

GIORNATE EMATOLOGICHE VICENTINE

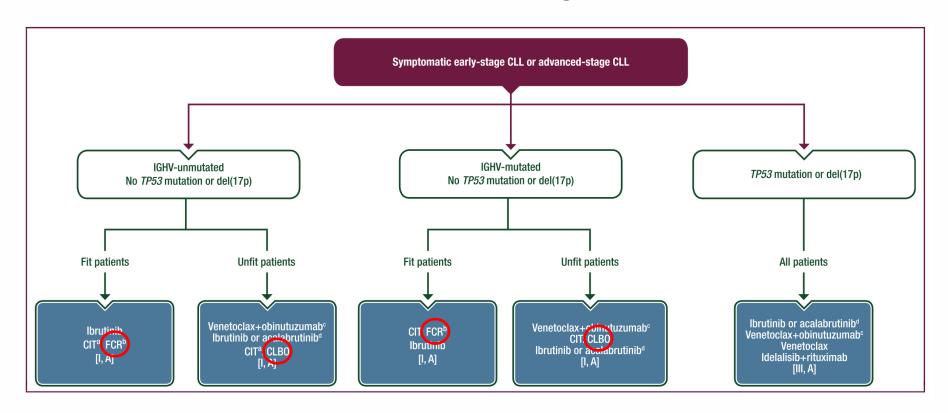
X edizione

12-13 Ottobre 2023Palazzo Bonin Longare - Vicenza

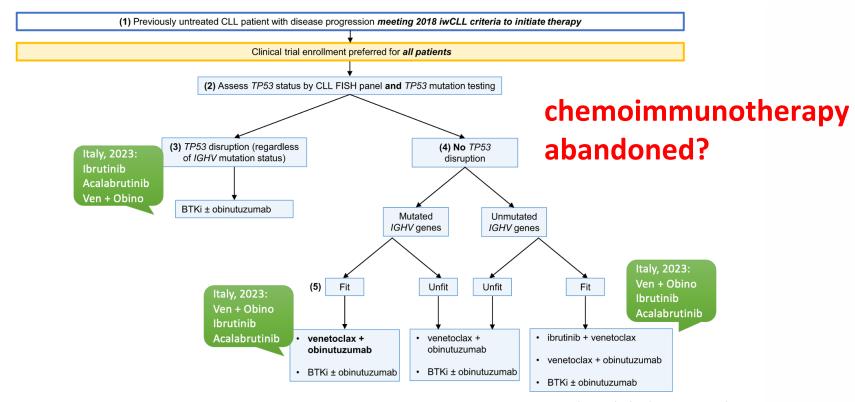
CLL: ancora spazio per chemio-immunoterapia?

Isacco Ferrarini

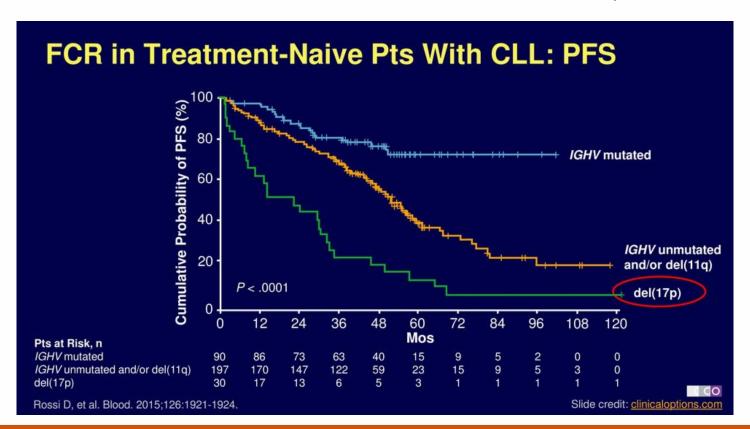
UOC Ematologia, Verona


Disclosures of Isacco Ferrarini

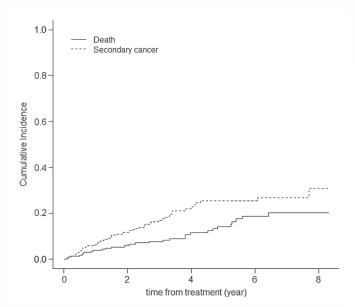
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
AbbVie	x					x	
Beigene	x					x	
Loxo Oncology	x						

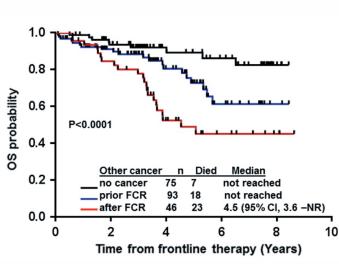

Outline

- Overview of current guidelines for treatment-naive CLL
- Comparison between CIT and BTK inhibitors
- Comparison between CIT and Ven-based regimens
- Hot topics in CLL in October 2023


Treatment-naive CLL: ESMO guidelines 2020

Treatment-naive CLL: Mayo Clinic guidelines 2022


Clinical results of FCR in treatment-naive CLL patients

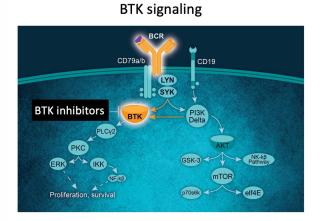


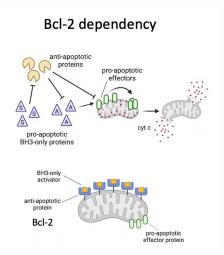
Risk of second cancer after frontline FCR

Table I. Initial characteristics of 234 patients prior to receiving FCR treatment.

