

GIORNATE EMATOLOGICHE VICENTINE

X edizione

12-13 Ottobre 2023 Palazzo Bonin Longare - Vicenza

Infiammazione e neoplasie mieloproliferative croniche

Alessandro Lucchesi IRCCS IRST & CCCRN Area Vasta Romagna

12-13 Ottobre 2023

Disclosures of Alessandro Lucchesi

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Novartis					х	x	
Pfizer					x		
Incyte			x		x		
Morphosys						x	
SOBI					x	x	
Grifols			x		x	X	
BMS					x	X	
Amgen					x	X	
Sanofi			x		х	x	
Protagonist					х	x	

Acute inflammation

• Credits: Patrick Emerson

Chronic inflammation

• Credits: Dr.ssa Anna Ferrari

1. INFLAMMATION, CLONAL HEMATOPOIESIS AND VASCULAR DISEASE

MPN MIGHT BE PRECEDED BY A CHIP-INDUCED VASCULAR DISEASE

SUMMARY

Inflammation, aging, and clonal hematopoiesis Clonal hematopoiesis and vascular disease

INFLAMMATION AND CANCER

HALLMARKS OF CANCER (NEXT GEN)

Vascular disease is a potential consequence of each identified hallmark!

Hanahan & Weinberg, Cell 2011

HSC AND INFLAMMATORY RESPONSES

01

HSCs are key players in systemic inflammation

External inflammatory cues → cellular responses 03

Demand-adapted axis between peripheral stress and BM function

INFLAMMATION AND HSC: CAUSES AND CONSEQUENCES

Caiado et al, JEM 2021

CLONAL HEMATOPOIESIS OF UNDETERMINED POTENTIAL

- CH-mutant HSC → progeny with dysregulated function
 → more inflammation
- Inflammation from other sources (infections, comorbidities, carcinogens)
 - \rightarrow clone expansion

Cook et al, J Exp Hematol 2020

EFFECT OF DTA/CHIP MUTATIONS ON **DIFFERENT LEUKOCYTES**

Cook et al, J Exp Hematol 2020

coding kev

Evidence in humans

T cells

Mutation	Effect	Related Comorbidities	Key References	
Tet1, Tet2, Tet3	Inhibit T-regs	Inflammatory and autoimmune diseases	74, 77	
Tet2	Increased proliferation	Lymphoma	<mark>67</mark> , 75	
Dnmt3a	Increased IL- 13 production	Lung inflammation	76	

6	Mutation	Effect	Related Comorbidities	Key References
Neutrophils	Dnmt3a	Inappropriate degranulation	Pulmonary diseases	58
and other granulocytes	Jak2	Primed for NETosis	Thrombosis	61

	Mutation	
	Tet2	
B cells and		
plasma cells		

Mutation	Effect	Related Comorbidities	Key References
Tet2	Impaired plasma cell differentiation	Vulnerability to infection and lymphoma	80

