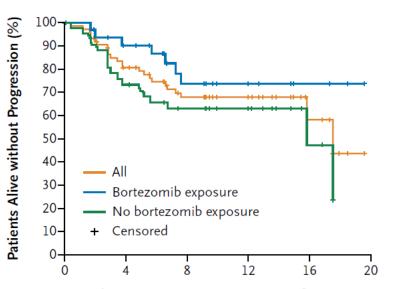
Safety and efficacy of Temsirolimus in combination with Bendamustine and Rituximab in relapsed mantle cell and follicular lymphoma

G Hess¹, U Keller², CW Scholz³, M Witzens-Harig⁴, J Atta⁵, C Buske⁶, S Kirschey¹, C Ruckes⁷, C Medler⁷, C van Oordt¹, W Klapper⁸, M Theobald¹ and M Dreyling⁹

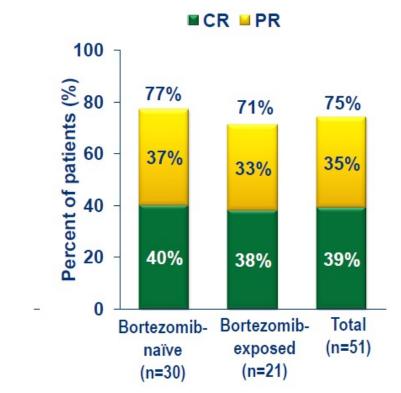
0 (0%)	5 (33%)
	3 (33 / 0)
4 (100%)	10 (67%)
4 (100%)	14 (93%)
	1 (7%)
	67%
	92%
	4 (100%)


Chemotherapy salvage strategies

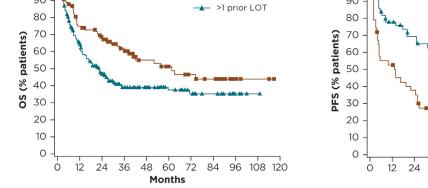
> No standard/ participation in clinical trials

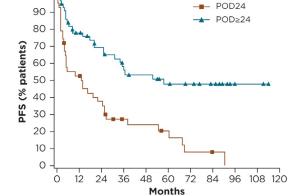

> The salvage regimen used depends upon:

- patient comorbidities
- side effect profile of the selected regimen
- prior therapies
- clinical situation


-Consolidation treatment (allo SCT, CAR-T, Bi-spe)

Ibrutinib for MCL

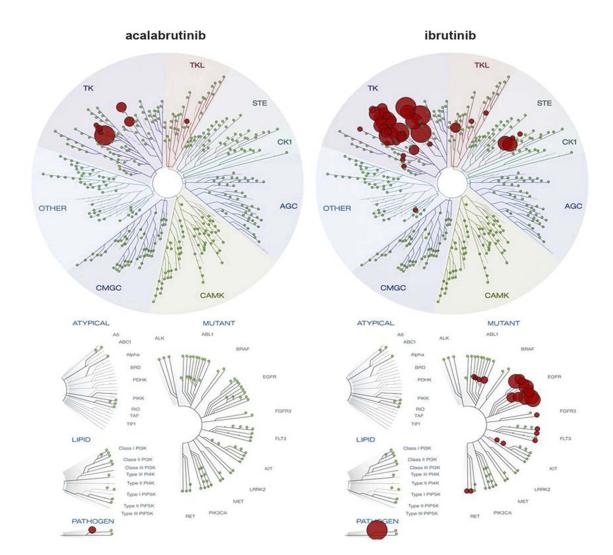



Months since First Documentation of Response

Outcome of patients with MCL treated by BTKi (Ibrutinib)

В Α ---- Best resp = CR 1 prior LOT Best resp = PR >1 prior LOT **batients)** 60 50 **batients)** 60 50 % % PFS PFS 24 36 48 60 72 84 96 108 120 24 36 48 60 72 84 96 108 120 Months Months Patients at risk **Patients at risk** Best resp = CR 1 prior LOT Best resp = PR >1 prior LOT С D 1 prior LOT ---- POD24 >1 prior LOT ▲ POD≥24

Patients at risk Patients at risk 1 prior LOT 99 70 59 42 POD24 >1 prior LOT 271 158 103 59 POD≥24 56 39


Long-term Outcomes With Ibrutinib Treatment for Patients With Relapsed/Refractory Mantle Cell Lymphoma: A Pooled Analysis of 3 Clinical Trials With Nearly 10 Years of Follow-up

Martin Dreyling¹, Andre Goy², Georg Hess³, Brad S. Kahl⁴, José-Ángel Hernández-Rivas⁵, Natasha Schuier⁶, Keqin Qi⁷, Sanjay Deshpande⁸, Angeline Zhu⁸, Lori Parisi⁸, Michael L. Wang⁹

Safety : Grade 3 (5%),Neutropenia, Thrombocytopenia (12%), Cardiovascular (20%), Atrial Fibrillation (7%), pneumonia (13%)

HemaSphere

Other BTKi

Increase efficacy ? Increase safety ? (Cardiovascular)

Other BTKi ?

• Zanubrutinib

Selective BTK inhibitor with a 90% ORR and. 20% CR in a phase I trial in MCL. Another reported an ORR of 81% with a PET-negative CR of 58%.

• LOXO-305

Reversible inhibitor with non-covalent binding to BTK that preserves activity in the presence of the C481S mutations and avoids off-target kinases inhibition.

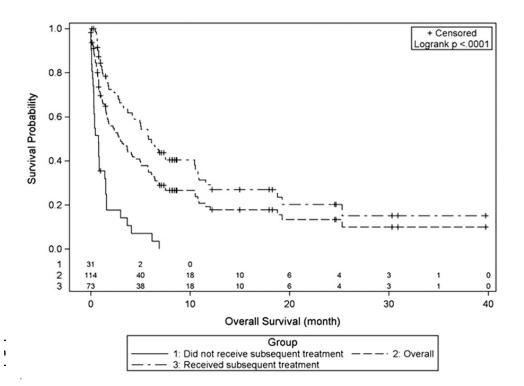
• Vecabrutinib (SNS-062)

Reversible and non-covalent BTK inhibitor. Does not interact with cysteine 481 residue within the kinase domain unlike other inhibitors and may be relevant in C481S mutants.

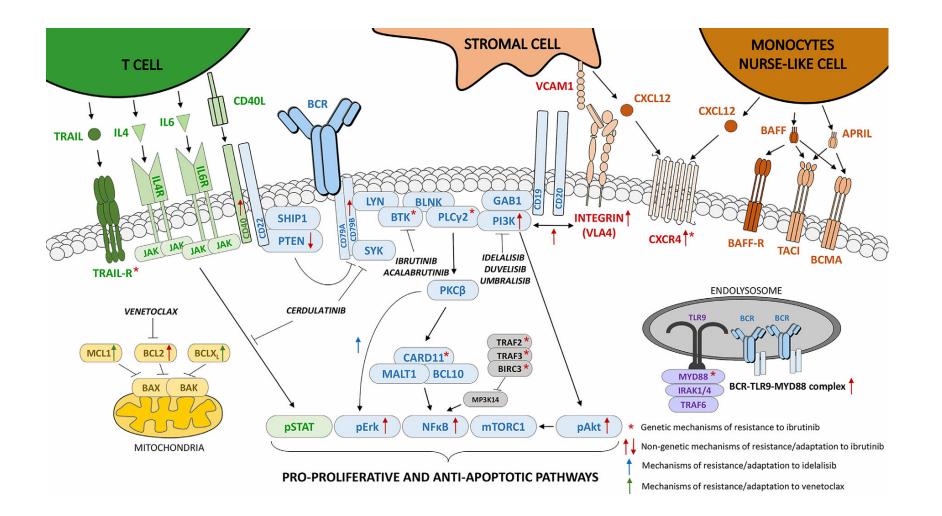
• ARQ-531

Reversible inhibitor of BTK with additional activity against Src family kinases and kinases related to ERK signaling. It is tested for ibrutinib resistant cases.

Treatment Landscape in r/r MCL (BTKi)


<mark>BTKi</mark>	Phase	Sample size (median f/up*)	FU in months	ORR% (CR%)	CR	Median PFS (months)	% bleeding events (grade ≥ 3)	% A.fib (grade ≥ 3)
Ibrutinib	11/111	111	20-26.7	67-72	19-23	13-14.6	10 [8] - 59 [5]	4 [4] - 6 [5]
Ibrutinib	Retro	139	20	72	19	14.6	10 [8]	4 [4]
Acalabrutinib	Ш	124	38.1	81	48	22	5 [4]	0 [0]
Zanubrutinib	lb	43 - 86	9 - 10.3	84-90	20 -59	18	4.7 - 30.2 [1.2 -7]	0 - 4.7 [NR]
LOXO-305	I/II	8	NR	37.5 [0]		NP	11 [0]	0 [0]
	III	-	- (-	-	-	_	-

Post BTKi failure treatment


Postibrutinib outcomes in patients with mantle cell lymphoma

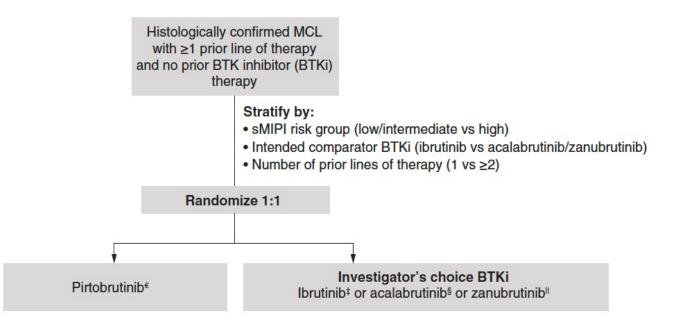
Peter Martin,¹ Kami Maddocks,² John P. Leonard,¹ Jia Ruan,¹ Andre Goy,³ Nina Wagner-Johnston,⁴ Simon Rule,⁵ Ranjana Advani,⁶ David Iberri,⁶ Tycel Phillips,⁷ Stephen Spurgeon,⁸ Eliana Kozin,⁸ Katherine Noto,¹ Zhengming Chen,⁹ Wojciech Jurczak,¹⁰ Rebecca Auer,¹¹ Ewa Chmielowska,¹² Stephan Stilgenbauer,¹³ Johannes Bloehdorn,¹³ Craig Portell,¹⁴ Michael E. Williams,¹⁴ Martin Dreyling,¹⁵ Paul M. Barr,¹⁶ Selina Chen-Kiang,¹⁷ Maurizio DiLiberto,¹⁷ Richard R. Furman,¹ and Kristie A. Blum²

Characteristics postibrutinib	Number	%
All	104	100%
Received treatment postibrutinib	73	70%
Time from ibrutinib to next therapy	0.3 mo	95% CI, 0.2-0.5
MIPI scores at start of therapy		
High risk	35	48%
Intermediate risk	18	25%
Low risk	9	12%
Unknown	11	15%
Ki67 >30%	11/12	92%
Subsequent treatment		
Rituximab	39	53%
Lenalidomide	19	26%
Cytarabine	13	18%
Bendamustine	12	16%
Bortezomib	7	10%
Anthracycline	5	7%
PI3K inhibitor	4	5%

Mechanisms of BTKi resistance

Mechanisms of BTKi resistance

TABLE 1 Recurrent mutations in ibrutinib-resistant patients and possible therapeutic strategies to overcome them.

