

GIORNATE EMATOLOGICHE VICENTINE

X edizione

12-13 Ottobre 2023 Palazzo Bonin Longare - Vicenza

Marcatori prognostici clinici e di laboratorio

Niccolò Bolli

UNIVERSITÀ DEGLI STUDI DI MILANO

Università di Milano – Ospedale Maggiore Policlinico di Milano

FONDAZIONE IRCCS CA' GRANDA Ospedale Maggiore Policlinico

Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Jazz					Х		
Pfizer					Х	Х	
Amgen					Х		
GSK					Х	Х	
BMS/Celgene						Х	

Clinical and biological evolution of myeloma is a continuum

Dutta et al, Nat. Rev. Clinical Oncology 2022

Plasma cell neoplasms

Non-IgM MGUS

Biological classification

Dutta et al, Nat. Rev. Clinical Oncology 2022

How do we go from

12-13 Ottobre 2023

Multiple myeloma (plasma cell myeloma)* Multiple myeloma, NOS Multiple myeloma with recurrent genetic abnormality Multiple myeloma with *CCND* family translocation Multiple myeloma with *MAF* family translocation Multiple myeloma with *NSD2* translocation Multiple myeloma with hyperdiploidy Solitary plasmacytoma of bone Extraosseous plasmacytoma

ICC classification

Campo et al, Blood 2022

Plasma cell neoplasms

Multiple myeloma, NOS

Solitary plasmacytoma of bone

Extraosseous plasmacytoma

Non-IgM MGUS

ICC classification

Biological classification

Campo et al, Blood 2022

Multiple myeloma with NSD2 translocation

Multiple myeloma with hyperdiploidy

Multiple myeloma (plasma cell myeloma)*

Dutta et al, Nat. Rev. Clinical Oncology 2022

Can we integrate variables (clinical, laboratory etc) to classify myeloma in

- biologically meaningful categories
- clinically useful categories

12-13 Ottobre 2023

How do we go

from

IMWG model for risk stratification of SMM incorporating FISH

Risk factor	Coefficient	Odds ratio (95% CI)	p value	Score
FLC IU				
0–10 (reference)	-	-	-	0
>10-25	0.69	1.99 (1.15, 3.45)	0.014	2
>25-40	0.96	2.61 (1.36, 4.99)	0.004	3
>40	1.56	4.73 (2.88, 7.77)	<0.0001	5
M-protein				
0–1.5 (reference)	-	-	-	0
>1.5-3	0.95	2.59 (1.56, 4.31)	0.0002	3
>3	1.3	3.65 (2.02, 6.61)	<0.0001	4
BMPC				
0–15 (reference)	-	-	-	0
>15-20	0.57	1.77 (1.03, 3.06)	0.04	2
>20-30	1.01	2.74 (1.6, 4.68)	0.0002	3
>30-40	1.57	4.82 (2.5, 9.28)	<0.0001	5
>40	2	7.42 (3.23, 17.02)	<0.0001	6
FISH abnormality	* 0.83	2.28 (1.53, 3.42)	< 0.0001	2

*t(4;14), t(14;16), del(13), +(1q)

Risk Stratification groups	Total risk score	Hazard Ratio (95% CI)	Risk of progression (2 years)	# of patients
Low	0-4	Reference	3.8%	241 (35.0%)
Low-intermediate	5-8	7.56 (3.77 – 15.2)	26.2%	264 (38.3%)
Intermediate	9-12	17.3 (8.63 – 34.8)	51.1%	133 (19.3%)
High	>12	31.9 (15.4 – 66.3)	72.5%	51 (7.4%)

Mateos MV, et al. Blood Cancer J. 2020

Genomic features can help prognostication in SMM

Term	No. (%)					Estimate (95% CI)	Ρ
DNA repair path	way	1					
Wild type	80 (94)	-				Reference	
Mutation	5 (6)	- H				5.54 (1.96 to 15.64)	.001
MYC		i					
Wild type	79 (93)	1				Reference	
Mutation	6 (7)		_			4.53 (1.74 to 11.82)	.002
MAPK pathway		i					
Wild type	70 (82)					Reference	
Mutation	15 (18)	- H	-	-		3.84 (1.90 to 7.74)	< .001
t(4;14)		i					
Wild type	80 (94)	-				Reference	
Mutation	5 (6)	_ 	—			2.58 (0.92 to 7.27)	.072
Mayo 2018							
Low	23 (27)	-				Reference	
Intermediate	22 (26)	-				1.91 (0.66 to 5.47)	.23
High	40 (47)		-			4.47 (1.63 to 12.26)	.004
				10	1		
		U	5	10	15)	