TET2 AND ATHEROSCLEROSIS IN MICE MODELS

Fuster JJ et al, Science 2017

A CHIP and Coronary Heart Disease, According to Mutated Gene				B CHIP and Myocardial Infarction, According to Mutated Gene			
Subgroup	No. of Participants with Myocardial Infarction/ No. at Risk	Hazard Ratio (95% CI)	P Value		No. of Participants with		
No mutation				ATVB and	Myocardial Infarction/		
Biolmage	94/326			PROMIS	No. at Risk	Odds Ratio (95% CI)	P Value
MDC	299/607			DNMT3A	31/46	1.4 (0.7-2.8)	0.29
JHS/FUSION/FHS	169/3505			TET2	12/13	8.3 (1.2-357.5)	0.02
DNMT3A				ASXL1	8/8	Undefined	0.02
Biolmage	5/14	1.7 (0.7-4.1)	0.27	JAK2	16/16	Undefined	< 0.001
MDC	11/15	2.5 (1.4-4.7)	0.003	Other	20/22	6.9 (1.7-61.6)	0.001
JHS/FUSION/FHS	8/99	1.1 (0.5-2.2)	0.90			. ,	
Fixed-effects meta-ana	alysis	▶ 1.7 (1.1–2.6)	0.01				
TET2							
Biolmage	3/7	1.6 (0.5–5.0)	0.46	C Museudia	Linformation and Community	ant Diagona Association to M	
MDC	2/6	0.8 (0.2–3.3)	0.76		ATVB/PROMIS, myocardial Biolmage/MDC, coronary infarction Biolmage/MDC, coronary heart disease		lutated Gene
JHS/FUSION/FHS	4/16	3.5 (1.3–9.6)	0.01				ronary
Fixed-effects meta-ana	llysis	1.9 (1.0-3.7)	0.06	40-			
ASXL1							
Biolmage	4/6	2.1 (0.7–5.8)	0.16				
MDC	3/6	1.4 (0.5-4.6)	0.53	suo			
JHS/FUSION/FHS	2/10	2.8 (0.7–11.4)	0.15	30- 30-			
Fixed-effects meta-ana	lysis	2.0 (1.0-3.9)	0.05	A II			
JAK2							
Biolmage	0/0			P 20-		-	
MDC	2/2	10.0 (2.4-41.5)	0.001	of			
JHS/FUSION/FHS	1/3	→ 17.4 (2.4–127.6)	0.005	io			
Fixed-effects meta-ana	lysis	12.0 (3.8–38.4)	<0.001	10			
Other				ן י <u>ר</u> אַ ן			
Biolmage	7/17	1.8 (0.8–3.9)	0.16	"			
MDC	3/4	1.9 (0.6–6.0)	0.28				
JHS/FUSION/FHS	6/35	3.0 (1.3–6.9)	0.009				
Fixed-effects meta-ana	alysis	2.2 (1.3–3.7)	0.002		TA TEL ALL I	Whit per contract	of whit
	0.5 1.0	2.0 4.0 8.0 16.0		DN	n. , p3,)	KOW	,

Figure 2. Association between Coronary Heart Disease and Early-Onset Myocardial Infarction among CHIP Carriers, According to Genetic Mutation.

Panel A shows a forest plot of hazard ratios for the risk of coronary heart disease in BioImage, MDC, and three prospective cohorts that were unselected for coronary events: the Jackson Heart Study (JHS), Finland–United States Investigation of NIDDM [Non–Insulin-Dependent Diabetes Mellitus] Genetics (FUSION), and the Framingham Heart Study (FHS), according to mutated gene. Hazard ratios for the listed mutations were obtained by a fixed-effects meta-analysis of Cox proportional-hazards models after adjustment for age, sex, type 2 diabetes status, total cholesterol, HDL cholesterol, triglycerides, smoking status, and hypertension. Panel B shows the risk of early-onset myocardial infarction among the participants in ATVB and PROMIS (combined analysis), according to the mutated gene. The odds ratios for myocardial infarction were obtained with the use of Fisher's exact test; P values were not adjusted for multiple hypothesis testing. Panel C shows the proportion of total mutations (according to gene) among participants with myocardial infarction in the ATVB and PROMIS studies, as compared with those with coronary heart disease in the BioImage and MDC studies.

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 13, 2017

VOL. 377 NO. 2

Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease

S. Jaiswal, P. Natarajan, A.J. Silver, C.J. Gibson, A.G. Bick, E. Shvartz, M. McConkey, N. Gupta, S. Gabriel, D. Ardissino, U. Baber, R. Mehran, V. Fuster, J. Danesh, P. Frossard, D. Saleheen, O. Melander, G.K. Sukhova, D. Neuberg, P. Libby, S. Kathiresan, and B.L. Ebert

The meta-analysis shows unequivocally that DTA mutations (ASXL1, TET2, DNMT3A) are associated with coronary artery disease.