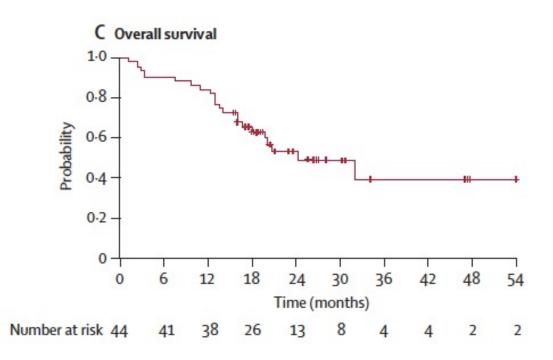

Mutated gene/aberration	Disease	Mechanism	Possible therapeutic strategy	Ref.
BTK	CLL, MCL, WM, MZL	reversible binding of ibrutinib	third-generation BTK inhibitors, PROTAC-BTK, inhibitors of LYN and SYK	(7, 68–77)
PLCG2	CLL, MCL, WM, MZL	BTK-independent activation	inhibitors of RAC2, LYN, and SYK	(7, 68–71, 78, 79)
CARD11	CLL, MCL, WM, DLBCL, FL	↑NFκB	proteasome or MALT1 inhibitor	(12, 71, 80- 83)
BIRC3, TRAF2, TRAF3	MCL	↑ NFκB	MP3K14 inhibitor	(84, 85)
CCND1	MCL	cell cycle progression	unknown	(86)
CDKN2A and MTAP co- deletion	MCL	cell cycle progression	PRMT5 inhibitor	(87)
SMARCA2, SMARCA4, ARID2	MCL	disruption of SWI-SNF complex; $\uparrow \text{BCL}_{\text{XL}}$	BCL _{XL} inhibitor	(88)
MYD88 ^{mt} /CD79B ^{wt}	DLBCL	MYD88-dependent and BCR-independent subtype	SYK or STAT3 inhibitor	(9, 89, 90)
KLHL14	DLBCL	↑ MYD88-TLR9-BCR super-complex	inhibition of BCR-dependent NFkB activation/mTOR inhibitors	(91)
TNFAIP3	DLBCL	↑ NFκB	unknown	(82)
2p+	CLL	↑XPO1	XPO1 inhibition (selinexor)	(92)
Del 8p	CLL	Loss of <i>TRAIL-R</i> , insensitivity to TRAIL- induced apoptosis	unknown; possibly venetoclax	(93)
Del 6q	WM	↑ MYD88/NFκB, loss of regulators of apoptosis	unknown	(94, 95)
Del 8p	WM	↑ TLR/MYD88, loss of <i>DOK2</i> , <i>BLK</i> and <i>TNFRSF10A/B</i>	unknown	(94)

Pirtrobrutinib (LOXO305)

Reversible inhibitor with non-covalent binding to BTK that preserves activity in the presence of the

C481S mutations and avoids off-target kinases inhibition.

- Phase 1 Pretreated MCL with BTKi (BRUIN)
- Fatigue, Neutropenia, Bruising, diarrhea (grade 1,15%)
- 51% ORR in MCL R/R (BTKi) and 81% in BTKi naive
- FU 2y 61% ongooing response
- Phase 1 Pretreated MCL with BTKi (BRUIN 321 phase III)

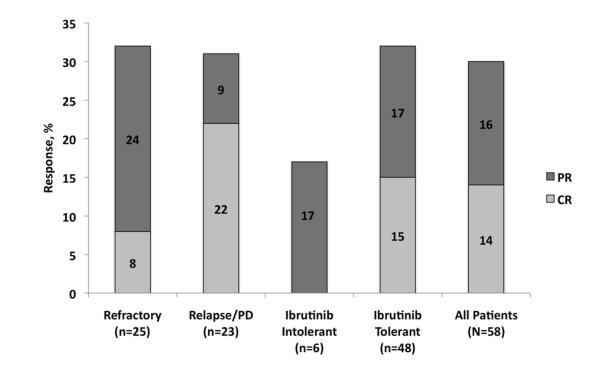

Summary

- After BTKi failure overall survival is poor
- ORR is between 20% to 40%
- OS is to 10 months
- And few patients proceed to Allogeneous bone marrow transplantation
- Which options ? (Few data)

Rituximab + lenalidomide R/R MCL: Outcome

	Phase 2 (n=44)*				
Complete response	16 (36%)				
Partial response	9 (20%)				
Overall response	25 (57%)				
Stable disease	10 (23%)				
Progressive disease	9 (20%)				
Response duration (months)	18.9 (17.0-NR)				
Progression-free survival (months)	11.1 (8.3-24.9)				
Overall survival (months)	24·3 (19·8-NR)				
Time to first response (months)	2 (2–8)				
Time to best response (months)	2 (2–12)				
Follow-up time (months)	23.1 (15.6-54.2)				

Data are number (%) or median (range). NR=not reached. *Includes six patients from phase 1 who were treated with 20 mg lenalidomide.



Lenalidomide after Ibrutinib failure or intolerance

Characteristic	L (<i>n</i> = 13)			L + R (<i>n</i> = 11)		L + other (n = 34)		Overall $(N = 58)$	
	No.	%	No.	%	No.	%	No.	%	
Median age, years (range)	67 (5	4–83)	70 (5	8–84)	71 (5	0–89)	71 (5	0–89)	
≥65	6	46	9	82	26	76	41	71	
Sex									
Male	11	85	8	73	25	74	44	76	
Female	2	15	3	27	9	26	14	24	
ECOG PS									
0–1	7	54	5	45	16	47	28	48	
2–4	3	23	1	9	4	12	8	14	
Missing	3	23	5	45	14	41	22	38	
Tumor burden ^a									
High	4	31	1	9	12	35	17	29	
Low	1	8	5	45	13	38	19	33	
Missing	8	62	5	45	9	26	22	38	
Bulky disease ^b									
Yes	2	15	0	0	6	18	8	14	
No	2	15	6	55	17	50	25	43	
Missing	9	69	5	45	11	32	25	43	
Time from diagnosis to firs	t lenal	idomi	de dos	e, mo	nths				
Median	58		47		46		49		
Range	15–144		6–105		4-214		4–214		
Time from end of last prio lenalidomide, weeks	r antily	mpho	ima the	erapy	to first	dose	of		
Median	0.7		0.3		0.7		0.7		
Range	0.1–3	.5	0.1-2	1.7	0.1–12.6		0.1-2	1.7	

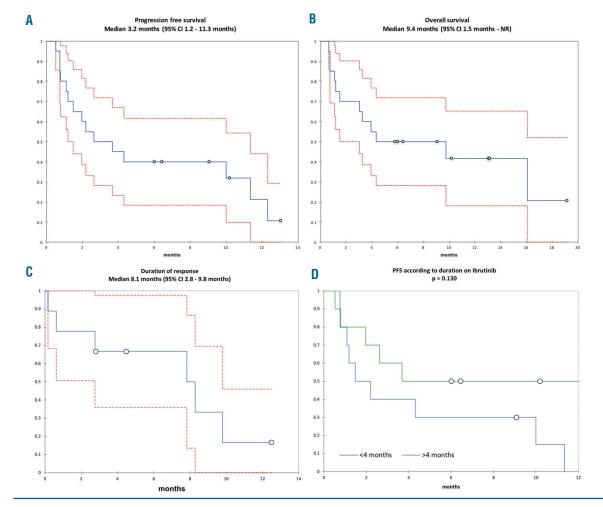
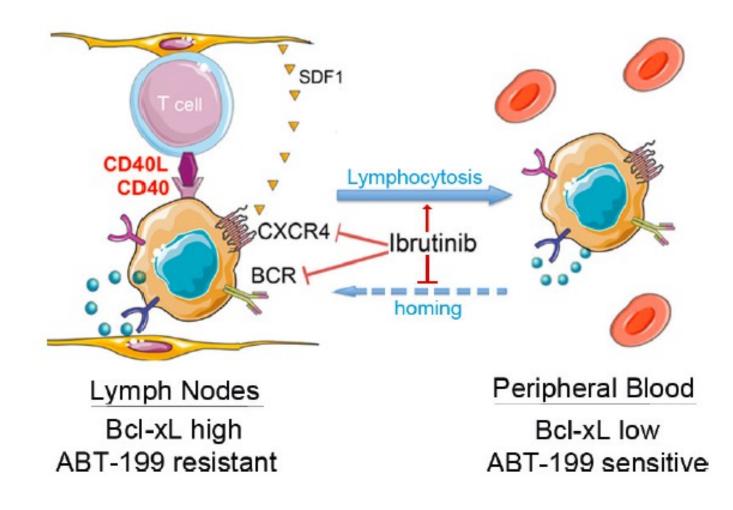
Observational study of lenalidomide in patients with mantle cell lymphoma who relapsed/progressed after or were refractory/intolerant to ibrutinib (MCL-004)

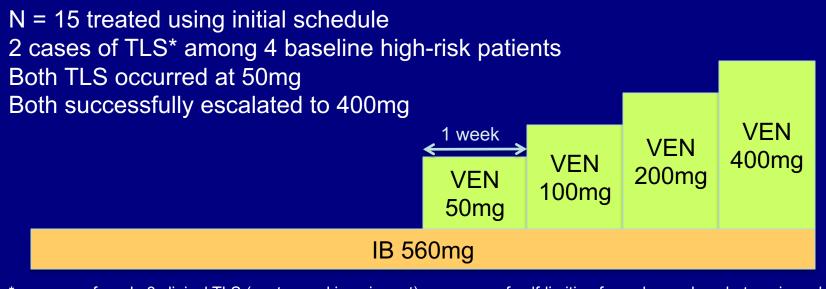
Michael Wang^{1*}, Stephen J. Schuster², Tycel Phillips³, Izidore S. Lossos⁴, Andre Goy⁵, Simon Rule⁶, Mehdi Hamadani⁷, Nilanjan Ghosh⁸, Craig B. Reeder⁹, Evelyn Barnett¹⁰, Marie-Laure Casadebaig Bravo¹ and Peter Martin¹²

