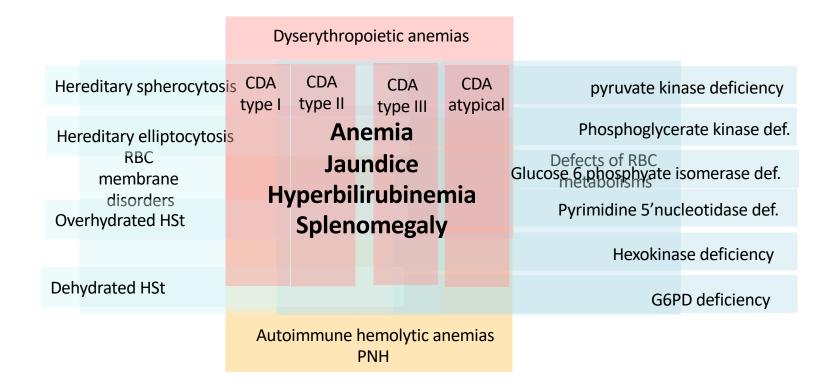
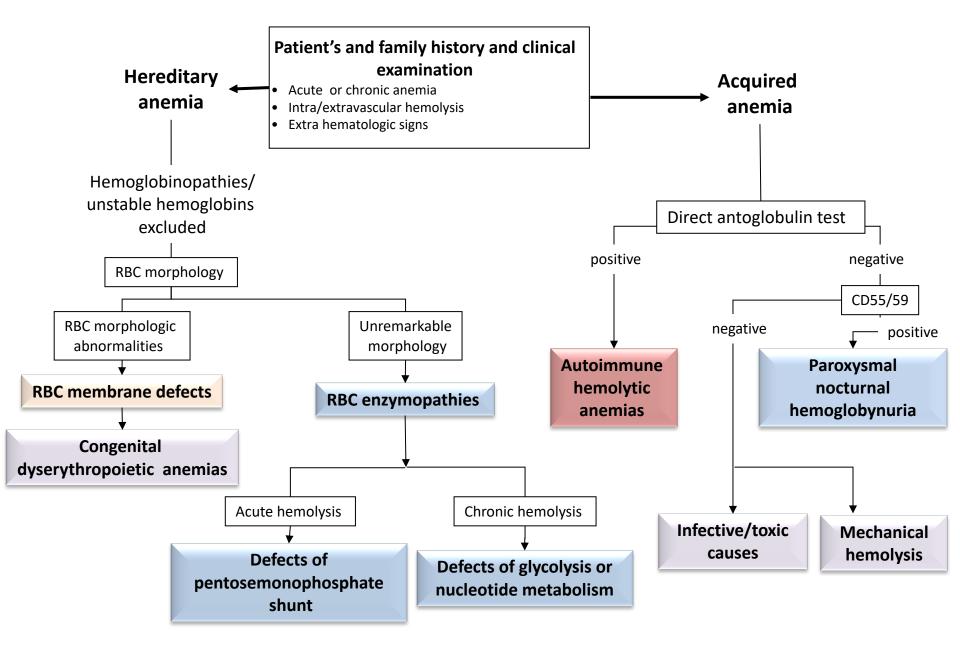
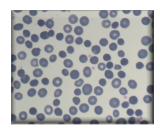


Le anemie rare: definizione dei nuovi standard terapeutici Le anemie emolitiche ereditarie


> Paola Bianchi Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano

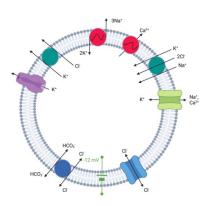

Primo simposio sulle terapie innovative in Ematologia Avellino, 30-31 Marzo 2023

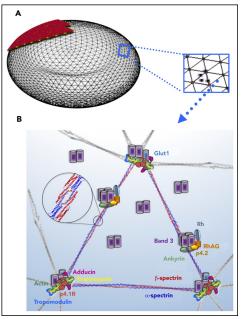
Hemolytic anemias: Clinical presentation and differential diagnosis



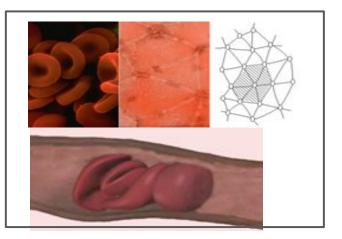
Hemolytic anemias: diagnostic flowchard

RED CELL MEMBRANE DISORDERS

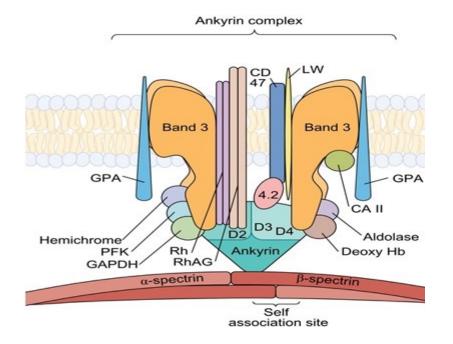




Hereditary Elliptocytosis

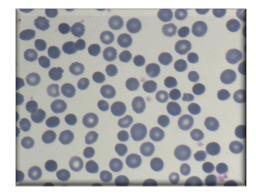


Jansen et al, 2021


Risinger M, Blood, 2020

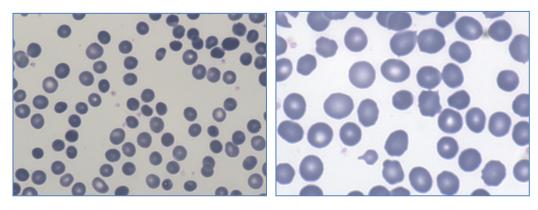
RBC disorders: molecular heterogenity

Protein	Gene	Position	Function	Phenotype
a-spectrin	SPTA1	1q23.1	Membrane skeletal network	HS HE/HPP
b-spectrin	SPTB	14q23,3	Membrane skeletal network	HS HE
Ankyrin	ANK1	8p11.21	Vertical interactions	HS
Protein Band 3	SLC4A1	17q21.31	 Anion exchange channel Link to glycoltytic enzymes Veritcal interactions 	HS SAO HSt
Protein 4.2	EPB42	15q15.2	Stabilize band3/ankyrin complex	HS
Protein 4.1	EPB41	1p35.3	Stabilize spectrin-ankyrin contact	HE
Glycophorin C	GYPC	2q14.3	Gerbich - blood group	HE
FAM38A	PIEZO1	16q24.3	Mechanosensitive ion channel	HX/ Polycythemia
Gardos channel KCa3.1	KCNN4	19q13.31	Potassium Calcium-Activated Channel	HSt
Rh associated Glycoprotein	RHAG	6p12.3	Rh -blood group	OHSt
GLUT1	SLC2A1	1p34.2	Glucose transporter	СНС
ABC transporter Superfam	ABCB6	2q35	Porphyrin transporter	Fam. PHYK

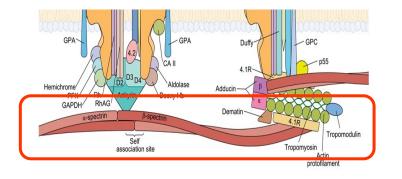

HEREDITARY SPHEROCYTOSIS

- ✓ Prevalence 1:2000
- ✓ Worldwide distribution
- ✓ Dominant/recessive transmission
- ✓ Variable severity
- ✓ Presence of spherocytes
- ✓ Genes involved SLC4A1, EPB42, SPTA1, ANK1
- ✓ Complete response to splenectomy