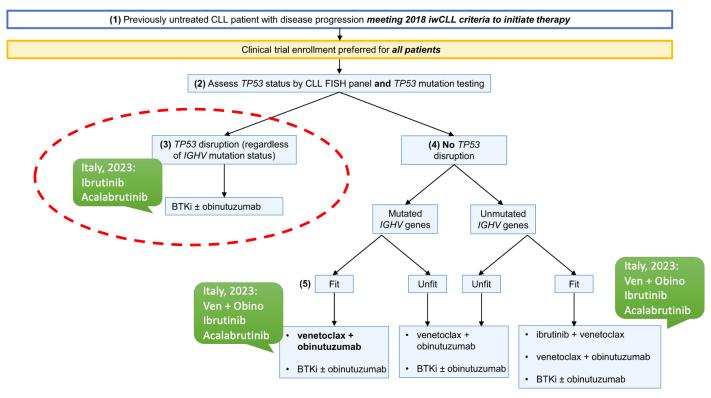
	No. of	Total	~
Variable	patients	patients	%
Age ≥ 60 years	127	234	54
Male sex	171	234	73
Smoking history	81	234	35
$ALC \ge 100 \times 10^9/L$	92	232	40
LDH≥1×normal	110	230	48
β₂-Microglobulin ≥ 3.5 g/dL	133	230	58
Rai stage III/IV	71	234	30
Cytogenetics			
Normal	139	219	64
Abnormal	80	219	36
FISH			
17p deletion	24	215	10
11q deletion	49	215	23
Trisomy 12	34	215	16
Negative	42	215	19
13q deletion	64	215	30
IGHV unmutated	116	181	64
ZAP-70-positive*	112	180	62
CD38-positive	91	234	39
Previous cancers	93	234	40
Previous chemotherapy/radiotherapy	15	93	16
Type of frontline chemotherapy			
FCR [†]	207	234	88
CFAR	25	234	11
FCMR	3	234	1
Number of FCR cycles			
1-3	38	232	16
4-6	194	232	84

The risk of second cancers was 2.38 times higher than the expected risk in the general population