Efficacy of venetoclax monotherapy in patients with relapsed, refractory mantle cell lymphoma after Bruton tyrosine kinase inhibitor therapy

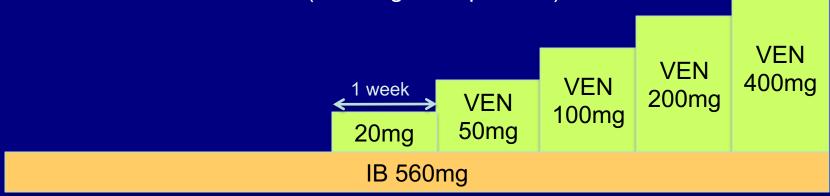
Toby A. Eyre,¹ Harriet S. Walter,² Sunil Iyengar,³ George Follows,⁴ Matthew Cross,³ Christopher P. Fox,⁵ Andrew Hodson,⁶ Josh Coats,⁷ Santosh Narat,⁸ Nick Morley,⁶ Martin J.S. Dyer² and Graham P. Collins¹

Table 1. Baseline characteristics: prior therapies.						
All patients (N = 20)	n (%)					
Gender						
Male	17 (85%)					
Female	3 (15%)					
First-line therapy						
CHOP \pm R or CHOP-like	6					
Fludarabine-based $\pm R$	4 ^a					
Maxi-CHOP/HDAC \pm R	8					
Other	2^{b}					
ASCT consolidation in first remission						
Yes	6 (30%)					
No	14 (70%)					
Rituximab maintenance in first remission						
After immunochemotherapy	2 (10%)					
After ASCT	0 (0%)					
Neither	18 (90%)					
Duration of exposure to BTK inhibitor						
Median	4.77 months					
Range	0.66 – 34.85 months					
Response to prior BTK inhibitor						
Overall response	11/20 (55%)					
Complete response	3 (15%)					
Partial response	8 (40%)					
Stable disease	4 (20%)					
Progressive disease	5 (25%)					
Reason for BTK inhibitor discontinuation (n =	= 20)					
Progressive disease	17					
Stable disease	1					
Toxicity	2					


Figure 1. Survival outcome of patients with relapsed, refractory mantle cell lymphoma on venetoclax monotherapy. (A) Progression-free survival of all patients. (B) Overall survival of all patients. (C) Duration of response. (D) Progression-free survival according to duration on ibrutinib therapy.

ABT199 And Ibrutinib


Chiron et al, Oncotarget 2015

Tumour Lysis Syndrome

*one case of grade 3 clinical TLS (acute renal impairment); one case of self-limiting fever, hyperphosphataemia and 400% elevation in LDH, regarded as grade 3 biochemical TLS in absence of alternative explanation.

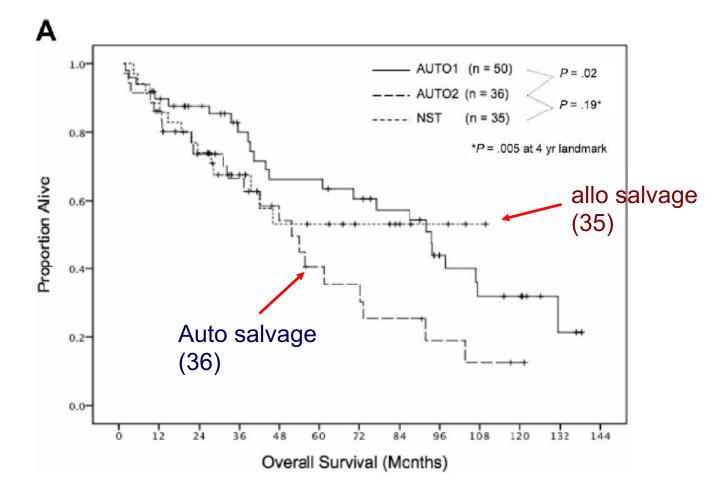
N = 7 treated using revised schedule (20mg start) No cases of TLS encountered (inc 2 high-risk patients)

AIM: Overall Survival (n=24)

AIM Study: Impact of *TP53* aberrations and other mutations

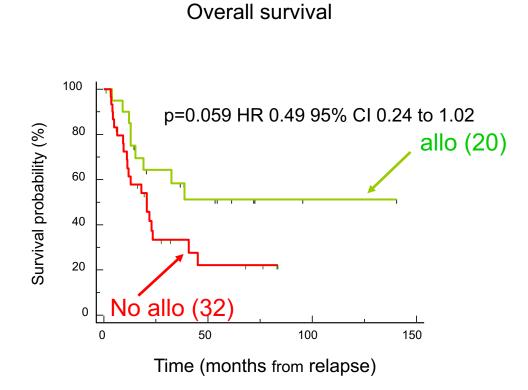
	N abnormal	Complete remission
TP53 mutations and/or deletions	12	6 (50%)*
ATM mutations	10	10 (100%)
NFKB pathway mutations (CARD11, BIRC3 and/or TRAF2)	6	5 (83%)

Venetoclax combinations (Clinicaltrials.gov)


- Venetoclax and acalabrutinib in relapsed or refractory mantle cell lymphoma MCL
- Venetoclax and lenalidomide and rituximab in patients with Relaspsed refractory MCL
- Ibrutinib and. Venetoclax. In R/R MCL
- Bendamustine and venetoclax and rituximab in naive. MCL
- Ibru+ritux+venetoclax and combination of chemotherapy
- Obinutuzumab and Ibrutinib in MCL
- Bendamustine and Obinutuzumab and Venetoclax
- R-BAC followed by Venetoclax
- APR 246 and Ibrutinib and venetoclax in MCL
- Zanubrutinib and Obinutuzumab and venetoclax

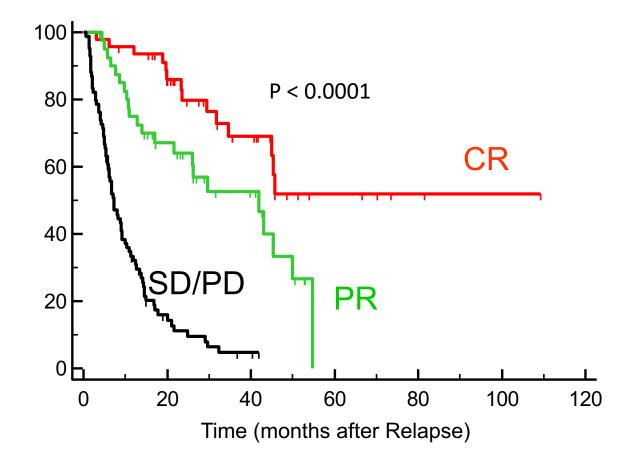
Relapses and Allo SCT

- In relapse, allo SCT is the only curative procedure after chemotherapy
- However, allo SCT is associated to a significant NRM and new targeted therapies may improve prognosis and may induce long term response/cure
- Allo SCT in relapse
 - Which patients ?
 - Which treatment to bridge to AlloSCT and When to perform AlloSCT ?
 - Which conditionning regimen ?
 - Which type of graft ?
 - Which follow up ?


Allo vs Auto at relapse

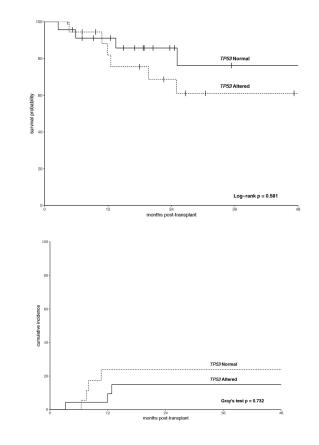
Mature results of MDACC MCL transplants: OS

Tam et al. Blood 113:4144 (2009)


MCL: AlloSCT for autoSCT failure HD/KI/HH 1994-2008 (52 REL after 119 autotransplants)

Dietrich et al, Cancer May 1, 2011

OS by response to 1st salvage therapy

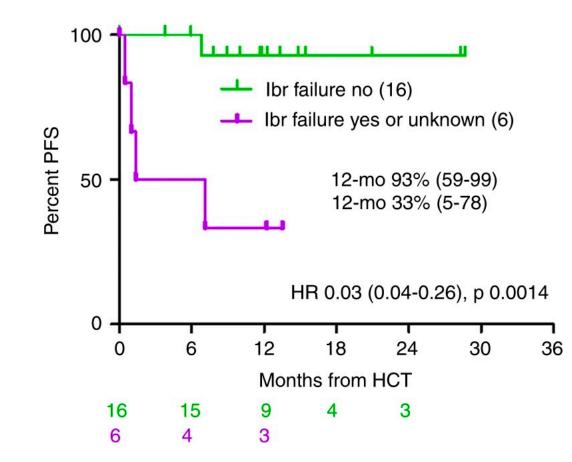

Allogenous stem cell transplantation in Tp53 MCL

Patient Characteristics.

Characteristic	Total (N=42)	TP53 - (N=23)	TP53 + (N=19)	p value
Age, years; median (range)	61.2 (33.9–73.7)	61.2 (33.9–71.3)	61.2 (49.1–73.7)	0.570
Female sex, N (%)	3 (7)	2 (9)	1 (5)	>0.999
KPS ≤80, N (%)	12 (29)	5 (22)	7 (37)	0.462
HCT-CI, N (%)				0.481
0	9 (21)	5 (22)	4 (21)	
1–2	16 (38)	7 (30)	9 (47)	
≥3	17 (40)	11 (48)	6 (32)	
Ki67 >30%, N (%)	17 (40)	8 (42)	9 (60)	0.490
MIPI Risk Index, N (%)				0.914
Low risk	16 (38)	8 (35)	8 (42)	
Intermediate risk	20 (48)	11 (48)	9 (47)	
High risk	6 (14)	4 (17)	2 (11)	
Lines of prior therapy; median (range)	3 (1-6)	3 (1-6)	3 (1-6)	0.874
SD/PR at HCT, N (%)	2 (5)	1 (4)	1 (5)	>0.999
Prior ASCT, N (%)	27 (64)	14 (61)	13 (68)	0.853
First-line consolidation, N (%)	8 (19)	5 (22)	3 (16)	0.709
Ibrutinib pre-transplant, N (%)	17 (40)	9 (39)	8 (42)	>0.999
ATG use, N (%)	14 (33)	8 (35)	6 (32)	>0.999
Matched donor, N (%)	31 (74)	19 (83)	12 (63)	0.180
HCT prior to 2011, N (%)	10 (24)	6 (26)	4 (21)	>0.999