AIHA

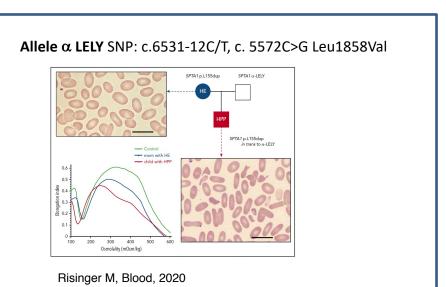


Sistema Socio Sanitario Regione Lombardia


Demographic features and common complications of 446 patients with hereditary spherocytosis at diagnosis

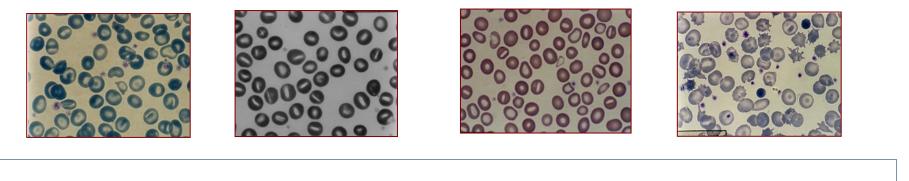
Characteristics	At diagnosis (N = 446 ^a)
Male/female (N)	239/207
Median age at diagnosis (y, range)	22 (0.1-80)
<18 years old (<i>n</i> = 186)	7 (0.1–17)
≥ 18 years old ($n = 260$)	36 (18-80)
Median Follow-up (y, range)	-
Splenomegaly (N, %)	300/374 ^b (80)
Gallstones (N, %)	148/353 ^c (42)
Neonatal jundice (N, %)	133/446 (30)
Transfused patients (N, %)	130/446 (29)
Cholecystectomy (N, %)	93/446 (21)
Splenectomized (N, %)	72/446 (16)
Exchange transfusion (N, %)	20/446 (4.5)
Aplastic crises (N, %)	21/446 (5)
Infections (N, %)	13/446 (3)
Thromboses (N, %)	4/446 (0.9)

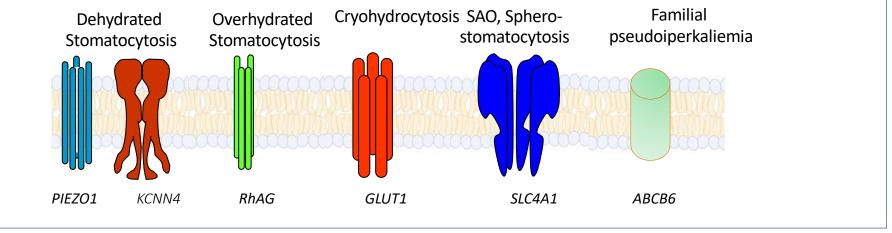
HEREDITARY ELLIPTOCYTOSIS (classical form)

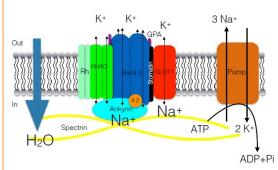


✓ Prevalence: 1/1000 -1/4000
 up to 1/50 in malaria endemic areas like
 west and central Africa.

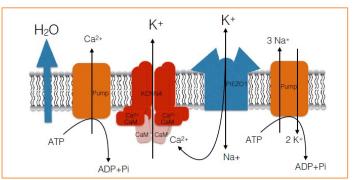
- ✓ Dominant transmission
- ✓Anemia: Compensated Mild
- ✓ Genes involved: SPTA1, SPTB; EPB41


✓ No therapies required

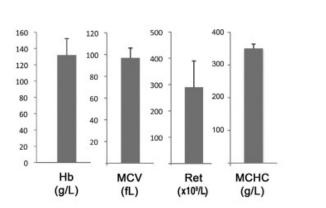

HEREDITARY PYROPOIKILOCYTOSIS

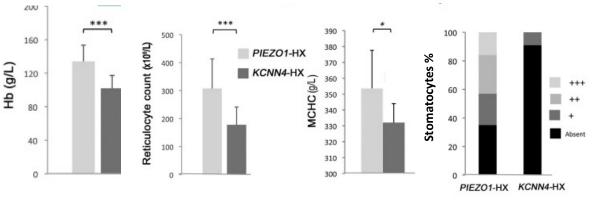

- ✓ Recessive transmission
- ✓ Severe hemolytic anemia tx dependent
- ✓ Altered morphology, mimiking heat lability Within a family, HE and HPP may both be present
- ✓ Genes involved : SPTA1, SPTB, EPB41

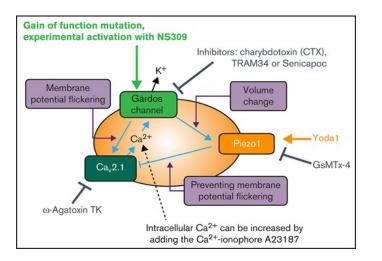
HEREDITARY STOMATOCYTOSIS

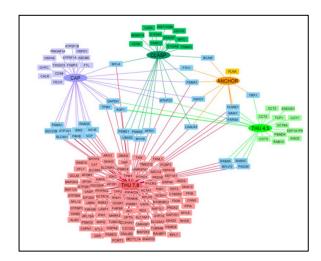


Overydrated stomayocytosis




Dehydrated stomayocytosis


PIEZO1 variants vs KCNN4 Gardos Channelopathy

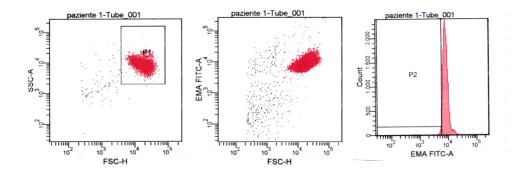

Clinical and biological features in PIEZO1-HX and Gardos channelopathy: a retrospective series of 126 patients

Picard et al, 2019

Jansen et al, 2021

Diagnostic tools

Osmotic fragility (OF) test	68%
(Parpart et al, 1947)	
Acidified glycerol lysis test (AGLT)	95%
(Zanella et al, 1980)	
The Pink test	91%
(Vettore & Zanella, 1984)	
Hypertonic cryohaemolysis test	91%
(Streichman & Gescheidt, 1998)	
Eosin-5-maleimide (EMA) binding	93% Se
(King et al <i>,</i> 2000)	98% Sp

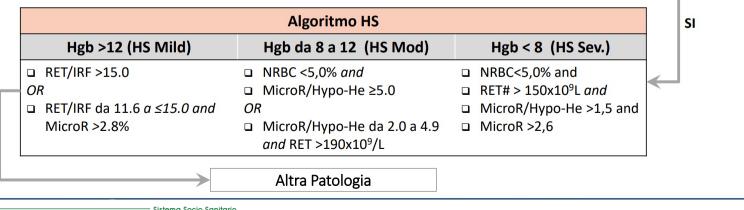

British Journal of Haematology, 2000, 111, 924-933

Rapid flow cytometric test for the diagnosis of membrane cytoskeleton-associated haemolytic anaemia

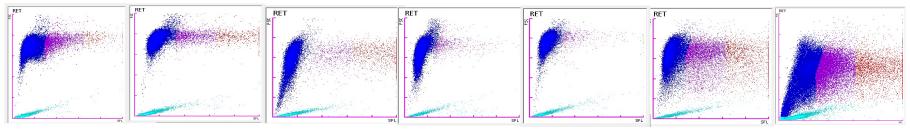
MAY-JEAN KING,¹ JUDITH BEHRENS,² CHRIS ROGERS,³ CLARE FLYNN,⁴ DAVID GREENWOOD⁵ AND KEITH CHAMBERS⁶ ¹International Blood Group Reference Laboratory, Bristol, ²Department of Haematology, St. Helier Hospital, Carshalton, ³Research and Development Support Unit, Southmead Hospital, Bristol, ⁴Department of Haematology, St. Mary's Hospital, London, ⁵Department of Haematology, Southmead Hospital, Bristol, and ⁶Department of Haematology, Leicester Royal Infirmary, Leicester, UK

Received 12 June 2000; accepted for publication 13 July 2000

Sensitivity = 92,7% Specificity = 99,1%.