Whole-genome sequencing dissects features of non-progressive cases

Fewer deletions

Fewer complex rearrangements

SMM has stage-specific prognostic markers of progression, not shared by NDMM

RAS mutations, TS deletions, MYC translocations etc

1st take home message

High-risk clinical features of NDMM

Focal Myeloma Lesions: Discrete areas of plasma cell (PC) accumulations on both PET-TCT and MRI that can predict PFS and OS

Usmani BLOOD 2013⁸⁶: 302 patients treated on the Total Therapy 3 trials for NDMM, on mv analyses > 3 focal lesions on PET-CT imparted inferior OS and PFS Mai Haematologica 2015⁸⁷: 161 transplant eligible patients, > 25 focal lesions on whole body MRI or > 7 on axial MRI associated with worse PFS and OS on mv analyses Rasche Nat Com 2017⁸⁸; Rasche BLOOD 2018⁸⁹: 404 patients on TT trials between 2009 and 2015. 3 large FLs with a product of the perpendicular diameters >5 cm² were associated with poor PFS and OS on mv analyses; median 2.3 v 3.6 years respectively.

Extramedullary Myeloma (EMM): Well-established poor prognostic feature; includes both EME and EMB

Poor prognosis with a median OS of <1 year for patients who are refractory to standard therapies or relapse after ASCT. In general, the prognosis for EM-E is worse compared with EM-B⁹⁰.

Usmani Haem 2012⁹¹: 1965 patients treated with ASCT on TT and non-TT protocols. EME had significantly inferior OS (31% vs. 59%, p 0.001)

Weinstock BJH 2015⁹²: Median OS in EME just 1.3 years. Moreau JCO 2017⁹³: IFM-2009 trial, EMM at diagnosis was an independent prognostic factor for OS (HR 3.9; 95% CI 1.5-9.9), whereas PET-CT normalization before maintenance was an independent prognostic factor for PFS (HR 0.42; 95% CI 0.28-0.62)

Gagelmann Haem 2018³⁴: EBMT evaluating 3744 NDMM patients undergoing up front ASCT, on mv analysesboth patients with one EM-E site and those with ≥ 2 EM-E sites had inferior OS (HRs of 2.30; 95% CI 1.43-3.70 and 3.64; 95%CI 1.48-8.94)^{**}

Circulating malignant plasma cells (CPCs) in the peripheral blood:

Vagoni BJH 2015⁹⁵: Cohort of 566 patients, elevated CPCs adversely affected PFS in patients with standard but not high risk cytogenetics

Gonsalves ASCO 2019⁹⁶: Addition of CPCs to R-ISS staging identified a high risk cohort of stage I and II patients.

Chakraborty BCJ 2016⁹⁷: 840 patients who had an assessment of CPCs prior to ASCT. Presence of CPCs predicted poorer PFS (median 15.1 v 29.6 months; p<0.001) and OS (median 41.0 v NR months; p<0.001)

Malignant plasma cells in the BM:

Al Saleh CLML 2020⁹⁸: 1426 NDMM patients treated with primarily novel agents. Controlling for FISH and ISS/R-ISS, plasma cells >60% in the BM lead to worse PFS (HR, 1.23; P=0.015) and OS (HR, 1.24; P=0.02).

Plasma cell proliferation index (PCPI):

Hose Haem 2011⁹⁹ : High PCPI associated with inferior survival in NDMM

High PCPI: incorporated into some risk stratification systems for NDMM⁵⁵

Mellors BLD ADV 2020¹⁰⁰: In mv analyses controlling for CAs, age, R-ISS metaphase cytogenetics, and standard FISH, PCLI was predictive of both PFS and OS. The addition of PCLI to the R-ISS did not improve risk discrimination of Kaplan-Meier estimates for PFS and OS. Thus, similar to previous studies, PCLI has independent predictive value for PFS and OS but does not appear to improve the risk stratification of the newer R-ISS risk modeling.

Hagen et al, Blood Canc J. 2022

High-risk clinical features of NDMM

Focal Myeloma Lesions: Discrete areas of plasma cell (PC) accumulations on both PET-TCT and MRI that can predict PFS and OS

Usmani BLOOD 2013⁸⁶: 302 patients treated on the Total Therapy 3 trials for NDMM, on mv analyses > 3 focal lesions on PET-CT imparted inferior OS and PFS Mai Haematologica 2015⁸⁷: 161 transplant eligible patients, > 25 focal lesions on whole body MRI or > 7 on axial MRI associated with worse PFS and OS on mv analyses Rasche Nat Com 2017⁸⁸; Rasche BLOOD 2018⁸⁹: 404 patients on TT trials between 2009 and 2015. 3 large FLs with a product of the perpendicular diameters >5 cm² were associated with poor PFS and OS on mv analyses; median 2.3 v 3.6 years respectively.