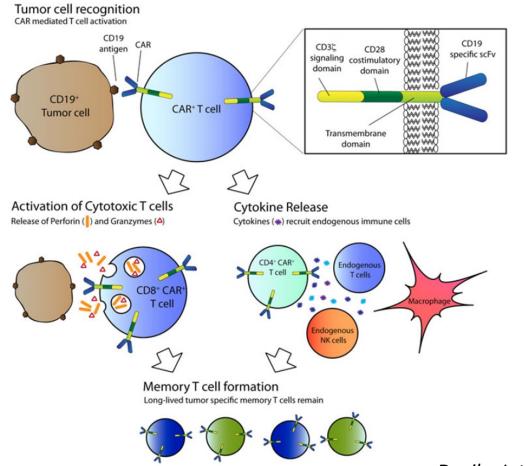
Allogeneic Haematopoietic Cell Transplantation Impacts on Outcomes of Mantle Cell Lymphoma with *TP53* Alterations

DR. Richard J. Lin, MD, PhD¹, Caleb Ho, MD², Patrick D. Hilden, MS³, Juliet N. Barker, MD^{1,5}, Sergio A. Giralt, MD^{1,5}, Paul A. Hamlin, MD^{4,5}, Ann A. Jakubowski, MD, PhD^{1,5}, Hugo R. Castro-Malaspina, MD^{1,5}, Kevin S. Robinson, BS¹, Esperanza B. Papadopoulos, MD^{1,5}, Miguel-Angel Perales, MD^{1,5}, and Craig S. Sauter, MD^{1,5}


Br J Haematol. Author manuscript; available in PMC 2020 March 01.

Allogenous stem cell transplantation in MCL

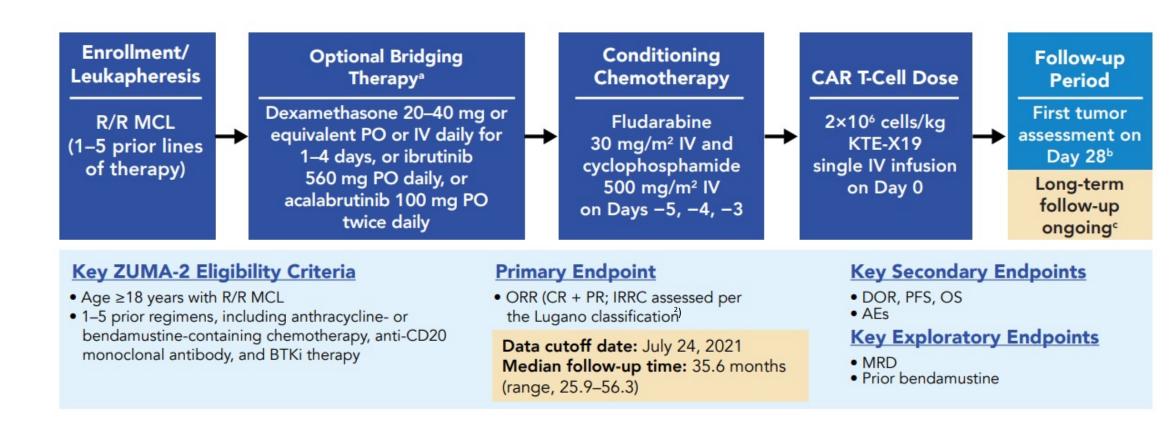
Table 1. Summary of the allo-HCT in MCL studies


Author, year	N	Disease status	Conditioning	NRM	GVHD (acute/chronic)	Relapse	Disease-free survival	OS
Prospective								
Khouri et al., 2003	18	R/R	RIC/NMA	2/18	0%/NR	1/18	NR	82% (3 yrs)
Maris et al., 2004	33	R/R	NMA	24%	57%/64%	9%	60% (2 yrs)	65% (2 yrs)
Kruger et al., 2014	39	Frontline= 24 R/R =15	MAC/RIC	24%	57%	15%	67%	73%
Rule et al., 2019	25	Frontline	RIC/NMA	13%	38%/58%	21%	56%	76%
Retrospective								
Robinson et al. EBMT. 2018 [35]	324	Frontline 93 Salvage 231	RIC	24%	52%/41%	40% (5 yrs)	31% (5 yrs)	40% (5 yrs)
Hamadani et al., 2013 CIBMTR [44]	202	202 Mixed	MAC=74 RIC=128	47% 43%	MAC=36/35% RIC=37/43%	33% 32%	MAC=20% RIC=25% (3 yrs)	MAC=25% RIC =30% (3 yrs)
Fenske et al., 2014 [45]	138	Frontline 50 Salvage 88	RIC	17% 25%	NR	15% 38%	F=55% S=29%	25% 31% (5 yrs)
Kharfan-Dabaja et al., 2016*[<mark>46</mark>]	701	Mixed	MAC=138 RIC=507	MAC= 37% RIC=24%	MAC=36/35% RIC=31/42%	MAC=18% RIC=29%	MAC=34%% RIC 47%	MAC=40% RIC=53%

Ibrutinib for bridging to allogeneic hematopoietic cell transplantation in mantle cell lymphoma

Peter Dreger et al, BMT 2019

CAR-T CD19 : mode of action in MCL ZUMA 2 trial (ASH 2019)


Davila, Int J Hematol 2013

KTE-X19 CAR T-Cell Therapy in BTKi refractory patients brexucabtagene autoleucel

- KTE-X19 is an autologous anti-CD19 CAR T-cell therapy
 - Produced in a manufacturing process that removes circulating CD19expressing malignant cells¹
 - Removal of these cells may limit the potential activation and exhaustion of anti-CD19 CAR T-cells during the *ex vivo* manufacturing process¹

BTKi, Bruton tyrosine kinase inhibitor; CAR, chimeric antigen receptor; MCL, mantle cell lymphoma; R/R, relapsed/refractory.

ZUMA-2 Phase 2¹: Three-Year Follow-up

^a Administered after leukapheresis and completed ≥5 days before initiating conditioning chemotherapy; PET-CT was required post-bridging. ^b Bone marrow biopsy was to be done at screening and, if positive, not done, or indeterminate, a biopsy was needed to confirm CR. ^c After 3 months, only targeted AEs (neurological, hematological, infections, GVHD, autoimmune disorders, and secondary malignancies) were monitored and reported for 15 years after the initial anti-CD19 CAR T-cell infusion or until disease progression or initiation of subsequent anticancer therapy, whichever occurs first.

1. Wang M, et al. N Engl J Med. 2020;382:1331-1342. 2. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3068.

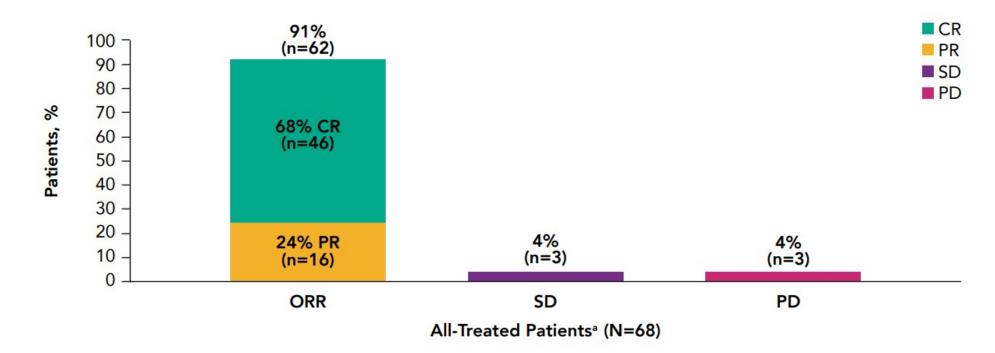
AE, adverse event; BTKi, Bruton tyrosine kinase inhibitor; CAR, chimeric antigen receptor; CR, complete response; DOR, duration of response; GVHD, graft-versus-host disease; IRRC, independent radiology review committee; IV, intravenous; KTE-X19, brexucabtagene autoleucel; MCL, mantle cell lymphoma; MRD, minimal residual disease; ORR, objective response rate; OS, overall survival; PET-CT, positron emission tomography– computed tomography; PFS, progression-free survival; PO, orally; PR, partial response; R/R, relapsed/refractory.

Baseline Patient Characteristics

Characteristic	N = 68			
Median age (range), years	65 (38 – 79)			
≥ 65 years, n (%)	39 (57)			
Male, n (%)	57 (84)			
Stage IV disease, n (%)	58 (85)			
ECOG PS, n (%)				
0	44 (65)			
1	24 (35)			
Bulky disease (≥ 10 cm), n (%)	7 (10)			
Intermediate/high-risk MIPI, n (%)	38 (56)			
Ki-67 proliferation index ≥ 50%, n/n (%)*	34/49 (69)			
TP53 mutation, n/n (%)	6/36 (17)			
Bone marrow involvement, n (%)	37 (54)			
Extranodal disease, n (%) ⁺	38 (56)			
MCL morphology, n (%) [‡]				
Classical	40 (59)			
Pleomorphic	4 (6)			
Blastoid	17 (25)			

*Ki-67 data were available for 49 patients at diagnosis. † Excludes bone marrow and splenic involvement. † Morphology was unknown for 10 patients.

BTKi, Bruton tyrosine kinase inhibitor; ECOG, Eastern Cooperative Oncology Group performance status; MCL, mantle cell lymphoma; MIPI, Mantle Cell Lymphoma International Prognostic Index.