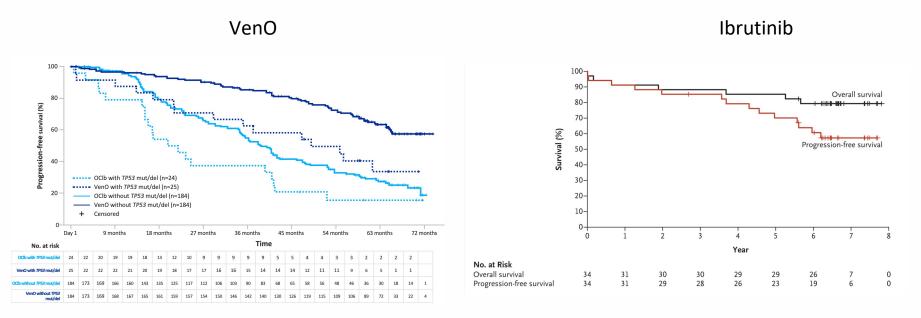

Benjamini O et al, Leuk & Lymph, 2015


Major concerns about CIT in CLL

- Suboptimal efficacy in many CLL subsets
- Short and long-term toxicities

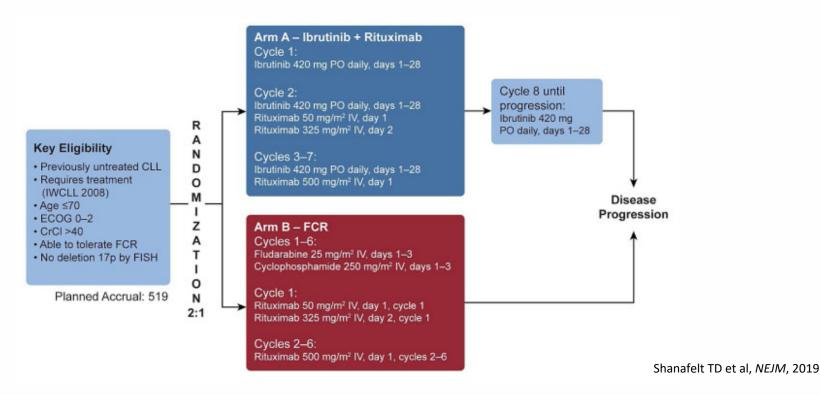


Need of novel agents

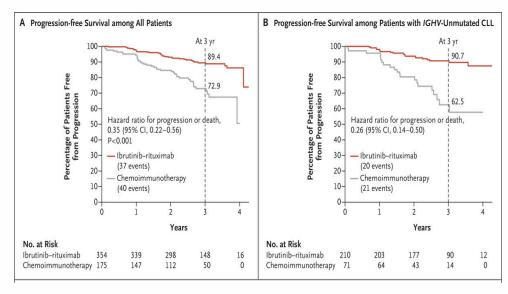


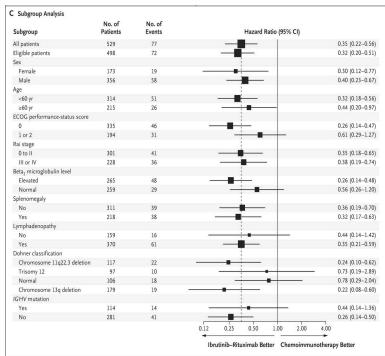
Treatment-naive CLL: Mayo Clinic guidelines 2022

VenO and BTKi for TP53-disrupted CLL

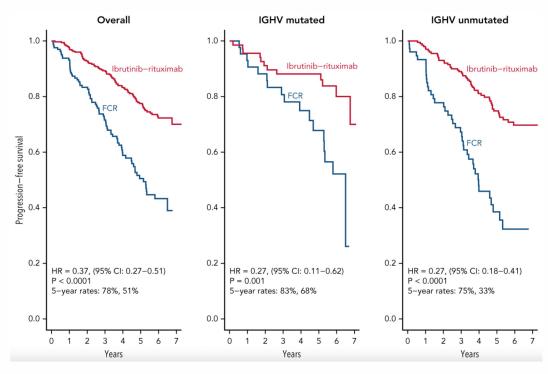

Al-Sawaf, et al, EHA, 2022

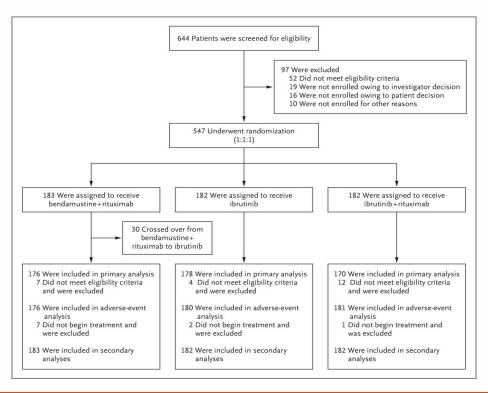
Ahn IE, et al, NEJM, 2020


Outline


- Overview of current guidelines for treatment-naive CLL
- Comparison between CIT and BTK inhibitors
- Comparison between CIT and Ven-based regimens
- Hot topics in CLL in October 2023

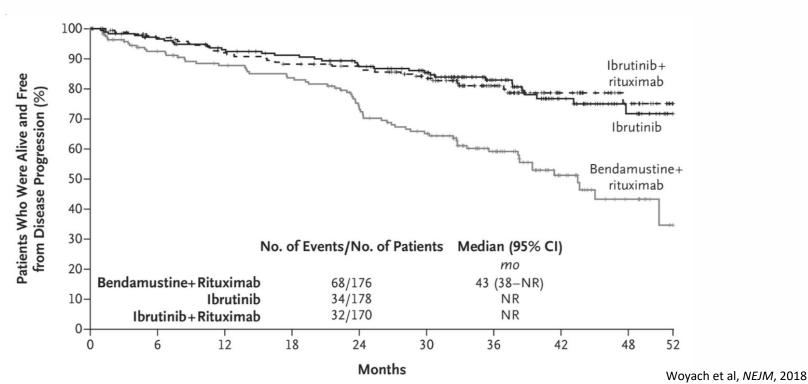
Ibrutinib-Rituximab versus FCR in treatment-naive CLL ECOG 1912 study