Automated red cell parameters in the prediction of congenital hemolytic anemias

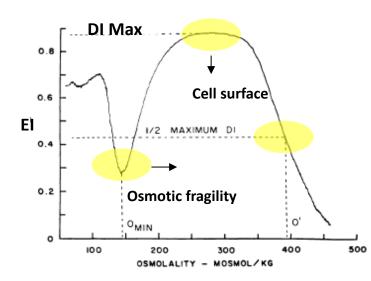
HS samples MSCV < MCV Mean Spherized Corpuscular Volume, assessed during the retics count procedure under hypoosmotic conditions)	Sensitivity 100% Specificity 93.3%
RDW/HDW ratio significantly greater in CDA II than HS CHDW/CHDWr ratio significantly lower in CDA II than HS RDW= anisocytosis; HDW= anisochromia; CHDWr= cell Hb content of reticulocytes	p<0.0002 p<0.0002
Reticulocyte volume <100fL HS (except for neonates) Advia H*3 Bayer	
Delta MCV-MSCV >9.6fL Beckman coulter	
Hs screening index: RET ≥80x109/L and RET/IRF >7.7 Ret/IRF; %MicroR; %MicroR%/HypoHe %MicroR: % erythrocytes <60 fL; %Hypo-He: % of erythrocytes Hb<17g/dL) (30HS) Sysmex XE-5000	Sensitivity 100% Specificity 99.3%
Modification of Mullier algorithm (25 HS) Sysmex XE-5000	Sensitivity 100% Specificity 99%
MRV (mean reticulocyte volume) IRF ; Delta MCV-MSCV Beckman Coulter	Sensitivity 100% Specificity 88%
Hs screening index: RET≥80x109/L and RET/IRF>9.1 Ret/IRF;%MicroR;%MicroR%/HypoHe (47 HS, 17 PKD) Sysmex XE-5000	Sensitivity 100% Specificity 92.1%
Hs screening index: RET ≥80x109/L and RET/IRF >7.7 Ret/IRF; %MicroR; %MicroR%/HypoHe (20 HS)	Sensitivity 94,6% Specificity 96,7%
	hypoosmotic conditions) RDW/HDW ratio significantly greater in CDA II than HS CHDW/CHDWr ratio significantly lower in CDA II than HS RDW= anisocytosis; HDW= anisochromia; CHDWr= cell Hb content of reticulocytes Reticulocyte volume <100fL HS (except for neonates)


Patologie	MILANO	Literature	TOTALE
HS	56	65	117
РКD	15		15
AEA	50		50
CDA-I, CDA-II	6		6
HSt (PIEZO1 +KCNN4)	9		9
Talassemie, HbS, HbC, HbH	118	4	122
Altre anemie emolitiche	18	29	51
TOTALE	272	94	366

	Alg		
Disalitati	Hgb >12 (PK Mild)	Hgb ≤12 (PK Mod. – Sev.)	
Risultati Emocromo	 RET# >135x10⁹/L and IRF>15,6 and MicroRBC <1,9% and Hypo-He <0,2% and 	 RET# >50x10⁹/L and IRF>50 OR IRF >25,0 and MicroR<1,5% and Hypo-He <0,3% 	NO RET>80x10 ⁹ /L RET/IRF≥7.7

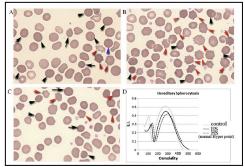
Anche l'occhio vuole la sua parte.....

HS PKD an. lieve PKD an. grave AEA CDAII MDS Thal mayor

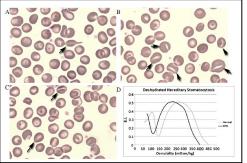

PKD	Tot. pazienti	VP	VN	FP	FN	SE	SP	VPN	VPP
FKD	366	14	348	3	1	93,3	99,1	99,7	82,3
								9	
HS	Tot. pazienti	VP	VN	FP	FN	SE	SP	VPN	VPP
пэ	366	116	232	17	1	99,1	93,2	99,6	87,2

HS

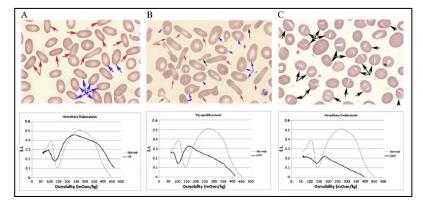
Algoritmo	VP	VN	FP	FN	SE (%)	SP (%)	VPN (%)	VPP (%)
«Milano»	116	232	17	1	99,1	93,2	99,6	87,2
Mullier	103	227	22	14	88,0	91,2	94,2	82,4
Persijn	99	230	19	18	84,6	92,4	92,7	83,9
Sottiaux	109	224	25	8	93,2	90,0	96,6	81,3
Bobée	97	199	50	20	82,9	79,9	90,9	66,0



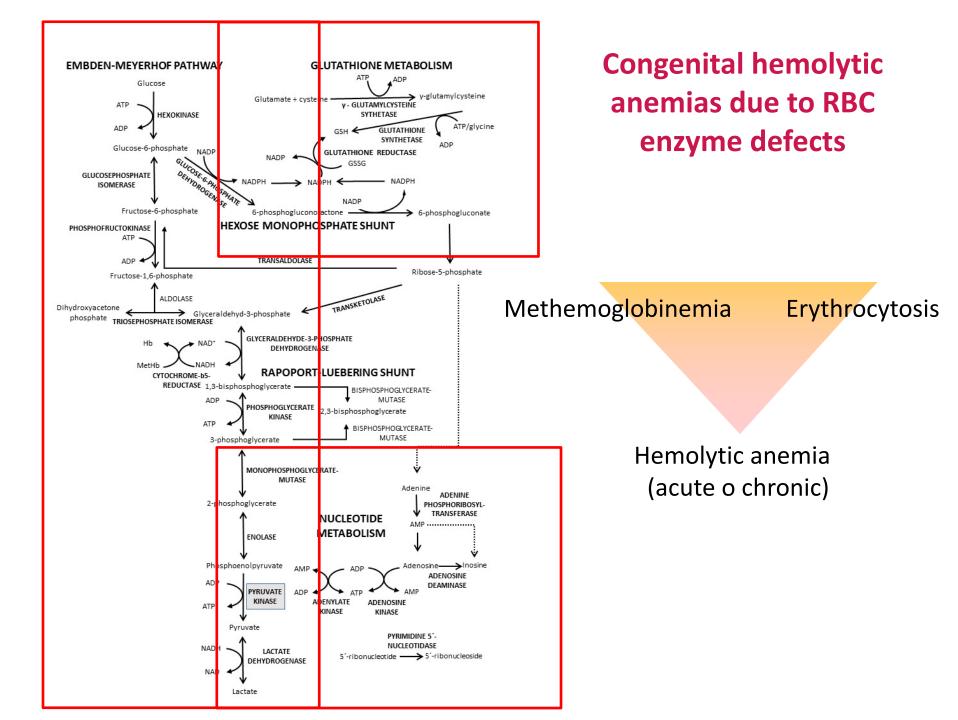
Laser-assisted Optical Rotational Cell Analyzer