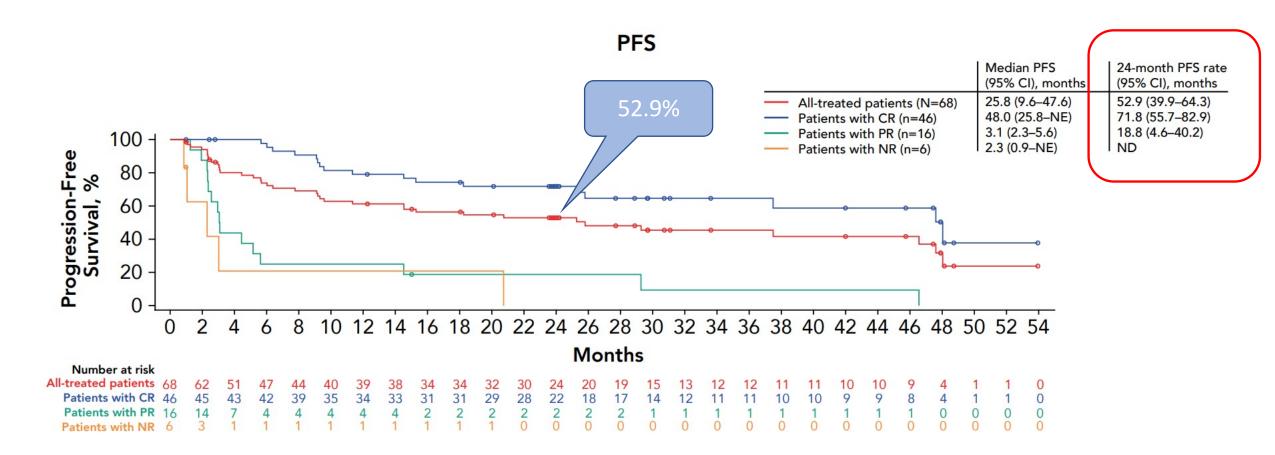

Prior Therapies

Characteristic	N = 68
Median no. of prior therapies (range) [*]	3 (1-5)
≥ 3 prior lines of therapy, n (%)	55 (81)
Anthracycline or bendamustine, n (%)	67 (99)
Anthracycline	49 (72)
Bendamustine	37 (54)
BTKi, n (%)	68 (100)
Ibrutinib	58 (85)
Acalabrutinib	16 (24)
Both	6 (9)
Relapsed/refractory subgroup, n (%)	
Relapsed after autologous SCT	29 (43)
Refractory to last prior therapy	27 (40)
Relapsed after last prior therapy	12 (18)
BTKi relapsed/refractory status, n (%)	68 (100)
Refractory to BTKi	42 (62)
Relapsed on BTKi	18 (26)
Relapsed after BTKi	5 (7)
Intolerant to BTKi ⁺	3 (4)

* Induction plus consolidation/maintenance and/or all treatments occurring between sequential complete responses were counted as 1 regimen.

[†]Patients had relapsed after or were refractory to subsequent therapies prior to study entry.

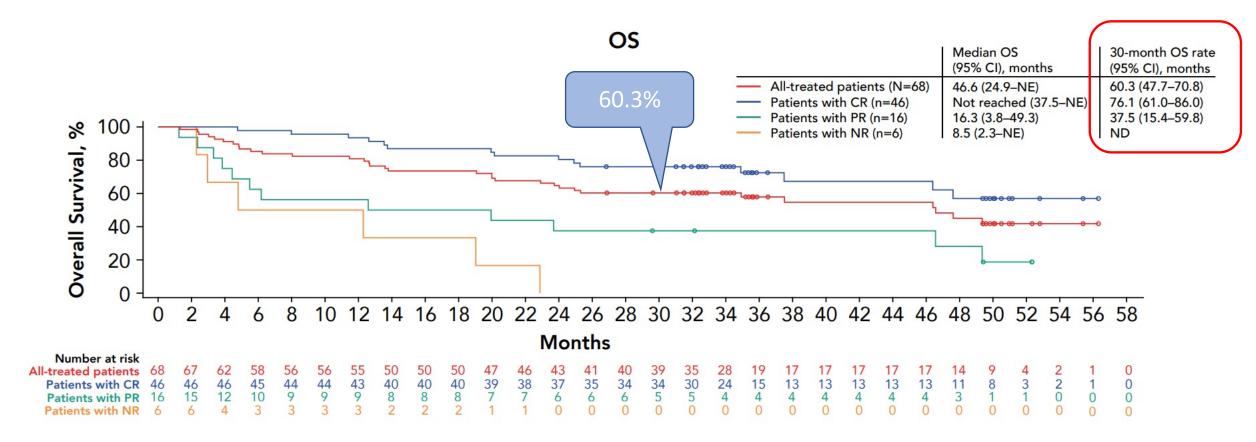
ORR by IRRC Assessment in All-Treated Patients (N=68)


- After 35.6 months median follow-up (range, 25.9–56.3), the ORR (CR + partial response [PR]) was 91% (95% CI, 81.8–96.7), with a 68% CR rate (95% CI, 55.2–78.5) in all treated patients
- In the ITT population, ORR was 84% (95% CI, 73.4–91.3), with a 62% CR rate (95% CI, 50.1–73.2)

Assessed by an IRRC according to the Lugano Classification. $^{\rm 1}$

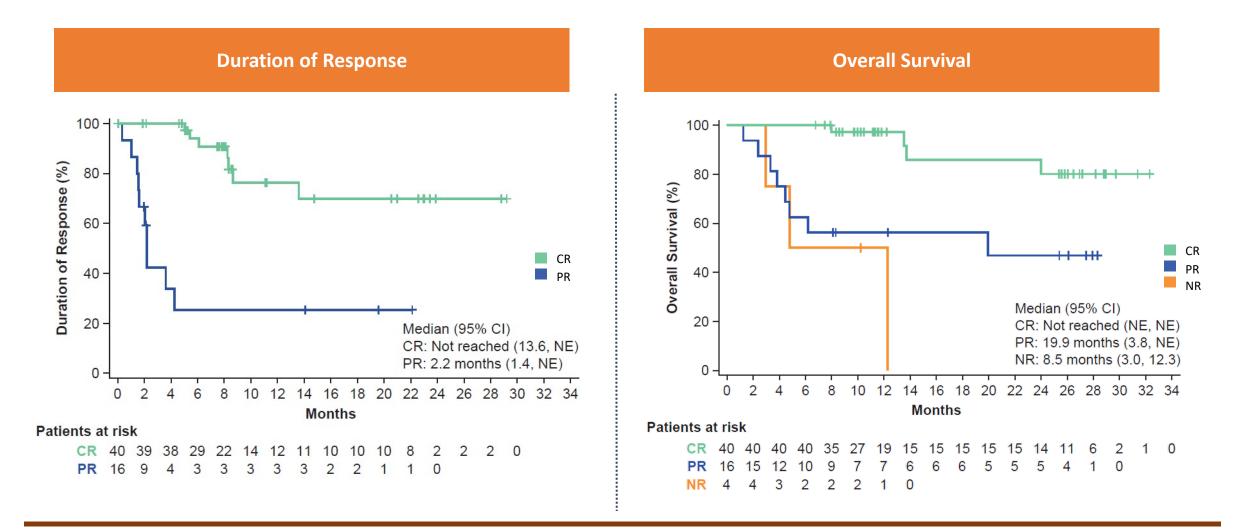
^a Since the previous report,² IRRC review determined that 1 patient who was previously reported as best response of PR had no disease at baseline; this patient is reported as PD in the current report. 1. Cheson BD, et al. *J Clin Oncol*. 2014;32:3059-3068. 2. Wang M, et al. *Blood*. 2020;136(suppl 1):20-22.

CR, complete response; IRRC, independent radiology review committee; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.


MCL - PFS in All-Treated Patients (N=68)

CR, complete response; ND, no data; NE, not estimable; NR, no response; PFS, progression-free survival; PR, partial response.

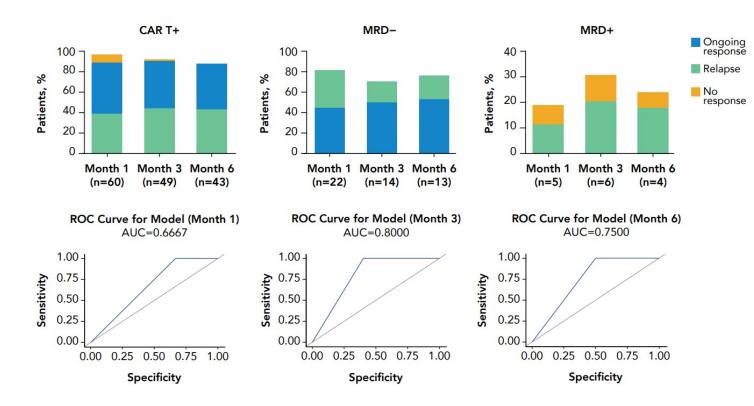
Wang M et al., ASCO 2022, abstr. 7518


MCL - OS in All-Treated Patients (N=68)

CR, complete response; ND, no data; NE, not estimable; NR, no response; OS, overall survival; PR, partial response.

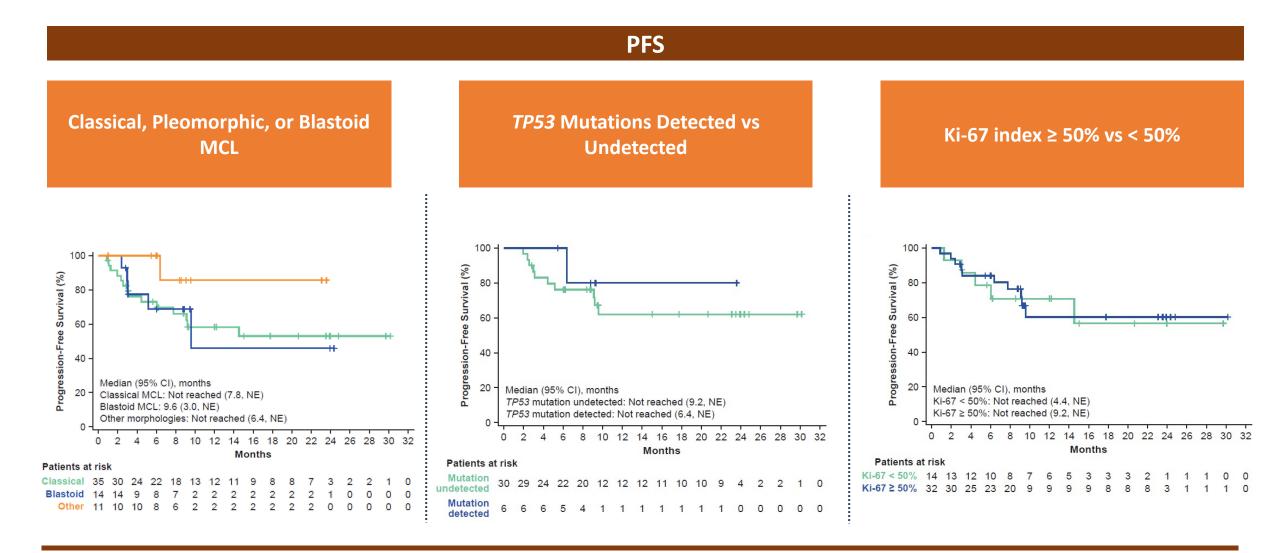
Wang M et al., ASCO 2022, abstr.. 7518

Duration of Response and Overall Survival by Best Objective Response



CR, complete response; NE, not estimable; NR, no response; PR, partial response.