Extramedullary Myeloma (EMM): Well-established poor prognostic feature; includes both EME and EMB

Poor prognosis with a median OS of <1 year for patients who are refractory to standard therapies or relapse after ASCT. In general, the prognosis for EM-E is worse compared with EM-B⁹⁰.

Usmani Haem 2012⁹¹: 1965 patients treated with ASCT on TT and non-TT protocols. EME had significantly inferior OS (31% vs. 59%, p 0.001)

Weinstock BJH 2015⁹²: Median OS in EME just 1.3 years. Moreau JCO 2017⁹³: IFM-2009 trial, EMM at diagnosis was an independent prognostic factor for OS (HR 3.9; 95% CI 1.5-9.9), whereas PET-CT normalization before maintenance was an independent prognostic factor for PFS (HR 0.42; 95% CI 0.28-0.62)

Gagelmann Haem 2018³⁴: EBMT evaluating 3744 NDMM patients undergoing up front ASCT, on mv analysesboth patients with one EM-E site and those with ≥ 2 EM-E sites had inferior OS (HRs of 2.30; 95% CI 1.43-3.70 and 3.64; 95%CI 1.48-8.94)^{**}

Circulating malignant plasma cells (CPCs) in the peripheral blood:

Vagoni BJH 2015⁹⁵: Cohort of 566 patients, elevated CPCs adversely affected PFS in patients with standard but not high risk cytogenetics

Gonsalves ASCO 2019⁹⁶: Addition of CPCs to R-ISS staging identified a high risk cohort of stage I and II patients.

Chakraborty BCJ 2016⁹⁷: 840 patients who had an assessment of CPCs prior to ASCT. Presence of CPCs predicted poorer PFS (median 15.1 v 29.6 months; p<0.001) and OS (median 41.0 v NR months; p<0.001)

Malignant plasma cells in the BM:

Al Saleh CLML 2020³⁸: 1426 NDMM patients treated with primarily novel agents. Controlling for FISH and ISS/R-ISS, plasma cells >60% in the BM lead to worse PFS (HR, 1.23; P=0.015) and OS (HR, 1.24; P=0.02).

Today we only look at this (DNA only)

Plasma cell proliferation index (PCPI):

Hose Haem 2011⁹⁹: High PCPI associated with inferior survival in NDMM

High PCPI: incorporated into some risk stratification systems for NDMM⁵⁵

Mellors BLD ADV 2020¹⁰⁹: In mv analyses controlling for CAs, age, R-ISS metaphase cytogenetics, and standard FISH, PCLI was predictive of both PFS and OS. The addition of PCLI to the R-ISS did not improve risk discrimination of Kaplan-Meier estimates for PFS and OS. Thus, similar to previous studies, PCLI has independent predictive value for PFS and OS but does not appear to improve the risk stratification of the newer R-ISS risk modeling.