Ibrutinib-Rituximab versus FCR in treatment-naive CLL ECOG 1912 study

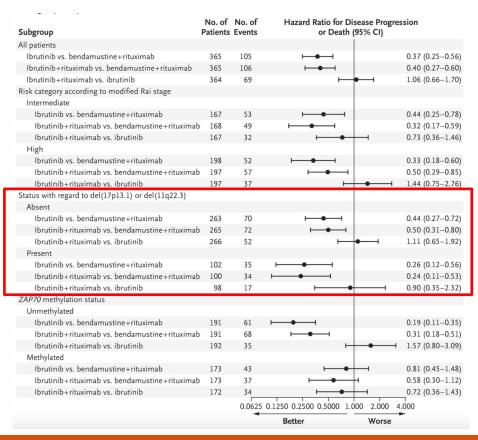


Shanafelt TD et al, NEJM, 2019

Ibrutinib-Rituximab versus FCR in treatment-naive CLL ECOG 1912 study



Ibrutinib versus BR in treatment-naive CLL Alliance study

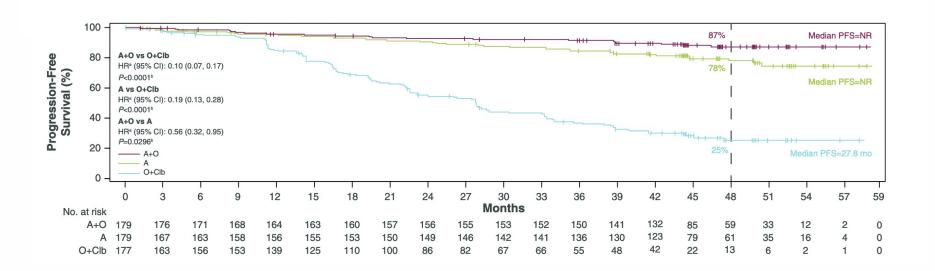


Woyach et al, NEJM, 2018

Ibrutinib versus BR in treatment-naive CLL Alliance study

Ibrutinib versus BR in treatment-naive CLL

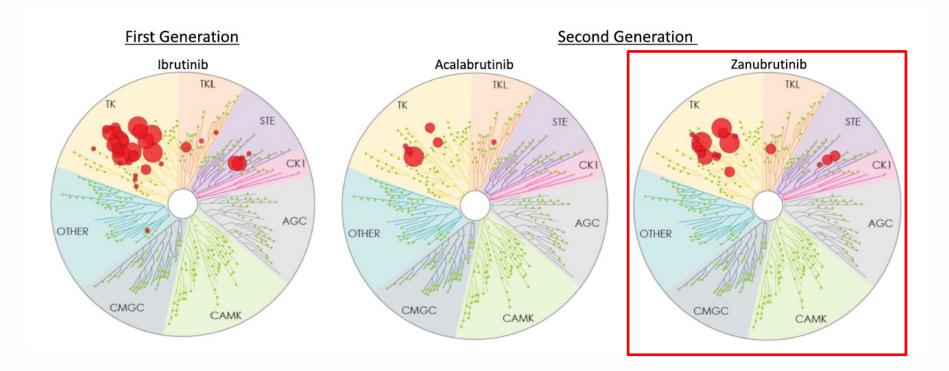
GIORNATE EMATOLOGICHE VICENTINE

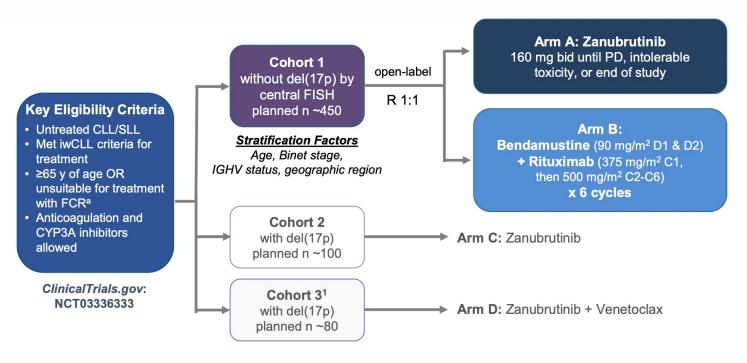

ĸ.	e	a	17	io	n	e

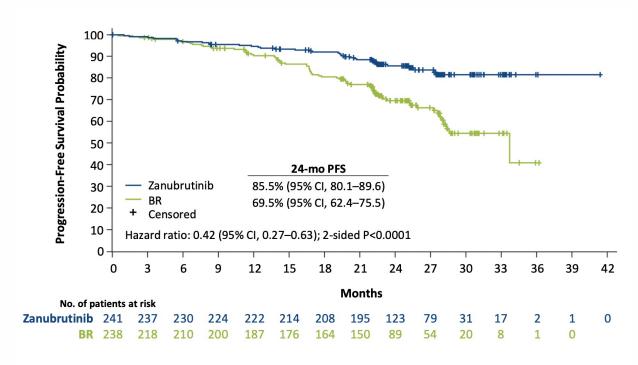
Adverse Event	Bendamustine+ Rituximab (N=176)	Ibrutinib (N = 180)	Ibrutinib+ Rituximab (N=181)	P Value†
	num	ber of patients (perce	ent)	
Hematologic				
Any				< 0.001
Grade 3	62 (35)	59 (33)	49 (27)	
Grade 4	45 (26)	15 (8)	21 (12)	
Anemia				0.09
Grade 3	22 (12)	20 (11)	11 (6)	
Grade 4	0	1(1)	0	
Decreased neutrophil count				< 0.001
Grade 3	39 (22)	15 (8)	20 (11)	
Grade 4	32 (18)	12 (7)	19 (10)	
Decreased platelet count	()	(-)	()	0.008
Grade 3	16 (9)	9 (5)	8 (4)	
Grade 4	10 (6)	3 (2)	1 (1)	
Nonhematologic	10 (0)	3 (2)	1 (1)	
Any				0.04
Grade 3	76 (42)	07 (54)	100 (FF)	0.04
Grade 4	76 (43)	97 (54)	100 (55)	
	20 (11)	12 (7)	12 (7)	
Grade 5	15 (9)	24 (13)	22 (12)	
Bleeding:				0.46
Grade 3	0	2 (1)	3 (2)	
Grade 4	0	1 (1)	1 (1)	
Grade 5	0	0	1 (1)	
Infection§				0.62
Grade 3	17 (10)	29 (16)	28 (15)	
Grade 4	6 (3)	6 (3)	7 (4)	
Grade 5	3 (2)	2 (1)	2 (1)	
Febrile neutropenia				< 0.001
Grade 3	13 (7)	3 (2)	1 (1)	
Atrial fibrillation				0.05
Grade 3	5 (3)	15 (8)	10 (6)	
Grade 4	0	2 (1)	0	
Hypertension				< 0.001
Grade 3	24 (14)	53 (29)	60 (33)	
Grade 4	1 (1)	o ´	1 (1)	
Secondary cancer				0.17
Grade 3	6 (3)	5 (3)	13 (7)	
Grade 4	0	1 (1)	1 (1)	
Grade 5	1 (1)	4 (2)	1 (1)	
Unexplained or unwitnessed death	- (1)	. (2)	- (±)	0.24
Grade 5	2 (1)	7 (4)	4 (2)	0.24