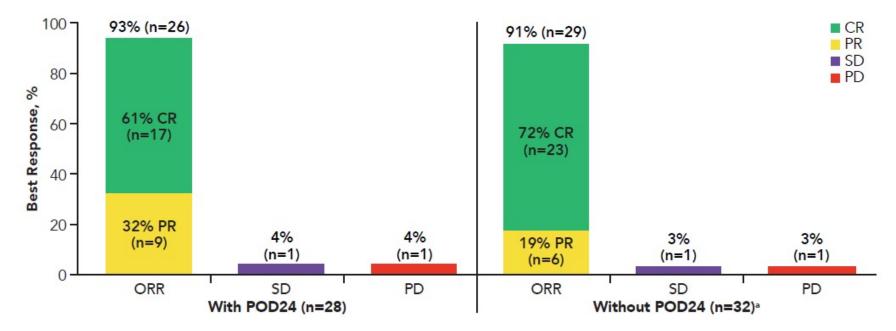
Wang M, et al. N Engl J Med. 2020; 382:1331-1342.


ŧ

MRD Detection at 3 and 6 Months Predicts Relapse

- MRD-negative status at Months 1, 3, and 6 was associated with durable response, with 55%, 71%, and 69% of MRD-negative patients at those timepoints remaining in ongoing CR at data cutoff (median follow-up, 35.6 months)
- Receiver operating characteristic curves of true-positive (sensitivity) versus falsepositive (specificity) rates were analyzed for MRD predictability of relapse and nonresponse
 - Analysis of MRD at Months 3 and 6 was found to be predictive of relapse potential (AUC 0.80 and 0.75, respectively)

Progression-Free Survival in High-Risk Subgroups



MCL, mantle cell lymphoma; NE, not estimable; PFS, progression-free survival.

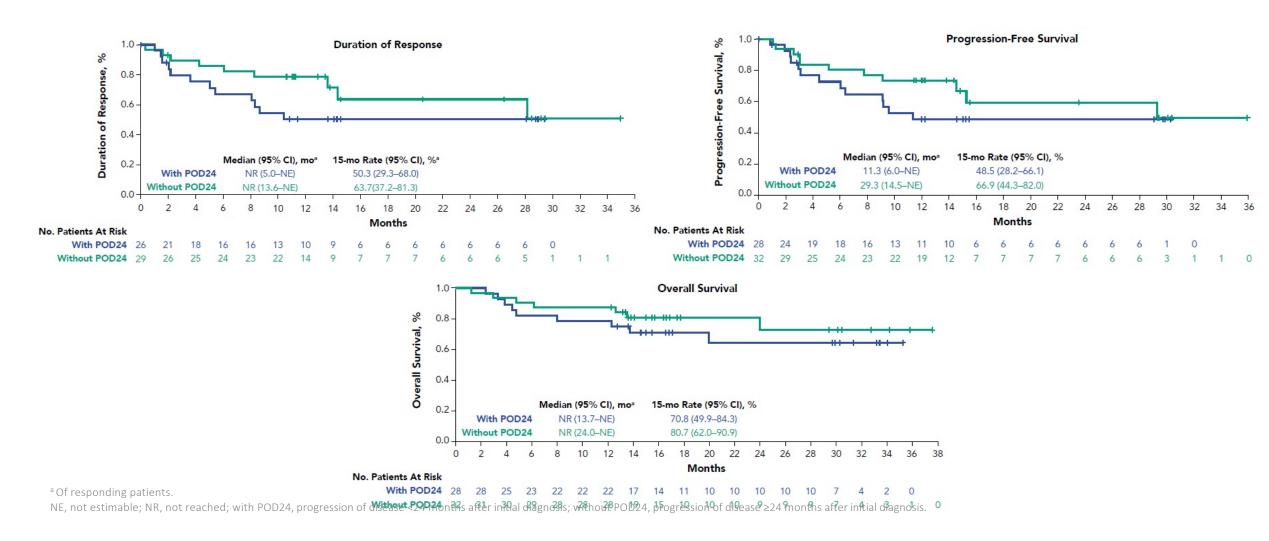
Wang M, et al. N Engl J Med. 2020; 382:1331-1342.

ŧ

ORR by IRRC Assessment in Patients With and Without POD24

- The ORR was similar among patients with and without POD24, with a slightly higher CR rate in patients without POD24
- Similar rates of MRD-negativity were also observed among patients with (81%; n=9/11) and without (79%; n=15/19) POD24

Assessed by an IRRC according to the Lugano Classification.¹


^a One patient was not evaluable.

CR, complete response; IRRC, Independent Radiology Review Committee; MRD, minimal residual disease; ORR, objective response rate; PD, progressive disease; with POD24, progression of disease <24 months after initial diagnosis; without POD24, progression of disease ≥24 months after initial diagnosis; PR, partial response; SD, stable disease.

1. Cheson BD, et al. J Clin Oncol. 2014;32:3059-68.

ŧ

Duration of Response, Progression-Free Survival, and Overal Survival by POD24 Status

Treatment-Emergent Adverse Events

	N = 68							
	Any	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5		
Any AE	68 (100)	0	1 (1)	11 (16)	54 (79)	2 (3)		
Pyrexia	64 (94)	14 (21)	41 (60)	9 (13)	0	0		
Neutropenia	59 (87)	0	1(1)	11 (16)	47 (69)	0		
Thrombocytopenia	50 (74)	9 (13)	6 (9)	11 (16)	24 (35)	0		
Anemia	46 (68)	0	12 (18)	34 (50)	0	0		
Hypotension	35 (51)	4 (6)	16 (24)	13 (19)	2 (3)	0		
Chills	28 (41)	17 (25)	11 (16)	0	0	0		
Нурохіа	26 (38)	2 (3)	10 (15)	8 (12)	6 (9)	0		
Cough	25 (37)	14 (21)	11 (16)	0	0	0		
Hypophosphatemia	25 (37)	2 (3)	8 (12)	15 (22)	0	0		
Fatigue	24 (35)	10 (15)	13 (19)	1(1)	0	0		
Headache	24 (35)	15 (22)	8 (12)	1(1)	0	0		
Tremor	24 (35)	19 (28)	5 (7)	0	0	0		
Hypoalbuminemia	23 (34)	5 (7)	17 (25)	1(1)	0	0		
Hyponatremia	22 (32)	15 (22)	0	7 (10)	0	0		
Nausea	22 (32)	11 (16)	10 (15)	1(1)	0	0		
Alanine aminotransferase increased	21 (31)	13 (19)	2 (3)	5 (7)	1 (1)	0		
Encephalopathy	21 (31)	5 (7)	3 (4)	7 (10)	6 (9)	0		
Hypokalemia	21 (31)	12 (18)	4 (6)	3 (4)	2 (3)	0		
Tachycardia	21 (31)	14 (21)	7 (10)	0	0	0		
Ordue 5 ALS. C	nganizing prieu	(110111a (11 – 1) a	nu stapnylococt	מו שמכנפופוווומ (ו	I — <u>I</u>)			

*Related to conditioning chemotherapy.

[†]Related to conditioning chemotherapy and KTE-X19.

Cytokine Release Syndrome

	N = 68						
	Any Grade	Grade 3	Grade 4				
CRS, n (%)*	62 (91)	8 (12)	2 (3)				
Most common symptoms, n (%) ⁺							
Pyrexia	62 (91)	7 (10)	0				
Hypotension	35 (51)	14 (21)	1 (1)				
Hypoxemia	23 (34)	8 (12)	4 (6)				
Chills	21 (31)	0	0				
Tachycardia	16 (24)	0	0				
Headache	15 (22)	0	0				
		N = 68					
AE management (%)							
Tocilizumab		59					
Glucocorticoids		22					
Vasopressors	16						
Median time to onset, days (range)							
Any grade	2 (1 – 13)						
≥ Grade 3		4(1-9)					
Median time to event resolutions, days		11					

to was graded per Lee Dw, et al. Dioud. 2014,124-126-135. Individual symptoms of Ch5 were graded per National Calcer institute's common reminoing criteria for Adverse Events, v 4.05.

*Events of any grade that occurred in at least 20% of the patients.

No Grade 5 CRS occurred

AE, adverse event; CRS, cytokine release syndrome.

Neurologic Events

	N = 68					
	Any Grade	Grade 3	Grade 4			
Neurologic events, n (%)*	43 (63)	15 (22)	6 (9)			
Most common symptoms, n (%) ⁺						
Tremor	24 (35)	0	0			
Encephalopathy	21 (31)	7 (10)	6 (9)			
Confusional state	14 (21)	8 (12)	0			
		N = 68				
AE management (%)						
Tocilizumab	26					
Glucocorticoids		38				
Median time to onset, days (range)						
Any grade	7 (1 – 32)					
≥ Grade 3	8 (5 – 24)					
Median duration of events, days	12					
Patients with resolved events, n (%)	37/43 (86)‡					

F.....

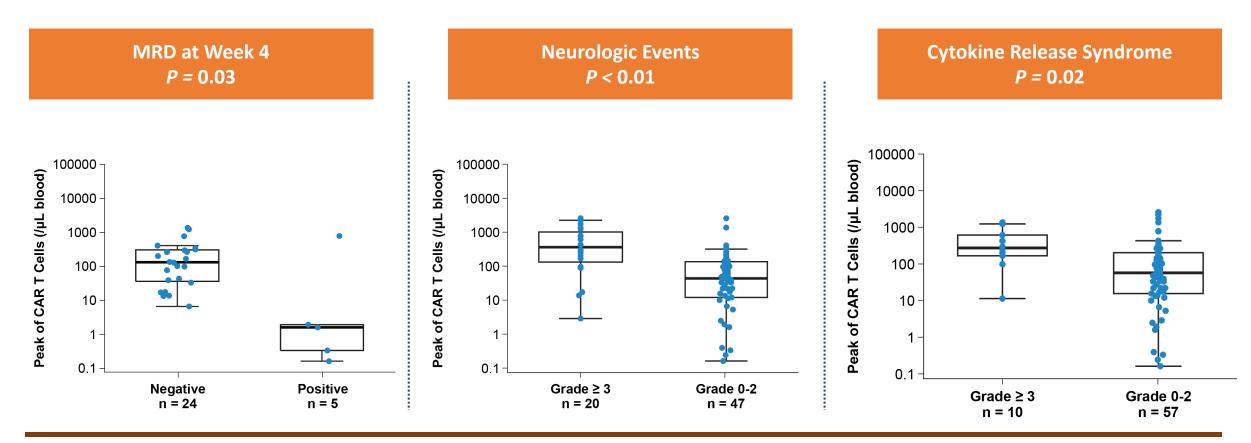
One patient had Grade 4 cerebral edema

 The patient fully recovered with aggressive multimodality therapy including ventriculostomy

S.....