Hagen et al, Blood Canc J. 2022

GIORNATE EMATOLOGICHE VI

Different strategies of risk stratification

Hagen et al, Blood Canc J. 2022

	Serum features	Genomic features	Proposed clinical definition of high risk:	% defined as high risk	Definition of high risk	Outcomes based on risk	Additional important notes
ISS [3]	Serum β2- microglobulin Serum albumin	None	NAª	33.6%	ISS stage III: Serum β2-microglobulin >5.5 mg/L	Median OS (months) • Stage I: 62 • Stage II: 45 • Stage III: 29	B2-microglobulin: indicative of increased tumor burden and declining renal function Serum albumin: driven by inflammatory cytokines such as IL-6 and the bone marrow microenvironment
R-ISS [2]	LDH Serum β2- microglobulin Serum albumin	del(17p) ^b t(4;14) t(14;16)	NA ^c	10%	ISS stage III and either high-risk CA by iFISH or high LDH	5-year OS: • Stage 1: 82% • Stage 2: 62% • Stage 3: 40%	Stage 3 patients have a median PFS of 29 months and median OS of 37 months [54]
IMWG [5]	Serum β2- microglobulin Serum albumin	del(17p) ^b t(4;14) +1q21	Median OS <2 years	20%	ISS II/III and t(4;14) or 17p13 del by iFISH	Median OS: • Low risk: >10 years • Standard risk: 7 years • High risk: 2 years	High-risk group with a 4-year PFS of 12% and OS of just 35% Low-risk group consists of ISS I/ II and absence of t(4;14), 17p13 del or +1q21 and age <55 years
mSMART [55]	LDH Serum β2- microglobulin Serum albumin	Ploidy status t(4;14) t(14;16) t (14;20) t(11;14) t(6/14) del(17p) and p53 deletion deletion 13 gain 1q GEP	NA ^d	20%	High-risk genetic Abnormalities • (1/4;16); (14:20); • Del17p or p53 mutation GEP: high-risk signature	Median OS: + High risk: 3 years • Intermediate risk: 4–5 years • Standard risk: 8–10 years	 Trisomies may ameliorate high-risk genetic abnormalities High plasma cell 5-phase also defines high risk: cutoffs vary Standard risk includes all others including trisomies, t (11;14), and t(6;14) t(4;14): re-classified as intermediate risk
EMC92/ SYK92 –MMprofiler [30]	None	High-risk survival signature of 92 genes ^e	Median OS <2 years	18–20%	Two-tiered system of high and standard risk	Reduced OS with HR of 2.06 to 5.23 in validation cohorts amongst the TT2, TT3, APEX, and MRC-IX studies	In multivariate analyses, the signature was proven to be independent of the currently used prognostic factors
UAMS GEP70 or MyPRS [28]	None	High-risk survival signature of 70 genes ^e	"early disease- related death"	13-14%	Two-tiered system of high and standard risk	HR for high v standard- risk GEP: • EFS: 3.41 (<i>P</i> = 0.002) • OS: 4.75 (<i>P</i> <0.001)	Standard-risk patients with a 5-year continuous complete remission of 60% vs. 3-year rate of only 20% in those with a high-risk "Early disease-related death" definition not clear in the primary literature
CoMMpass [19]	LDH	^f TP53 mutation λ-chain translocation IGLL5 mutation	Time to progression (TTP) of < 18 months	20.6%	TTP < 18 months: high-risk TTP >18 months: low risk	Median OS in months: • High risk: 32.8 • ISS III: 54 • Baseline high-risk CA: 65	TTP 18-month cutoff chosen because time to ASCT was ~6 months and many MM studies define early PD as relapse within 12 months from ASCT
	Serum features	Genomic features	Proposed clinical definition of high risk:	% defined as high risk	Definition of high risk	Outcomes based on risk	Additional important notes
Myeloma Genome Project [6, 17]	Serum β2- microglobulin Serum albumin	TP53 inactivation +1q amp	NAg	6.1%	Biallelic TP53 inactivation or amp of CKS1B (1q21) on the background of ISS stage III	High risk: • Median PFS: 15.4 months • Median OS: 20.7 months	1q amplification considered ≥ 4 copies LDH values were not universally available preventing the calculation of R-ISS thus ISS and IMWG risk criteria were used
Cytogenetics Prognostic Index [9]	None	del(17p) t(4;14) del(1p32) 1q21 gain trisomies 3, 5, and 21	NA	11–18%	Prognostic Index >1 defined high risk ^h	5-year survival: • High risk: <50% • Int risk: 50-75% • Low risk: >75%	The main objective was to develop and validate a prognostic model based on the seven cytogenetic abnormalities

Risk stratification according to R2-ISS

Time (months)

Risk Feature	OS HR (95% CI)	PFS HR (95% CI)	Score Value ^a
ISS II	1.75 (1.49 to 2.05)	1.43 (1.28 to 1.61)	1
ISS III	2.53 (2.13 to 3.01)	1.76 (1.54 to 2.01)	1.5
del(17p)	1.82 (1.53 to 2.17)	1.43 (1.23 to 1.65)	1
LDH high	1.60 (1.36 to 1.88)	1.37 (1.20 to 1.57)	1
t(4;14)	1.53 (1.29 to 1.81)	1.40 (1.21 to 1.62)	1
1q+	1.47 (1.29 to 1.68)	1.33 (1.20 to 1.48)	0.5

Group	No. (%)	Total Additive Score
Low (I)	428 (19)	0
Low-intermediate (II)	686 (31)	0.5-1
Intermediate-high (III)	917 (41)	1.5-2.5
High (IV)	195 (9)	3-5

Time (months)

D'Agostino et al, JCO 2022

Increasing genomic complexity correlates with prognosis in NDMM

Consensus is lacking for the definition of HR myeloma

2nd take home message

How do we deal with HR disease?