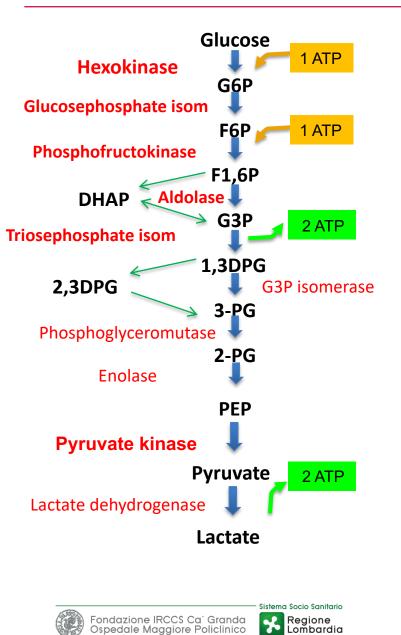


Clark et al, Blood 1984


Hereditary Spherocytosis

Dehydrated Stomatocytosis


Hereditary Elliptocytosis



Da Costa L et al , 2013, 2016 Lazarova E, 2017 Zaninoni et al, 2016

The Embden-Meyerof pathway

In red blood cell glycolysis is the main source of Metabolic energy

- To keep the iron of hemoglobin in the functional form
- To maintain intracellular ions concentration
- To protect from oxydative stress
- To maintain the red cell shape

Enzyme	Gene	Position	N. of cases	Phenotype
Embden-Meyerof path	nway			
Hexokinase	HK1	10q22.1	20 cases	CNSHA
Glucosephosphate isomerase	GPI	19q13.11	>50 fam	CNSHA Mental retardation?
Phosphofructokinase	PFK-M PFK-L	12q13.11 21q22.3	~75 cases	Erythrocytosis, minimal hemolysis, Tarui disase, muscle disease
Aldolase	ALDOA	16p11.2	6 cases	CNSHA, mental retardation Dysmorphism
Triosephosphate isomerase	TPI1	12p13	~75 cases	CNSHA, neuromuscular disease, Infections
Phosphoglycerate kinase	PGK1	X13.3	40 cases	CNSHA, neuromuscular disease
Pyruvate kinase	PKLR	1q22	>500 fam	CNSHA

PK deficiency: clinical findings

The PKD Natural History Study

Baseline and retrospective data from patients with PK deficiency (N = 254)

		All (N	=254)
Characteristics		Ν	
Age at diagnosis (yrs, range)		243	0.4 (0-60.3)
Age at enrollment (yrs, range):	Overall	254	19.0 (0.1-69.9)
	< 18 years old	123	6.4 (0.1-17.7)
	≥ 18 years old	131	36.2(18.0-69.9)
Median number of lifetime transf.	(range)	191	18 (1-516)
Splenectomized		150	59% (3.2y)
Transfusion status at Enrollment			
Historically on regular transfusi	ons	79/198	40%
Currently on regular transfusior	ıs	23/198	12%
Intermittent transfusions only		56/198	28%
Never transfused		34/198	17%
Historical transfusions with unk	nown	6/198	3%
transfusion frequency			

• Median rise in hemoglobin of 1.6 g/dl, reduction in the transfusion burden in 90% of cases

• transfusion dependence persisted despite splenectomy in 10%

• Predictors of poor response to splenectomy included: lower pre-splenectomy hemoglobin (p=0.007), higher indirect bilirubin (p=0.005), and Amish descent (p=0.001)

PK deficiency:Genotype-Phenotype Correlation

	NM/NM, N=29 Median (Range)	M/NM, N=52 Median (Range)	M/M, N=111 Median (Range)	p-value⁺
Age at diagnosis (years)	0.4 (0-10.9) n=29	0.7 (0-42.3) n=50	1.3 (0-60.3) n=105	0.049
Hemoglobin (g/dl)**	7.9 (6.5-8.9)	8.4 (6.4-12.8)	9.2 (4.3-12.3)	0.003*
Total number of lifetime transfusions	n=14 65 (3-991)	n=21 25 (1-721)	n=40 16 (1-1915)	0.0013*
	n=27	n=38	n=81	
Maximum ferritin (ng/ml)	1787 (423-13,409)	604 (22-8,220)	573 (31-9 <i>,</i> 679)	<0.0001*
	n=22	n=37	n=75	
PK enzyme activity normalized to patient-	-41.6 (-152.4-15.2)	-51.9 (-211.1-64.4)	-69.6 (-485.7-117.6)	0.16
specific normal range (%)	n=18	n=24	n=60	

Splenectomy response

	No response (Hb <8 g/dl) n=31	Partial response (Hb 8-<11 g/dl) n=110	Complete response (Hb ≥11 g/dl) n=7	р
Genotype				
M/M	29%	59%	100%	0.0017
M/NM	32%	26%	0%	0.0005
NM/NM	39%	16%	0%	0.5

PK deficiency:complications

The PKD Natural History Study

Baseline and retrospective data from patients with PK deficiency (N = 254)

IRON OVERLOAD

- FERRITIN (47%)
- CHELATION (23%)

THROMBOSIS (Overall, 7%) (Post-SPLNX, 11%)

> OSTEOPENIA/BONE FRACTURES (17%)

EXTRAMEDULLARY HEMATOPOIESIS (9%)

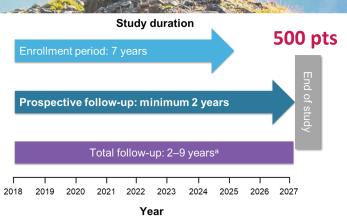
SPLENECTOMY (59%)

CHOLELITHIASIS (45%) CHOLECYSTECTOMY (40%)

APLASTIC CRISIS (14%)

ENDOCRINE DISEASE (10%)THYROID DISEASE (5%)

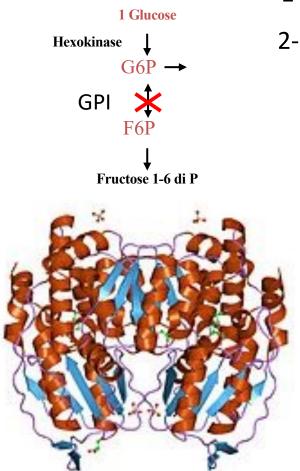
PULMONARY HYPERTENSION (3%)


LIVER CIRRHOSIS (3%)

https://clinicaltrials.gov/ct2/show/NCT03481738

The Peak Registry

An unwavering commitment to patients with PK deficiency



BMJ OpenThe Pyruvate Kinase Deficiency Global2023Longitudinal (Peak) Registry: rationale
and study design

Rachael F Grace,¹ Eduard J van Beers,² Joan-Lluis Vives Corrons,³ Bertil Glader,⁴ Andreas Glenthoj,⁵ Hitoshi Kanno,⁶ Kevin H M Kuo,⁷ Carl Lander,⁸ D Mark Layton,⁹ Dagmar Pospíŝilová,¹⁰ Vip Viprakasit,¹¹ Junlong Li,¹² Yan Yan,¹² Audra N Boscoe,¹² Chris Bowden,¹² Paola Bianchi¹³