*Neurologic events were graded per National Cancer Institute's Common Terminology Criteria for Adverse Events, v 4.03.

 $^{\scriptscriptstyle +}\mbox{Events}$ of any grade that occurred in at least 20% of the patients.


*Four patients had ongoing neurologic events at data cutoff: Grade 1 tremor (n = 3), Grade 2 concentration impairment (n = 1), and Grade 1 dysesthesia (n = 1).

Adverse Events at 1-Year Follow-Up

	All Treated Patients (N = 68)					All Treated Patients (N = 68)		
	Present ≥ 3 Months Post-Infusion		Present ≥ 6 Months Post-Infusion				een Last DCO and nt DCO ^b	
AE, n (%)ª	Any Grade	Grade ≥3	Any Grade	Grade ≥3	AE, n (%)	Any Grade	Grade ≥ 3	
Any AE	55 (81)	33 (48)	49 (72)	25 (37)	Any AE	13 (19)	9 (13)	
Anemia	22 (32)	9 (13)	13 (19)	4 (6)				
Neutropenia	20 (29)	16 (24)	14 (21)	11 (16)	Neutropenia	6 (9)	6 (9)	
Thrombocytopenia	20 (29)	14 (21)	14 (21)	9 (13)	Infection	5 (7)	1 (1)	
White blood cell count decrease	16 (24)	9 (13)	12 (18)	6 (9)	Anemia	3 (4)	1 (1)	
Fatigue	10 (15)	0	10 (15)	0	Neurologic event	2 (3) ^c	1 (1)	
Pneumonia	9 (13)	5 (7)	6 (9)	4 (6)	Thrombocytopenia	2 (3)	2 (3)	
Cough	8 (12)	0	7 (10)	0	CRS	0	0	
Hypogammaglobulinemia	8 (12)	0	7 (10)	0	Hypogammaglobulin-emia	0	0	
Upper respiratory tract infection	7 (10)	2 (3)	5 (7)	1 (1)	Tumor lysis syndrome	0	0	

- No new safety signals were observed with additional follow-up
- No new CRS or new Grade 5 events occurred since the previous report
- $^{\rm a}$ Includes AEs of any grade occurring in \geq 10% of patients.
- ^b Includes all AEs that occurred after the primary analysis data cutoff date (July 24, 2019) and by the data cutoff date of the current analysis (December 31, 2019).
- $^{\rm c}$ Grade 1 impaired balance (n = 1, Day 106); Grade 3 encephalopathy (n = 1, Day 397).
- AE, adverse event; CRS, cytokine release syndrome; DCO, data cutoff.

Association of CAR T Cell Expansion With Minimal Residual Disease and Toxicity

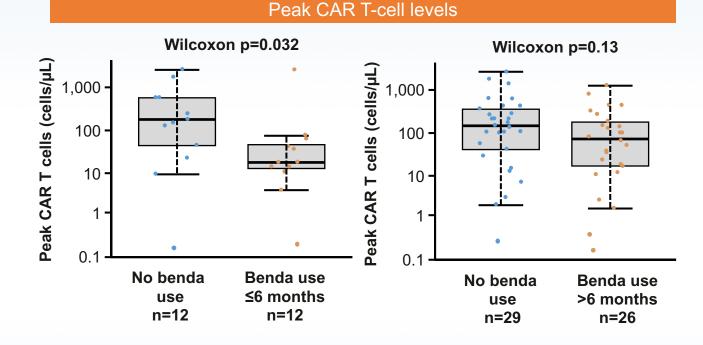
Robust expansion of anti-CD19 CAR T cells in blood was associated with high-sensitivity molecular MRD assessed by NGS at 10⁻⁵

• Patients with the most robust expansion were at a higher risk for experiencing Grade \geq 3 vs \leq 2 CRS and NEs

CRS, cytokine release syndrome; MRD, minimal residual disease; NE, neurologic event; NGS, next-generation sequencing.

Wang M, et al. N Engl J Med. 2020; 382:1331-1342.

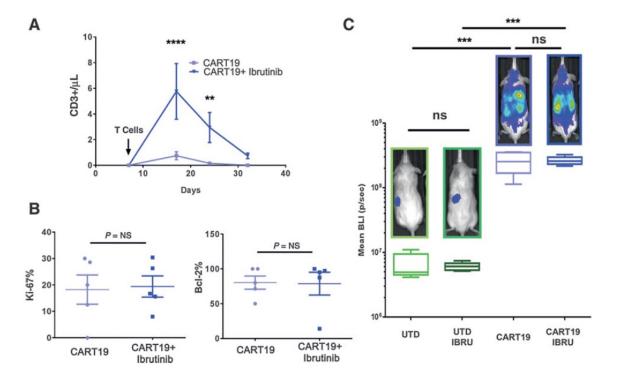
For Reactive Use


What are the effects of prior bendamustine use on CAR T-cell therapy?

Exploratory post hoc analysis of the impact of the timing of bendamustine on CAR T-cell therapy (n=37)^{1,2}

54% of patients in ZUMA-2 received prior bendamustine^{1,2}

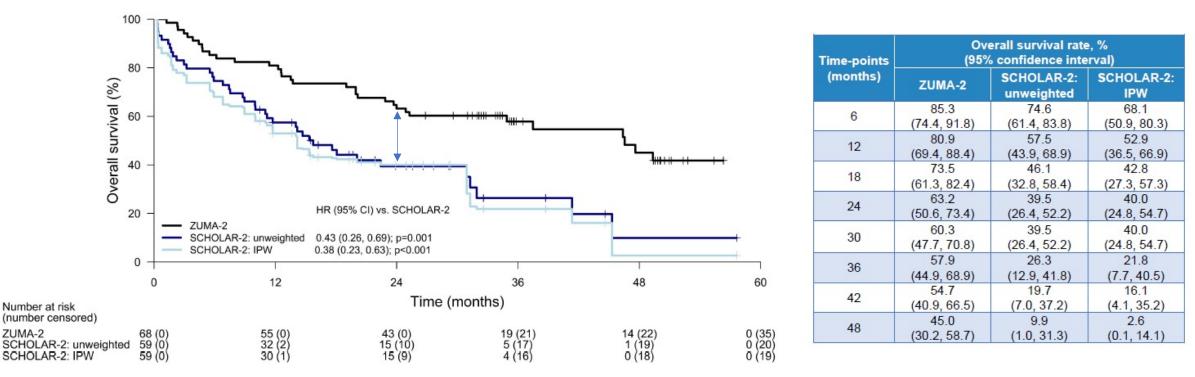
Median time from last bendamustine exposure to brexucabtagene autoleucel infusion was 20.9 months^{1,2}



Patients treated with brexucabtagene autoleucel could benefit from longer time spans between prior bendamustine and CAR T therapy; however, further analysis is required

1. Wang M, et al. J Clin Oncol 2022; ePub ahead of print. 2. Wang ML, et al. ASCO 2022 (Abstract 7518; poster).

The Addition of the BTK Inhibitor Ibrutinib to Anti-CD19 Chimeric Antigen Receptor T Cells (CART19) Improves Responses against Mantle Cell Lymphoma

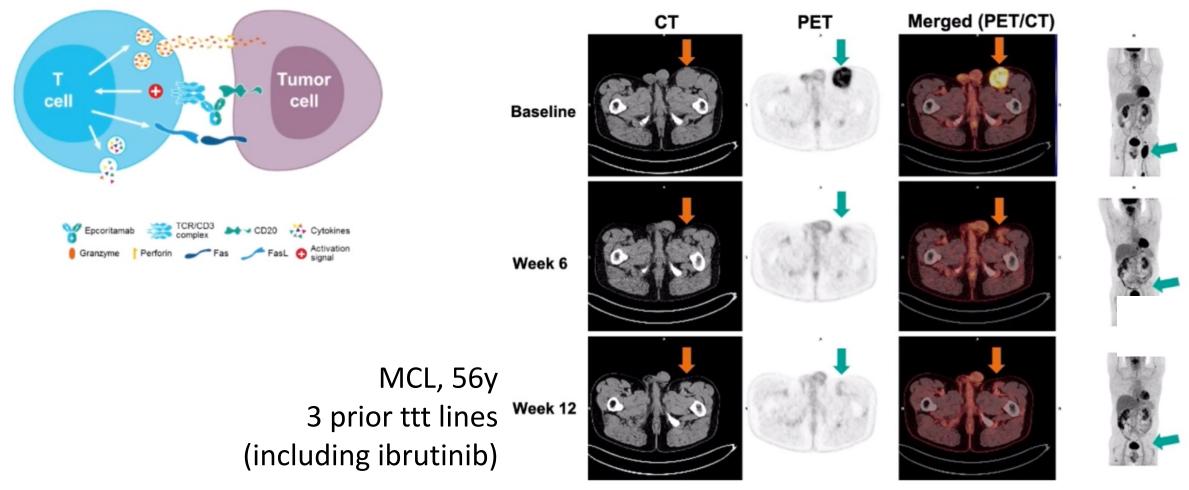

Marco Ruella¹, Saad S. Kenderian^{1,2}, Olga Shestova¹, Joseph A. Fraietta¹, Sohail Qayyum³, Qian Zhang³, Marcela V. Maus^{1,4,5}, Xiaobin Liu³, Selene Nunez-Cruz¹, Michael Klichinsky¹, Omkar U. Kawalekar¹, Michael Milone^{1,3,5}, Simon F. Lacey^{1,3}, Anthony Mato^{4,5}, Stephen J. Schuster^{4,5}, Michael Kalos^{1,3}, Carl H. June^{1,3,5}, Saar Gill^{1,4,5}, and Mariusz A. Wasik^{3,5}

BTKi exposure Enhance T cell phenotype and function Down regulation of PD1 on T cells and CD200 (on B cells) Increase CAR-T cells of CD-8+ central memory CD62L+CD127+ ITK inhibition (Ibrutinib) Th2 toward Th1