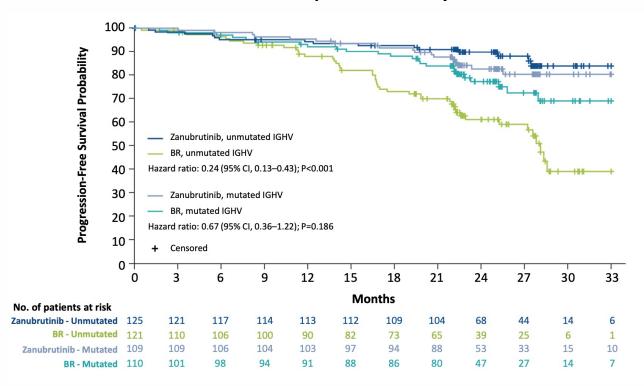
- The rate of grade 3, 4, or 5 **hematologic** adverse events was higher with bendamustine plus rituximab (61%) than with ibrutinib or ibrutinib plus rituximab (41% and 39%, respectively)
- The rate of grade 3, 4, or 5 **non hematologic** adverse events was lower with bendamustine plus rituximab (63%) than with the ibrutinib-containing regimens (74% with each regimen)
- Infections occurred in all three treatment groups
- Atrial fibrillation of any grade occurred in 3% of the patients in the bendamustine plus rituximab group, 17% in the ibrutinib group, and 14% in the ibrutinib-plus-rituximab group.
- Grade 3 or higher hypertension occurred in 14%, 29%, and 34%, respectively.

Woyach et al, NEJM, 2018


Acalabrutinib versus O-Chlorambucil in treatment-naive CLL Elevate TN study

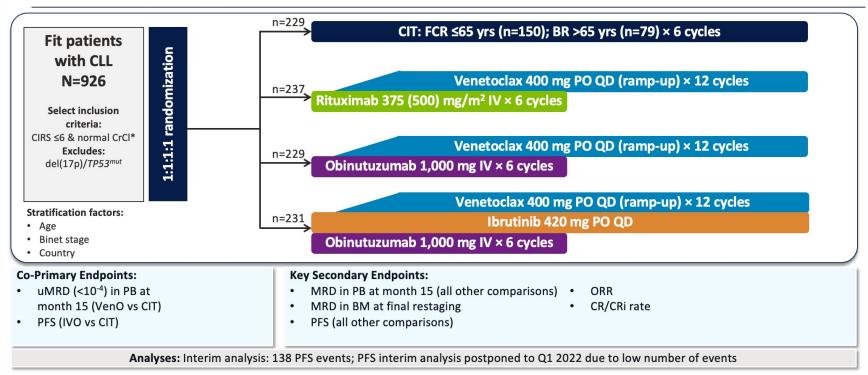

Acalabrutinib versus O-Chlorambucil in treatment-naive CLL *Elevate TN study*


Covalent BTK inhibitors


Zanubrutinib versus BR in treatment-naive CLL Sequoia study

Zanubrutinib versus BR in treatment-naive CLL Sequoia study

Zanubrutinib versus BR in treatment-naive CLL Sequoia study

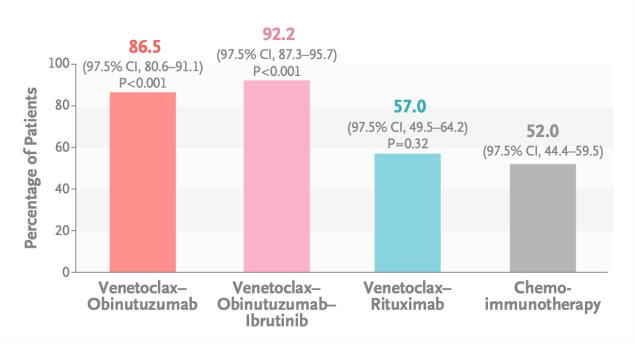

Tam CS et al, Lancet Oncol, 2022

Outline

- Overview of current guidelines for treatment-naive CLL
- Comparison between CIT and BTK inhibitors
- Comparison between CIT and Ven-based regimens
- Hot topics in CLL in October 2023