Congress	Citation
ASH, 2022	Grace, R. F., Glenthøj, A., Lander, C., van Beers, E. J., Kanno, H., Vives Corrons, J. L., & Glader, B. (2022). Comorbidities and Complications in Pediatric Patients with Pyruvate Kinase Deficiency Enrolled in the Peak Registry. Blood, 140 (Supplement 1), 5316-5318.
ASH, 2022	Glenthøj, A., Grace, R. F., van Beers, E. J., Vives Corrons, J. L., Glader, B., Kuo, K. H., & Bianchi, P. (2022). Age of Onset of Complications in Patients with Pyruvate Kinase Deficiency: Analysis from the Peak Registry. Blood, 140 (Supplement 1), 5323-5325.
EHA, 2022	Glenthøj, A., Grace, R. F., van Beers, E. J., Corrons, J. L. V., Glader, B., Kuo, K. H., & Bianchi, P. (2022). P1542: Comorbidities and Complications across Genotype in Adult Patients with Pyruvate Kinase Deficiency: Analysis from the Peak Registry. HemaSphere, 6 (Supplement 3), P1542.
ASH, 2021 (Encore: EHA, 2022)	Bianchi, P., Grace, R. F., Corrons, J. L. V., Glader, B., Glenthøj, A., Kanno, H., & Van Beers, E. J. (2021). Characterizing Iron Overload By Age in Patients Diagnosed with Pyruvate Kinase Deficiency- Descriptive Analysis from the Peak Registry. Blood, 138 (Supplement 1), 3074.
EHA, 2021 (Encore: SFH, 2021)	Bianchi, P., van Beers, E. J., Vives Corrons, J. L., Glader, B., Glenthoj, A., Kanno, H., & Grace, R. F. (2021). Baseline Characteristics by age of a Global Cohort of Patients Diagnosed with Pyruvate Kinase Deficiency-A Descriptive Analysis from the Peak Registry. HemaSphere 5 (Supplement 2), P e566.
ASH, 2020	Grace, R. F., Boscoe, A., Bowden, C., Glader, B., Kanno, H., Layton, D. M., & Bianchi, P. (2020). Baseline Characteristics of Patients in Peak: A Global, Longitudinal Registry of Patients with Pyruvate Kinase Deficiency. Blood, 136 (Supplement 1), 39-40.

GPI : dual functional protein

1- homodimer, catalizes the conversion from G6P to F6P

- 2- monomer secreted by leucocytes Neuroleukine : lymphokine, neurotrophic factor
 - Mutants that disrupt the dimerization interface cause loss of catalytic activity: chronic anemia, T195I,T224M, R347C, R347H, T375R, L487F, E495K, I525T, and D539N;

- Mutants that disrupt Monomer Folding are accompanied by neuro disorder: H2OP, L339P(exon 1 and 12 mutants)

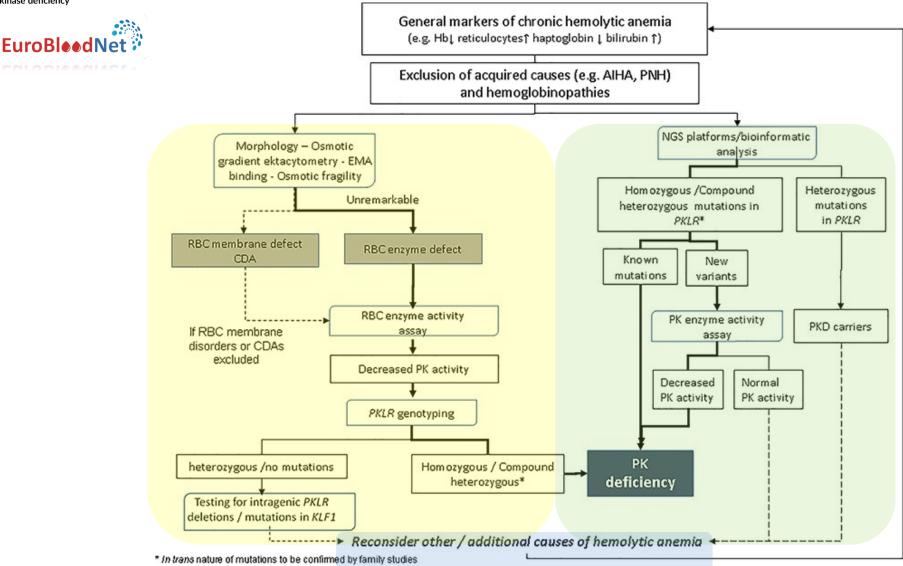
Kugler et al. 1998

Kindly given by Serge Pissard

Glucose6-phosphate isomerase deficiency

- ✓ GPI deficiency is the second most common erythro-enzymopathy of glycolysis, after PKD (100 cases).
- ✓ Patients are affected by chronic non-spherocytic hemolytic anemia of variable severity; in rare cases, intellectual disability or neuromuscular symptoms have also been reported.
- ✓ Molecular heterogeneity: about 60 causative mutations identified.
- ✓ Splenectomy does not always result in the amelioration of anemia but may be considered in transfusion-dependent patients to reduce transfusion intervals

Pt	Age	Sex	Transfusion	Splenect. (age)	Colecyst. (age)	Hb g/dL pre	Hb g/dL Post splenect.	SFerritin (ng/mL)
1	2	М	Occasional	No	No	6.1-10.2	-	n.a.
2	6	F	Occasional	No	No	6.2-11.6	-	n.a.
3	40	М	Occasional	Yes (9)	No	n.a.	11.5	2356
4	8	F	Occasional	Yes (7)	Yes (7)	9.4	1 1	1 1 1
5	1	М	Occasional	No	No	10 0.6		F
6	51	F	Occasional	Yes (17)	Yes (18)	n.a.		
7	3	М	Occasional	No	No	11.7	1 //	
8	1	М	Regular (4w)	No	No	8.5		
9	18	F	Regular [*] (4w)	Yes (6)	Yes	5.4-8.		
10	23	М	Regular [*] (4w)	Yes (3)	Yes	2.7-8.	2	
11	18	М	No	No	No	10.8		×
12	46	М	No	Yes (45)	No	8.0	150 250 Osmolality (m	350 450 550 Osm/Kg)


Fermo et al Front Physiol 2019

TEST OF THE MONTH

WILEY

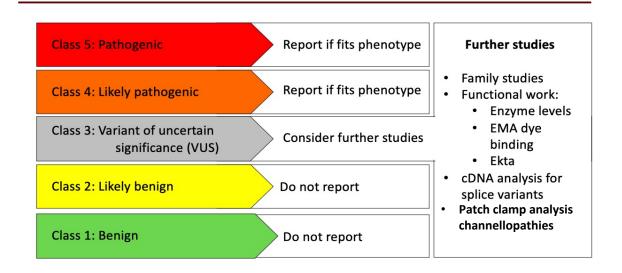
Addressing the diagnostic gaps in pyruvate kinase deficiency: Consensus recommendations on the diagnosis of pyruvate kinase deficiency

NGS apport to diagnosis of chronic hemolytic anemias

	N. of genes analysed	N. of cases	Overall sensitivity	Sensitivity in hemolytic patients with no previous diagnosis
Agrawal, et al 2023	28	450 (CHA)		24%
More et al, 2023	5	26 HS	80%	Not studied
Nieto et al, 2022	48	165 (HS)	83%	35%
Fermo, et al. 2021	48	122 (CHA)	74%	35%
Morado et al, 2021	40	99 (CHA)	78%	n.a.
Chonat, et al. 2019	32 (membrane defects)	11 (HS)	100%	Not studied
van Vuren, et al.2019	7 (membrane defects)	95 (HS)	89%	Not studied
Xue, et al. 2019	10 (membrane defects)	10 (HS)	90%	Not studied
Peng, et al, 2018	n.a.	51 (HS)	72%	Not studied
Li, et al., 2018.	217	46 (CHA)	60.9%	n.a.
Russo et al., 2018	34 and 71	74 (CHA)	64.9%	45.8%
Agarwal et al., 2016	28	17 (CHA)	70%	70%
Roy et al., 2016	33	57 (CHA)	38.6%	11%

CHA = Chronic hemolytic anemias, HS = Hereditary spherocytosis, n.a. = not available