68 40 20 10 4 6 17 1 10 9 43 15 37	25 14 5 6 2 1 ⊢ 4 1 ⊢ 6 4 17 5 16		37 (25 to 49) 35 (21 to 52) 25 (9 to 49) 60 (26 to 88) 50 (7 to 93) 17 (0 to 64) 24 (7 to 50) 100 (3 to 100) 60 (26 to 88) 44 (14 to 79) 40 (25 to 56)
20 10 4 6 17 1 10 9 43 15	5 6 2 1 4 1 6 4 17 5		25 (9 to 49) 60 (26 to 88) 50 (7 to 93) 17 (0 to 64) 24 (7 to 50) 100 (3 to 100) 60 (26 to 88) 44 (14 to 79)
20 10 4 6 17 1 10 9 43 15	5 6 2 1 4 1 6 4 17 5		25 (9 to 49) 60 (26 to 88) 50 (7 to 93) 17 (0 to 64) 24 (7 to 50) 100 (3 to 100) 60 (26 to 88) 44 (14 to 79)
10 4 6 17 1 10 9 43 15	6 2 1 H 4 1 H 6 4 17 5		60 (26 to 88) 50 (7 to 93) 17 (0 to 64) 24 (7 to 50) 100 (3 to 100) 60 (26 to 88) 44 (14 to 79)
4 6 17 1 10 9 43 15	2 1 F 4 1 F 6 4 17 5		50 (7 to 93) 17 (0 to 64) 24 (7 to 50) 100 (3 to 100) 60 (26 to 88) 44 (14 to 79)
6 17 1 10 9 43 15	1 ► 4 1 ► 6 4 17 5		50 (7 to 93) 17 (0 to 64) 24 (7 to 50) 100 (3 to 100) 60 (26 to 88) 44 (14 to 79)
17 1 10 9 43 15	4 1 6 4 17 5		24 (7 to 50) 100 (3 to 100) 60 (26 to 88) 44 (14 to 79)
1 10 9 43 15	1 H 6 4 17 5		24 (7 to 50) 100 (3 to 100) 60 (26 to 88) 44 (14 to 79)
1 10 9 43 15	6 4 17 5		100 (3 to 100) 60 (26 to 88) 44 (14 to 79)
10 9 43 15	4 17 5		60 (26 to 88)
9 43 15	4 17 5		44 (14 to 79)
43 15	17 5		
43 15	17 5		
15	5		
			33 (12 to 62)
	10		43 (27 to 61)
58	24		41 (29 to 55)
10	1 F	· · · ·	10 (0 to 45)
			10 (0 10 10)
16	7		44 (20 to 70)
			35 (22 to 49)
52	10		55 (22 10 45)
6	2		33 (4 to 78)
			47 (28 to 66)
			28 (14 to 47)
52	9		20 (14 10 47)
1	0		0 (0 to 60)
			60 (32 to 84)
			NA (NA to NA)
			33 (20 to 48)
40	10		35 (20 10 46)
22	0		27 (13 to 46)
			46 (29 to 63)
30	10		40 (29 (0 03)
52	10		35 (22 to 49)
	18		
10	1 F		10 (0 to 45)
	16 52 6 30 32 4 15 0 49 33 35 52 10 52 10 5	16 7 52 18 6 2 30 14 32 9 4 0 15 9 0 0 49 16 33 9 35 16 52 18	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

A Comparison of Overall Survival with Brexucabtagene Autoleucel (Brexu-cel) CAR T-Cell Therapy (ZUMA-2) and Standard of Care (SCHOLAR-2) in Patients with Relapsed/Refractory Mantle Cell Lymphoma (R/R MCL) Previously Treated with a Covalent Bruton Tyrosine Kinase Inhibitor (BTKi)

With IPW, the adjusted OS KM curve for SOC shifted slightly downward, with a median OS of 14.2 (95% CI: 6.8, 30.9) months


ZUMA-2

Similar to the unadjusted results, the IPW-adjusted OS HR of 0.38 (95% CI: 0.23, 0.63; P<0.001) suggested that brexu-cel reduced the risk of death relative to SOC

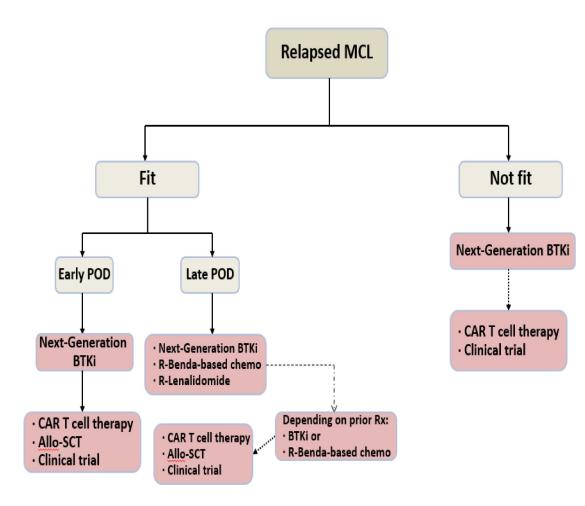
R/R MCL Clinical Outcome

	N	Response (ORR/CR)	PFS	OS	Tox (G <u>≥</u> 3)	Comments	
ZUMA-7 (Brexucel)	68	91%/68%	52.9% (24m)	60.3% (24m)	NE 32%		Wang ASH/ASCO 2022
RWE (Brexucel)	33	85%/59%	50.8% (12m)	61.4% (12m)	NE 36%	5 G5 events	lacoboni Blood Adv. 2022 Jun 28;6(12):3606-3610
RWE (O´Reilly et al.) (Brexucel)	50 (infused)	89.6%/	56.1% (12m)	72.3% (121m)			O'Reilly et al. ASH 2022
TRANSCEND (Lisocel)	32	84%/59% DL2: 88%/65%			NE 10%	Cytopenias	Palomba ML,et al. ASH 2020
Tarmac (Tisacel)	20 (infused)	90%/85%			1 AF,, 1NE		Minson A et al., ASH 2022

BiTE CD3-CD20 mosunetuzumab / glofitamab / odronextamab

abstr. 400-404 ASH 2020

Glofitamab Monotherapy Induces High Complete Response Rates in Patients with Heavily Pretreated Relapsed or Refractory Mantle Cell Lymphoma

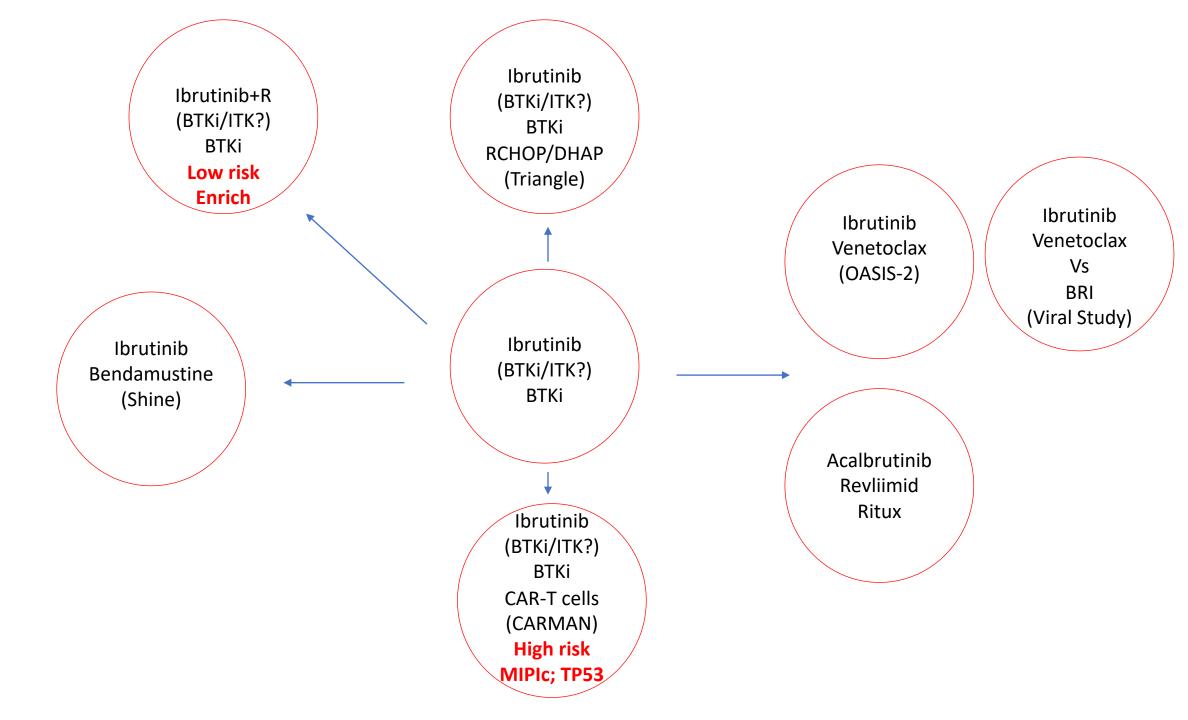

Time on treatment and response

Durability of response in efficacy-evaluable patients SUD (16mg) + Median follow-up (months): 1000mg Gpt - 8.0 months SUD (30mg) + Median time to first response: 1000mg Gpt - **51 days** (range, 29–234) **Response at first assessment:** Active in follow-up • CMR - CRR: 48.6%, ORR: 73.0% SUD Death + 2000mg Gpt PMR PMD No PD was reported beyond EOT ~Still on treatment in patients with response at EOT Study discontinued * Refractory to last line of prior therapy ***** 12 15 27 3 6 9 18 21 24 Time from first treatment (months)

Most responses were achieved early and were durable

EOT, end of treatment; CRR, complete response rate; ORR, overall response rate.

Mantle Cell Lymphoma: Open Questions



Treatment that preserves T cell function Role of Bendamustine, High dose ARA-C Use immune enhancer like BTKi+++ AlloSCT in fit patients vs CAR-T vs Bispe ?

Al-Mansour M. Treatment Landscape of Relapsed/Refractory Mantle Cell Lymphoma: An Updated Review. Clin Lymphoma Myeloma Leuk. 2022 Nov;22(11):e1019-e1031. doi: 10.1016/j.clml.2022.07.017. Epub 2022 Aug 3. PMID: 36068158.

Ongoing/Recent Clinical Trials in Relapsed or Refractory MCL

Combination	ClinicalTrials.gov	Phase	Patient status	Endpoints
lbrutinib + venetoclax vs. ibrutinib (Sympathico)	NCT03112174	3	First line or R/R	CR, PFS
lbrutinib + ixazomib	NCT03323151	1/2	R/R	MTD, CR
Tisagenlecleucel + ibrutinib	NCT04234061	2	R/R	CR
Loncastuximab tesirine + ibrutinib	NCT03684694	1/2	R/R	Safety, CR
CA-4948m ± ibrutinib	NCT03328078	1/2	R/R	CR, ORR. DOR, Safety
Acalabrutinib + rituximab+ bendamustin or venetoclax	^{ne} NCT02717624	1b/2	First line or R/R	Safety, CR
Acalabrutinib + venetoclax	NCT03946878	2	R/R	CR, PFS
Venetoclax + lenalidomide + rituximab (Valeria)	NCT03505944	1/2	R/R	ORR, PFS
Lenalidomide + blinatumumab	NCT02568553	1	R/R	MTD/CR