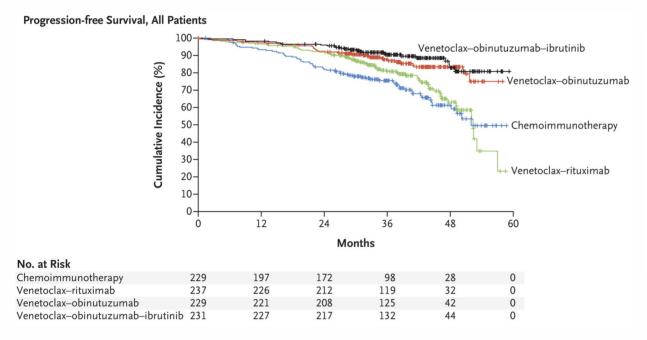
GIORNATE EMATOLOGICHE VICENTINE X edizione

CLL13 study design



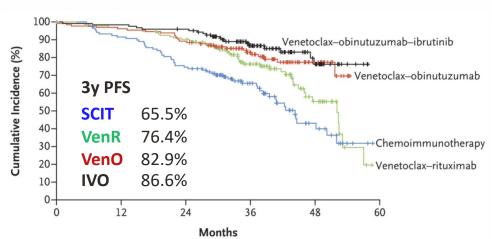
^{*} Normal CrCl defined as ≥70 mL/min; 28-day cycles; Data cut for first co-primary endpoint analysis: February 28, 2021.
BM, bone marrow; BR, bendamustine + rituximab; CIRS, cumulative illness rating scale; CIT, chemoimmunotherapy; CrCl, creatinine clearance;
EFS, event-free survival; FCR, fludarabine + cyclophosphamide + rituximab; IVO, ibrutinib + venetoclax + obinutuzumab; PB, peripheral blood.

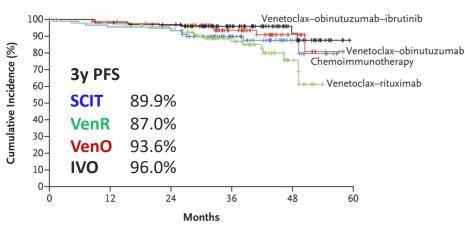
ClinicalTrials.gov: http://clinicaltrials.gov/ct2/show/NCT02950051 (accessed December 2021); Eichhorst B, et al. ASH 2021. Abstract 71 (Oral).


CLL13 trial

Undetectable Minimal Residual Disease at 15 Mo

The percentage of patients with undetectable minimal residual disease was significantly higher in the venetoclax-obinutuzumab group and the venetoclaxobinutuzumab-ibrutinib group than in the CIT group (P<0.001 for both comparisons), but it was not significantly higher in the venetoclax-rituximab group (P=0.32).


CLL13 trial


Treatment arm	3-yr PFS, %
SCIT	75.5
VenR	80.8
VenO	87.7
IVO	90.5

CLL13 trial

PFS, U-IGHV

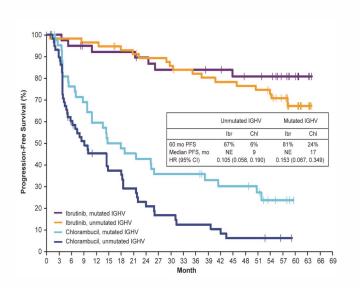
PFS, M-IGHV

Eichhorst et al, NEJM, 2023

GIORNATE EMATOLOGICHE VICENTINE X edizione

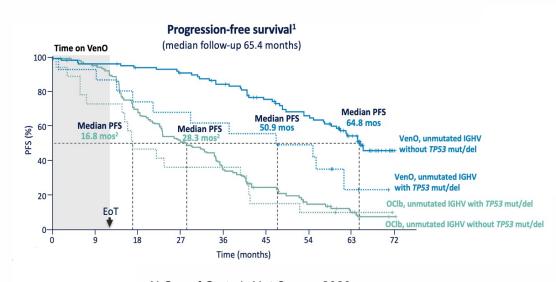
While chemoimmunotherapy is being abandoned, new questions emerge about CLL treatment...

Boston, iwCLL 2023


Outline

- Overview of current guidelines for treatment-naive CLL
- Comparison between CIT and BTK inhibitors
- Comparison between CIT and Ven-based regimens
- Hot topics in CLL in 2023-2024
- a. Treatment of intermediate-risk (WT TP53 and U-IGHV) patients?
- b. Choice of BTK inhibitor?
- c. Treatment of double-resistant CLL patients?
- d. Who are the best candidates for the upcoming doublet (I + V)?