DOI: 10.1111/bjh.18191


GUIDELINE

BJHaem

The use of next-generation sequencing in the diagnosis of rare inherited anaemias: A Joint BSH/EHA Good Practice Paper*

Noémi B. A. Roy^{1,2} | Lydie Da Costa³ | Roberta Russo^{4,5} | Paola Bianchi⁶ | Maria del Mar Mañú-Pereira⁷ | Elisa Fermo⁶ | Immacolata Andolfo^{4,5} | Barnaby Clark¹³ Melanie Proven⁸ | Mayka Sanchez^{9,10} | Richard van Wijk¹¹ | Bert van der Zwaag¹¹ | Mark Layton¹² | David Rees¹³ | Achille Iolascon^{4,5} | British Society for Haematology/ European Hematology Association

Variant classification (ACMG)



Targeted Next Generation sequencing and diagnosis of congenital hemolytic anemias: a three years experience monocentric study

48genes t–NGS platform

2017-2019 122 patients -105 unrelated families

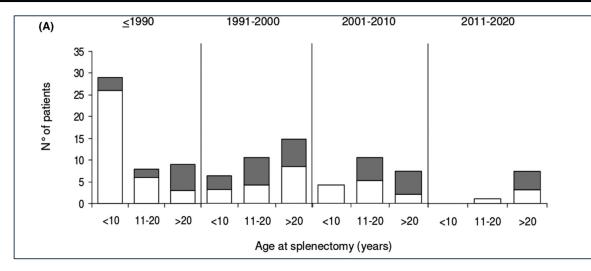
60 patients who reached a diagnosis after first62 patients with unexplained chronicand second level hematologic investigations,haemolytic anemia after extensiveto be confirmed at molecular levelhematologic investigations.

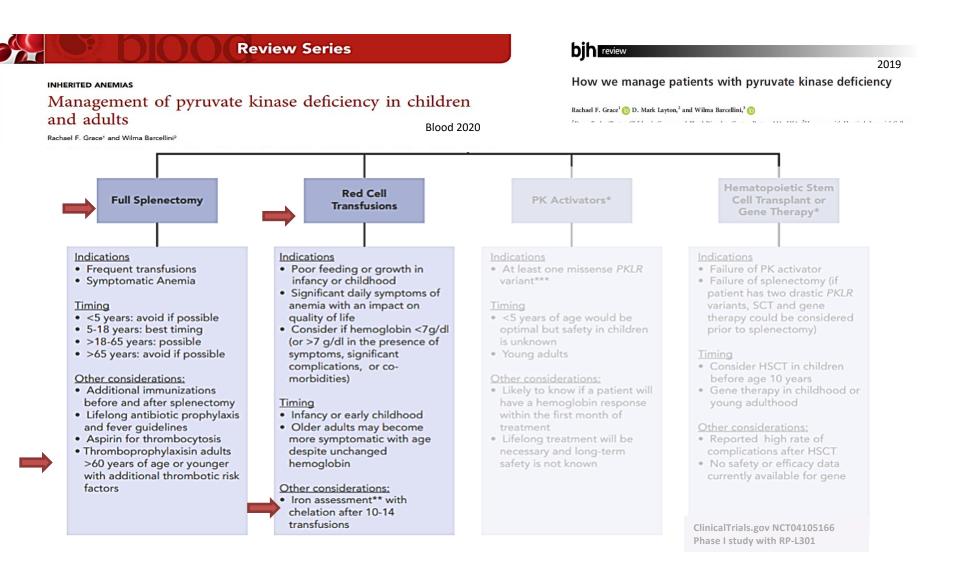
Sensitivity 74 %

Sensitivity 35 %

T-NGS panel vs laboratory testing

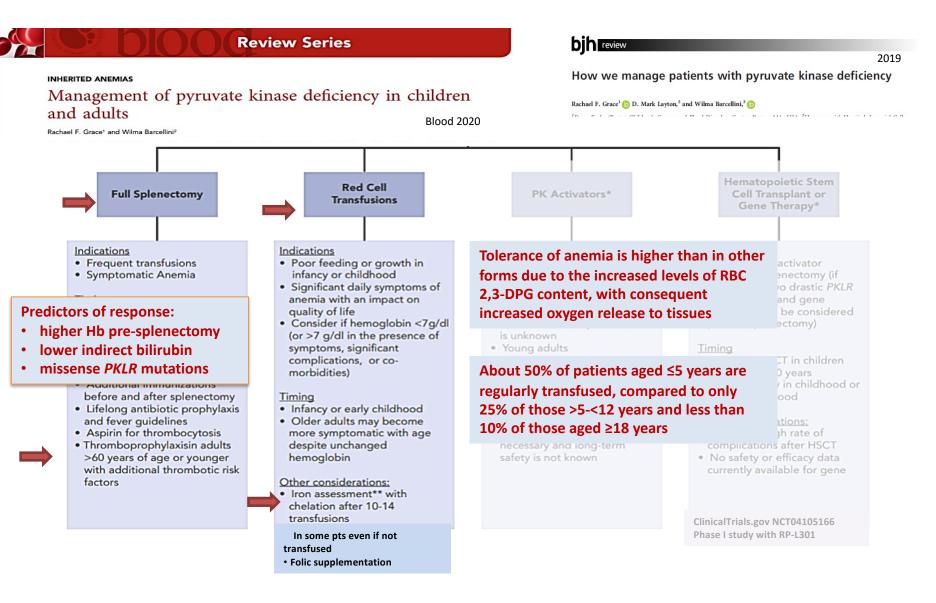
	Laboratory testing	Molecular analysis (NGS)
HS	EMA-binding test Ectacytometry Others	High molecular heterogenity Consistency with clinical and laboratory features required
HE	Osmotic fragility tests Ectacytometry RBC morphology	High molecular heterogenity Consistency with clinical and laboratory features required
HSt- PIEZO1	Rbc morphology; Ektacytometry Always requiring molecular testing to confirm diagnosis	Highly polymorphic gene Functional tests mandatory in presence of new variants
HSt-KCNN4	Absence of specific laboratory markers	
RBC enzyme defects	RBC enzyme assay. Always requiring molecular testing to confirm diagnosis	
Familial sitosterolemia	Complete blood count	
Atypical conditions		



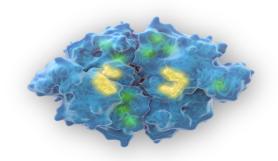


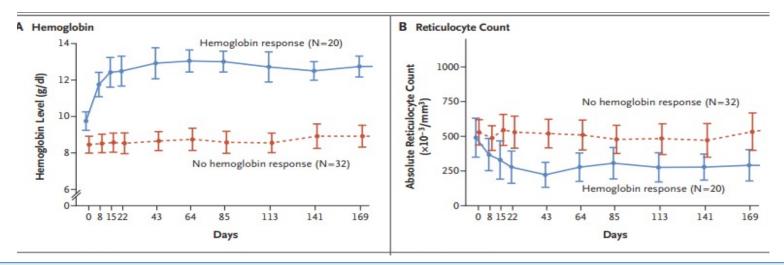
Changing trends of splenectomy in hereditary spherocytosis