- 1st approach: we deal with it ex-post

Predictors of early relapse at diagnosis mandate a comprehensive genetic analysis

825 PATIENTS	OR (95% CI)	Р
7P53 mutation		<0.01
tes vs. No	<u> </u>	<0.01
		-0.01
	3.15 (1.35-7.03)	<0.01
		0.02
	2.25 (1.04-4.88)	0.03
		<0.01
res vs. No	2.15 (1.22-3.74)	<0.01
	1 53 (0 86-2 68)	0.14
nes vs. No	1.33 (0.00-2.00)	0.14
Yes vs No	1 38 (0 50-3 52)	0.51
	1.00 (0.00 0.02)	0.01
Other vs. VRd	- 0.37 (0.09-1.31)	0 14
V+chemo triplets vs. VRd		0.77
Vd vs. VRd	1.24 (0.50–2.94)	0.63
Rd vs. VRd	0.57 (0.21–1.45)	0.26
K-based vs. VRd	0.15 (0.03-0.58)	0.01
Clinical trial enrollment	, , , , , , , , , , , , , , , , , , ,	
Yes vs. No	0.09 (0.02-0.57)	<0.01
ст —		
CT with IMiDs vs. No	0.58 (0.31-1.07)	0.08
CT with PIs vs. No	- 0.52 (0.22-1.18)	0.13
CT with IMiDs + PIs vs. No	0.34 (0.12-0.83)	0.02
ASCT		
Yes vs. No	0.27 (0.16–0.44)	<0.01
0.02 1	l 9.29	
-	l link on visit of	→
Lower risk of early relapse	righer lisk of early relaps	

12-13 Ottobre 2023

D'Agostino M et al, Clin Cancer Res 2020

Impact of early relapse (functional HR) on IKEMA outcomes

EARLY

Figure 1. Kaplan-Meier estimate of progression-free survival for early relapse patients

d, dexamethasone; Isa, isatuximab; K, carfilzomib. Cut-off date: January 14, 2022. Median follow-up time: 44.19 months.

LATE

Figure 2. Kaplan-Meier estimate of progression-free survival for late relapse patients

Early relapse: <12 mo from initiation of the most recent LOT for pts with ≥2 prior LOT, <18 mo for pts with 1 prior LOT, and <12 mo from autologous stem-cell transplantation (ASCT).

Functional definition of high-risk and low-risk myeloma

A) Adapted from: Kumar et al. Leukemia 2014 B) Tacchetti et al. Lancet Hem 2020

Absolute prediction of HR risk is not possible today. Sometimes we only know ex post

3rd take home message

Evolutionary-convergent view of risk in myeloma

How do we deal with HR disease?

- 2nd approach: we identify patients prospectively and treat accordingly

Currently no uniform treatment standard

Presented by: Martin Kaiser, MD, FRCP, FRCPath @MyMKaiser **#ASH22** Content of this presentation is property of the author. Permission required for use

Presented by: Martin Kaiser, MD, FRCP, FRCPath @MyMKaiser **#ASH22** Content of this presentation is property of the author. Permission required for use

12-13 Ottobre 2023

Individualized Risk Model for Myeloma (IRMM)

Courtesy of Francesco Maura (U. of Miami)

Personalized survival prediction in MM

12-13 Ottobre 2023

Maura et al, 2023 submitted

А

Personalized survival prediction and treatment variance

Conclusions

- In SMM, genomic prognostication may soon complement laboratory data
- In NDMM consensus on HR disease definition is lacking
 - 2 HR lesions, 1 + HR transcriptome, CTCs?
 - Radiology?
- Current risk prediction strategies are are imperfect for
 - Accuracy
 - Prediction of Tx effect
- Promise of large knowledge banks for prospective identification of patients
- Need for ad-hoc studies in HR even as we learn how to define and predict HR
- Future IMS risk stratification will mandate extended genotyping, preferrably by NGS

Acknowledgements

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

Matteo Da Vià	Marta Lionetti
Akihiro Maeda	Alessio Marella
Antonio Matera	Francesca Lazzaroni
Silvia Lonati	Loredana Pettine
Elisa Taiana	Domenica Ronchetti
Alfredo Marchetti	Giuseppina Fabbiano
Claudia De Magistris	

Sonia Fabris Stefania Pioggia Marzia Barbieri Valentina Traini Ilaria Silvestris Francesco Passamonti

Collaborators:

Francesco Maura Bachisio Ziccheddu Ola Landgren

Nikhil C. Munshi Vanessa Favasulli Eugenio Morelli

European Research Council Estable