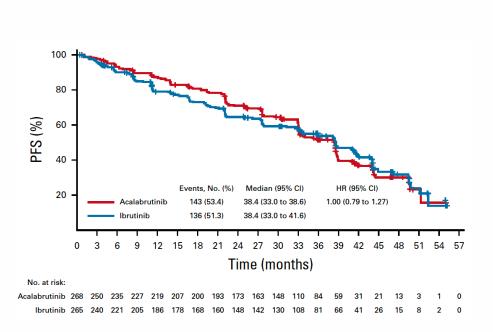
- Overview of current guidelines for treatment-naive CLL
- Comparison between CIT and BTK inhibitors
- Comparison between CIT and Ven-based regimens
- Hot topics in CLL in 2023-2024
- a. Treatment of intermediate-risk (WT TP53 and U-IGHV) patients?
- b. Choice of BTK inhibitor?
- c. Treatment of double-resistant CLL patients?
- d. Who are the best candidates for the upcoming doublet (I + V)?

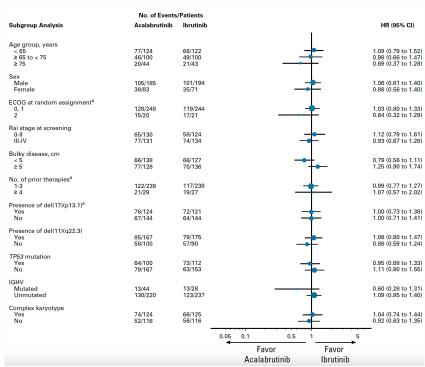

Treatment of intermediate-risk (WT TP53 and U-IGHV) patients Continuous or fixed duration treatment?

ibrutinib

Burger JA et al, Leukemia, 2020

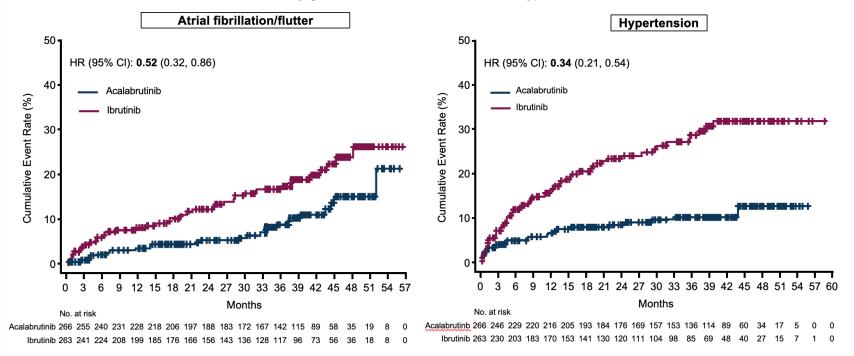
G-Ven




Al-Sawaf O et al, Nat Comm, 2023

Outline

- Overview of current guidelines for treatment-naive CLL
- Comparison between CIT and BTK inhibitors
- Comparison between CIT and Ven-based regimens
- Hot topics in CLL in 2023-2024
- Treatment of intermediate-risk (WT TP53 and U-IGHV) patients?
- Choice of BTK inhibitor?
- Treatment of double-resistant CLL patients?
- Who are the best candidates for the upcoming doublet (I + V)?

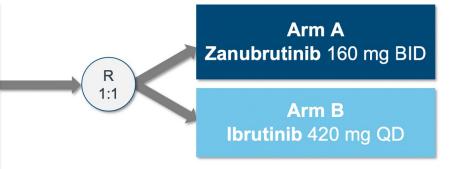

Acalabrutinib versus Ibrutinib in del17p and del11q R/R CLL ELEVATE R/R study

Safety: Atrial fibrillation/flutter and Hypertension

Lower cumulative incidences of any grade atrial fibrillation/flutter and hypertension with acalabrutinib

Zanubrutinib in R/R CLL/SLL **Alpine Study** – phase III randomized study of zanubrutinib vs ibrutinib

R/R CLL/SLL with ≥ 1 prior treatment

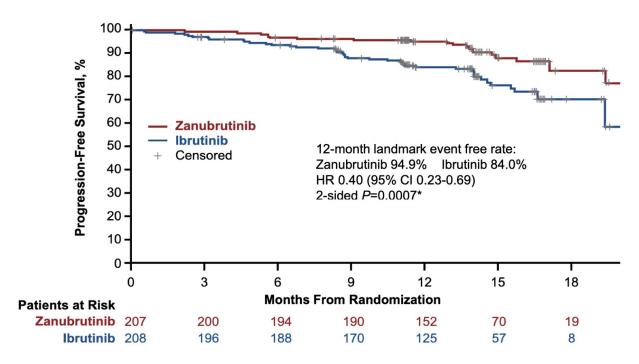

(Planned N=600, Actual N=652)

Key Inclusion Criteria

- R/R to ≥1 prior systemic therapy for CLL/SLL
- Measurable lymphadenopathy by CT or MRI

Key Exclusion Criteria

- Current or past Richter's transformation
- Prior BTK inhibitor therapy
- Treatment with warfarin or other vitamin K antagonists