	Before splenectomy	After Splenectomy	Р
Hematologic parameters	<u> </u>		
Hb (g/dL)	10.4 (7.2-14.7)	15.3 (9.1-18.4)	<0.0001
MCV (fL)	86 (65-105)	87 (74-95)	NS
MCHC (g/dL)	35.6 (29.9-37.5)	353 (30.3-37.4)	NS
RDW (%)	19.2 (11.5-24.7)	13.3 (11.1-22.5)	0.03
Markers of haemolysis			
Reticulocytes (x10 ⁹ /L)	350 (70-648)	157(16-279)	<0.0001
Unconjugated bilirubin (mg/dL)	1.8 (0.2-8.9)	0.6 (0.2-3.2)	0.0003
LDH (U/L)	412 (155-1057)	222 (105-405)	0.01
Iron status parameters			
Iron (μg/dL)	78 (42-224)	100 (26-230)	NS
Transferrin (mg/dL)	260 (174-345)	251 (133-348)	NS
Transferrin saturation (%)	27.5 (14-79)	28 (11 -75)	NS
Serum ferritin (ng/mL)	140 (17-560)	158 (10-1315)	NS



Vercellati et al 2022



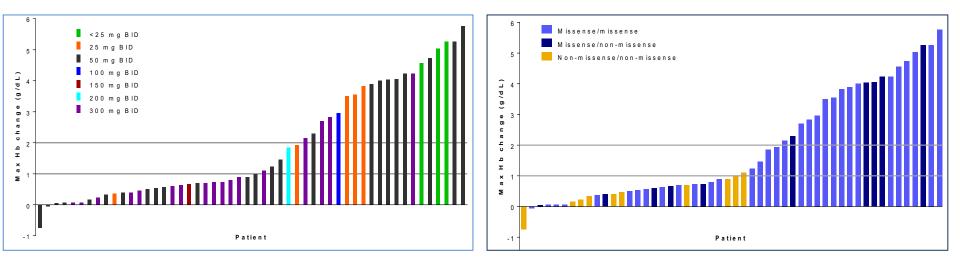

ORIGINAL ARTICLE

AG-348 Mitapivat in PK deficiency

Safety and Efficacy of Mitapivat in Pyruvate Kinase Deficiency

Rachael F. Grace, M.D., Christian Rose, M.D., * D. Mark Layton, M.B., B.S., Frédéric Galactéros, M.D., Wilma Barcellini, M.D., D. Holmes Morton, M.D., Eduard J. van Beers, M.D., Hassan Yaish, M.D., Yaddanapudi Ravindranath, M.D., Kevin H.M. Kuo, M.D., Sujit Sheth, M.D., Janet L. Kwiatkowski, M.D., M.S.C.E., Ann J. Barbier, M.D., Ph.D., Susan Bodie, Pharm.D., Bruce Silver, M.D., Lei Hua, Ph.D., Charles Kung, Ph.D., Peter Hawkins, Ph.D., Marie-Hélène Jouvin, M.D., Chris Bowden, M.D., and Bertil Glader, M.D., Ph.D.

- The administration of mitapivat was associated with a rapid increase in the Hb level in 50% of cases, with a sustained response during the extension phase (median follow-up 29 months)
- Adverse effects were mainly low-grade and transient (headache, hypertriglyceridemia)


2019

• (Funded by Agios Ph; ClinicalTrials.gov number, NCT02476916.)

Mitapivat in PK deficiency

- The mean maximum Hb increase in responders was 3.4 g/dL (range 1.1–5.8 g/dL)
- The median time to hemoglobin response >1.0 g/dl was 10 days (range 8–24 days) and the response was sustained in the majority of patients
- Response occurred through a wide range of doses
- Hb responses were observed only in patients with at least one missense mutation and correlated with baseline *PKLR* protein level.

The baseline value is the average of all central assessments within the screening period (42 days prior to Day 1)

CACTIVATE

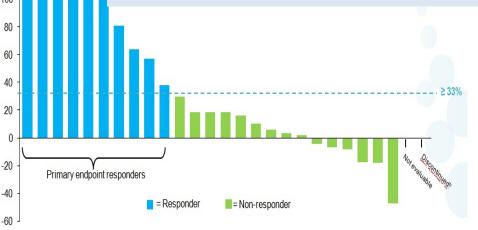
Phase 3, randomized, double-blind, placebo-controlled study that evaluated the efficacy and safety of mitapivat in adult patients with PK deficiency who were not regularly transfused

- Baseline Hb ≤ 10 g/dl
- Dose escalation (5 \rightarrow 20 \rightarrow 50 mg BID)
- Excluded homozygous for R479H mutation or have 2 non-missense mutations, without another missense mutation, in PKLR
 16 pts (40%) responded in Mitapivat vs 0 pts
 (0%) in placebo arm (p<0.0001)

Al-Samkari et al, NEJM, 2022

Mitapivat in adult patients with pyruvate kinase deficiency receiving regular transfusions (ACTIVATE-T): a multicentre, open-label, single-arm, phase 3 trial

Andreas Glenthøj, Eduard J van Beers, Hanny Al-Samkari, Vip Viprakasit, Kevin H M Kuo, Frédéric Galactéros, Satheesh Chonat, John Porter, Erin Zagadailov, Rengyi Xu, Abdulafeez Oluyadi, Peter Hawkins, Sarah Gheuens, Vanessa Beynon, Wilma Barcellini, on behalf of the ACTIVATE-T investigators*


Baseline characteristics 27 pa	atients
Mean age (years)	18–68
Hb (g/dL), mean (SD)	9.2 (0.98)
Ferritin (µg/L), mean (SD) ^a	1153.7 (1221.41)
Prior splenectomy, n (%)	21 (77.8)
Prior cholecystectomy, n (%)	23 (85.2)
Prior chelation therapy, n (%)	24 (88.9)
No. RBC transfusion episodes, mean (SD)	9.7 (3.62)
No. RBC units transfused, mean (SD)	16.6 (8.63)

• \geq 6 transfusion episodes in the past 1 y

CACTIVATE-T

- Dose escalation (5 \rightarrow 20 \rightarrow 50 mg BID
- Excluded homozygous for R479H mutation or have 2 non-missense mutations, without another missense mutation, in PKLR

• 37% (10/27) of patients achieved a response with a reduction of transfusions

Reduction in RBC units transfused (%)

 6 patients (22%) became transfusion-free during the fixed-dose period, and 3 patients (11%) achieved normal haemoglobin at least once

Mitapivat demonstrated a significant transfusion burden reduction in patients with PK ho were regularly transfused.

Studies correlated with Mitapivat in PKD

Durability of hemoglobin response and reduction in transfusion burden is maintained over time in patients with pkd treated with mitapivat in a long-term extension study Grace R, et al. EHA, ASH 2022

Long-term treatment with oral mitapivat is associated with normalization of hemoglobin levels in patients with PKD Barcellini w, et al EHA 2022

Long-term improvements in patients –reported outcomes in patients with PKD treated with Mitapivat Kuo K, et al ASH 2022

Mitapivat decreases the need for transfusions secondary to poorly tolerated anemia and acute events compared to placebo in patients with PKD who are not regularly transfused Al-samkari h, et al eha 2022

Improvements in patient-reported outcomes in mitapivat-treated patients with pyruvate kinase deficiency: a descriptive analysis from the phase 3 Activate trial. H.M. Kuo K. P1735, EHA 2022

Mitapivat improves ineffective erythropoiesis and reduces iron overload in patients with pyruvate kinase deficiency, J. van Beers E. P1565, EHA 2022

Bone mineral density remains stable in pyruvate kinase deficiency patients receiving long-term treatment with mitapivat , Al-samkari H. P1544, EHA2022

Activate-KidsT/Activate kids: mitapivat in children with pyruvate kinase deficiency who are regularly transfused/ who are not regularly transfused. Grace R. P1546 and P1547, EHA 2022: ASH 2022

Mitapivat: a drug for different disorders? Thalassemia, Sickle cell disease (SCD) and more...