Stratification Factors

- Age
- Geographic region
- Refractory status
- Del(17p)/TP53 mutation status

Hillmen P et al. BSH. 2022

Zanubrutinib in R/R CLL/SLL Alpine Study – phase III randomized study of zanubrutinib vs ibrutinib

Choice of BTK inhibitor

IBRUTINIB

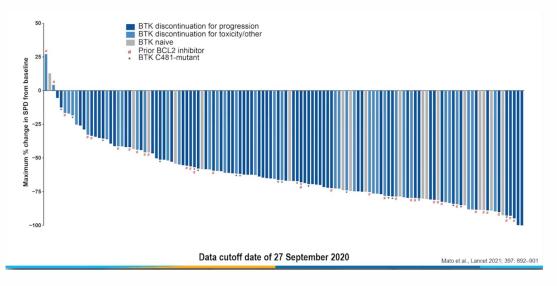
- **Longer follow-up**
- **QD** administration schedule
- **Experience with dose** reduction
- **Higher incidence of AF**

ACALABRUTINIB

- Reduced incidence and different timing of AF
- Reduced incidence of hypertension
- Headache
- (PPI discontinuation)

ZANUBRUTINIB

- Reduced incidence of AF
- **Better efficacy?**
- **Higher incidence of** hypertension
- Neutropenia

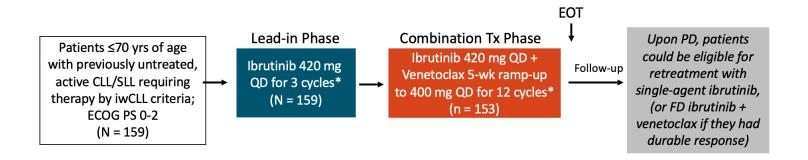

Outline

- Overview of current guidelines for treatment-naive CLL
- Comparison between CIT and BTK inhibitors
- Comparison between CIT and Ven-based regimens
- Hot topics in CLL in 2023-2024
- a. Treatment of intermediate-risk (WT TP53 and U-IGHV) patients?
- b. Choice of BTK inhibitor?
- c. Treatment of double-resistant CLL patients?
- d. Who are the best candidates for the upcoming doublet I + V?

Survival of double-R CLL

Whole cohort Progressive CLL RT p=0.341 Time since progression on second-line targeted agent (months)

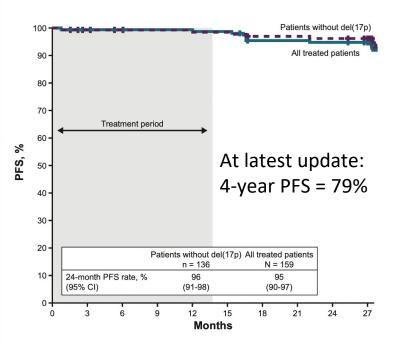
Pirtobrutinib in R/R CLL/SLL

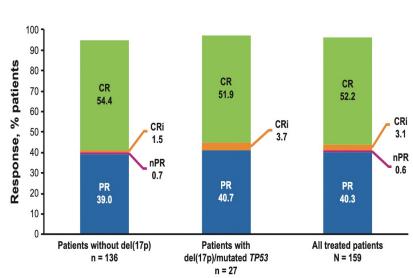


Outline

- Overview of current guidelines for treatment-naive CLL
- Comparison between CIT and BTK inhibitors
- Comparison between CIT and Ven-based regimens
- Hot topics in CLL in 2023-2024
- a. Treatment of intermediate-risk (WT TP53 and U-IGHV) patients?
- b. Choice of BTK inhibitor?
- c. Treatment of double-resistant CLL patients?
- d. Who are the best candidates for the upcoming doublet I + V?

GIORNATE EMATOLOGICHE VICENTINE X edizione


Venetoclax + Ibrutinib in TN CLL CAPTIVATE Study (phase II) – Fixed duration cohort



Primary endpoint: CR/Cri rate in patients without del(17p)

Secondary endpoints: ORR, DoR, uMRD rates, PFS, OS

Venetoclax + Ibrutinib in TN CLL CAPTIVATE Study (phase II) – Fixed duration cohort

Tam C et al, Blood, 2022

GIORNATE EMATOLOGICHE VICENTINE X edizione

Conclusion and Discussion

- As demonstrated by multiple clinical trials, BTK inhibitors and venetoclax-based regimens outperform CIT in first and subsequent lines of treatment
- Efficacy of novel agents over CIT is more evident in intermediate and high-risk CLL
- Also low-risk patients benefit from novel agents by virtue of their efficacy and lower/different short and long-term toxicity
- Among novel regimens, treament choice must be individualized based on biological features, patient's age and comorbidities, hospital access, etc.
- Optimal choice and sequencing of novel regimens is still matter of clinical investigation
- Re-treatment after fixed duration therapy?

GIORNATE EMATOLOGICHE VICENTINE

X edizione

12-13 Ottobre 2023Palazzo Bonin Longare - Vicenza

Grazie per l'attenzione