Thalassemia

Kuo et al. Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in adults with non-transfusion dependent α -thalassaemia or β -thalassaemia: an open-label, multicentre phase 2 study. Lancet. 2022

ATP

Sickle cell Anemia

İİİİ

Preliminary results indicate decreased 2,3-DPG, increased ATP, amelioration of anemia and hemolysis in SCD

2,3 DPG

Pyruvate kinase deficiency

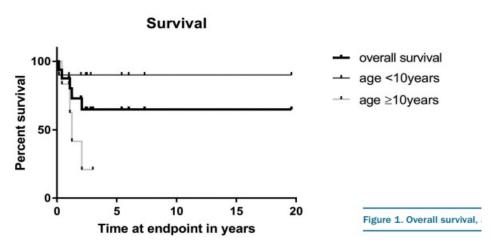
Hereditary spherocytosis

Matte et al. Mitapivat ameliorates red cell features and decreases anemia in band 4.2-/- mice, a model of hereditary spherocytosis. EHA2022

Acquired Pyruvate Kinase Deficiency In Clonal Myeloid Neoplasms Al-Samkari, MD, Massachusetts General Hospital clinical trials-gov NCT04902833 Secondary J PK activity

Incomplete *PKLR* genotypes? Hereditary stomatocytosis? Other RBC enzyme defects ?

Hematopoietic Allogeneic Stem Cell Transplantation in PKD



<u>Haematologica</u>. 2018 Feb; 103(2): e82–e86 doi: <u>10.3324/haematol.2017.177857</u> PMCID: PMC5792292 PMID: 29242305

Worldwide study of hematopoietic allogeneic stem cell transplantation in pyruvate kinase deficiency

<u>Stephanie van Straaten</u>,^{1,2,*} <u>Marc Bierings</u>,^{3,*} <u>Paola Bianchi</u>,⁴ <u>Kensuke Akiyoshi</u>,⁵ <u>Hitoshi Kanno</u>,⁶ <u>Isabel Badell Serra</u>,⁷ <u>Jing Chen</u>,⁸ <u>Xiaohang Huang</u>,⁸ <u>Eduard van Beers</u>,⁹ <u>Supachai Ekwattanakit</u>,¹⁰ <u>Tayfun Güngör</u>,¹¹ <u>Wijnanda Adriana Kors</u>,¹² <u>Frans Smiers</u>,¹³ <u>Reinier Raymakers</u>,¹⁴ <u>Lucrecia Yanez</u>,¹⁵ <u>Julian Sevilla</u>,¹⁶ <u>Wouter van Solinge</u>,¹ <u>Jose Carlos Segovia</u>,^{17,18} and <u>Richard van Wijk</u>¹

- 16 cases transplanted between 1996 and 2015 (all European or Asian centers, none in USA)
- Patient's median age at transplantation was 6.5 years, all were transfusion-dependent
- Infectious complications (mostly pneumonia) occurred in 10/16 (62%)
- GvHD grade 4 reported in 6/16 cases (38%)
- The two-year cumulative survival was 74%.
- 5/16 patients (31%) died of transplant-related causes (median survival 13 months, range 2–25 months).

Gene therapy in PKD

Safe and Efficient Gene Therapy for Pyruvate Kinase Deficiency

Maria Garcia-Gomez^{1,2}, Andrea Calabria³, Maria Garcia-Bravo^{1,2}, Fabrizio Benedicenti³, Penelope Kosinski⁴, Sergio López-Manzaneda^{1,2}, Collin Hill⁴, María del Mar Mañu-Pereira⁵, Miguel A Martín^{1,2}, Israel Orman^{1,2}, Joan-LLuis Vives-Corrons⁵, Charles Kung⁴, Axel Schambach⁶, Shengfang Jin⁴, Juan A Bueren^{1,2}, Eugenio Montini³, Susana Navarro^{1,2} and Jose C Segovia^{1,2}

Mol Ther. 2016

- Preclinical gene therapy for PKD, based on a lentiviral vector used to transduce mouse PKD HSCs that were subsequently transplanted into myeloablated PKD mice.
- The procedure normalized erythroid compartment and corrected hematologic phenotype, organ pathology, the glycolytic pathway, with no evidence of genotoxicity

Lentiviral-mediated Gene Therapy for Adults and Children with Severe Pyruvate Kinase Deficiency: Results from an Ongoing Global Phase 1 Study. Shah AJ, et al, ASH 2022

NCT04105166. A Phase 1 clinical trial RP-L301-0119 (NCT04105166) is underway to evaluate lentiviral mediated hematopoietic stem and progenitor cell (HSPC)-targeted gene therapy for adults and children with severe PKD.

Inclusion Criteria: Splenectomized patients with severe PKD (severe and/or transfusion-dependent anemia)

- ✓ 2 adult splenectomized patients had been enrolled, with an Hb increase from 7.4 to 13.3 g/dL and from 7 to 14.8 g/dL at 18 months, and an improvement in hemolytic markers. No severe adverse events were reported.
- ✓ No red blood cell transfusion requirements following engraftment (transfusion independence).
- ✓ Both patients reported improved quality of life following treatment.

Review Series

INHERITED ANEMIAS

Management of pyruvate kinase deficiency in children and adults

Rachael F. Grace¹ and Wilma Barcellini²

Hematopoietic Stem Red Cell **Full Splenectomy PK Activators*** Cell Transplant or Transfusions Gene Therapy* Indications Indications Indications Indications Frequent transfusions Poor feeding or growth in At least one missense PKLR Failure of PK activator Failure of splenectomy (if Symptomatic Anemia infancy or childhood variant*** Significant daily symptoms of patient has two drastic PKLR Timing anemia with an impact on Timing variants, SCT and gene <5 years of age would be <5 years: avoid if possible quality of life therapy could be considered 5-18 years: best timing Consider if hemoglobin <7g/dl optimal but safety in children prior to splenectomy) >18-65 years: possible (or >7 g/dl in the presence of is unknown >65 years: avoid if possible symptoms, significant Young adults Timing complications, or co- Consider HSCT in children Other considerations: morbidities) Other considerations: before age 10 years Additional immunizations Likely to know if a patient will Gene therapy in childhood or have a hemoglobin response before and after splenectomy Timing young adulthood Infancy or early childhood within the first month of Lifelong antibiotic prophylaxis and fever guidelines Older adults may become Other considerations: treatment Aspirin for thrombocytosis more symptomatic with age · Lifelong treatment will be · Reported high rate of Thromboprophylaxisin adults complications after HSCT despite unchanged necessary and long-term >60 years of age or younger hemoglobin safety is not known No safety or efficacy data with additional thrombotic risk currently available for gene factors Other considerations: Iron assessment** with chelation after 10-14 transfusions ClinicalTrials.gov NCT04105166 Phase I study with RP-L301 In some pts even if not transfused Folic supplementation

Triose phosphate isomerase deficiency

✓ TPI deficiency is a multisystemic disorder characterised by:

severe hemolytic anemia at birth

neurological and cognitive dysfunction, progressive neuromuscular impairment

infectious complications

Bone marrow transplantation corrects haemolytic anaemia in a novel ENU mutagenesis mouse model of TPI deficiency.

Conway AJ, Brown FC, Hortle EJ, Burgio G, Foote SJ, Morton CJ, Jane SM, Curtis DJ.Dis Model Mech. 2018

Itavastatin and resveratrol increase triosephosphate isomerase protein in a newly identified variant of TPI deficiency.

Van Demark AP, Hrizo SL, Eicher SL, Kowalski J, Myers TD, Pfeifer MR, Riley KN, Koeberl DD, Palladino MJ.Dis Model Mech. 2022

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

Grazie!

European Reference Network

for rare or low prevalence complex diseases

Network

Hematological Diseases (ERN EuroBloodNet)