THE «MECHANICISTIC» ERA

Clonal evolution is intended as the progressive accumulation of genetic lesions

Milosevic & Kralovics, Int J Hematol 2013

THE DORMANT INTELLIGENCE

Polarity: each degree of nature consists of an antithetical but complementary pair

Cohesion: the interaction of forces that aim to balance each other

Metamorphosis: the transformability of elements into one another

Power: each degree of the evolutionary scale is the result of transformation from its predecessor

Analogy: the affinity of phenomena

Friedrich Schelling 1775 - 1854

MODEL COMPLETION

THE «VICIOUS CIRCLE» MODEL

JAK2V617F HSC are resistant to inflammation JAK2WT HSC are vulnerable

JAK2V617F HSC have a selective advantage

IAK2V617F cells induce inflammation further promoting their selective advantage

= inflammation

• JAK2V617F HSCs

- induce inflammation
- are resistant to it
- A vascular, inflammatory disease may precede JAK2 mutation

CLONAL SELECTION AND ADVANTAGE

Fleischman, Mediators inflamm 2015 * Courtesy of Dr. Giulio Giordano

MODEL OF PROGRESSION

Lucchesi et al [unpublished]

2. INFLAMMATION AND CANCER, INFLAMMASOME ACTIVATION IN MPNS

A MECHANISM AS FUNDAMENTAL AS IT IS DELETERIOUS

PATTERN RECOGNITION RECEPTORS

- Cells must respond to tissue insults caused by endogenous and/or exogenous stimuli
- To cope with this duty, innate immunity is always at the forefront.
- Cells of innate immunity recognise 'danger signals' through a specialised set of membrane, Toll-like receptors, and intracytoplasmic NOD-like receptors.

- Dimerised TLR after pathogen contact
- NLR (NOD-like receptors):
 - There are 4 types
 - NLRP3 is the most studied in autoinflammatory conditions and chronic disorders
 - LRR activates downstream signalling

INFLAMMASOME ASSEMBLY

Kinra M, Scand J Immunol, 2021

INFLAMMASOMES AND PYROPTOSIS

NLRP3 triggered by

- TLR agonists
- Pathogens and damageassociated signals

Pyroptosis

- Form of programmed cell death (cytoplasmic pores from gasdermine D)
- Associated with atherogenic vascular damage
- Associated with tumour promotion

DISEASES SUSTAINED BY NLRP3

Liew et al. Exp Hematol Oncol (2016) 5:2 DOI 10.1186/s40164-016-0032-7 Experimental Hematology & Oncology

RESEARCH

Open Access

() CrossMark

Identification of AIM2 as a downstream target of JAK2V617F

Ei Leen Liew^{1,2}, Marito Araki³, Yumi Hironaka¹, Seiichi Mori⁴, Tuan Zea Tan⁵, Soji Morishita³, Yoko Edahiro¹, Akimichi Ohsaka³ and Norio Komatsu^{1*}

b PYD - HIN AIM2 ASC PYD - CARD CARD - p20/10 Procaspase-1 dsDNA AIM2 Caspase-1 ASC Pro-caspase-1 AIM2 inflammasome da Guo et al, Nature Medicine 2015

Apoptotic-DNA sensor

Functional macrophagic maturation

> MPNs ≈ Lupus!

MPN: OTHER ANALOGIES

Key transcription factor in innate immunity

It is constitutively active in MPN mouse models irrespective of driver mutations

NF-KB ACTIVATION

Kleppe M et al, Cancer Cell 2018 Brown JD, Molecular Cell 2014

BET INHIBITION IN CARDIOVASCULAR DISEASE AND DIABETES

3. INFLAMMASOME, PLATELETS, NETS AND THROMBOSIS

PLATELETS AS PLAYERS IN INNATE IMMUNITY; THROMBO-INFLAMMATION

THROMBO-INFLAMMATION

Tentative definition: «the pathological responses within the vasculature following inflammatory triggers and leading to organ damage»

The triggers:						
Blood vessel injury	Invasion by pathogens	Non infectious (sterile inflammation)				

The cells of the innate immune system play a key function in the pathogenesis of sterile thrombosis

Thrombo-inflammation is a critical therapeutic target for many diseases

KEY POINTS

PLATELETS AS MEDIATORS OF IMMUNITY AND INFLAMMATION

KOUPENOVA M ET AL, CIRC RES. 2018

THROMBO-INFLAMMATION: KEY PLAYERS

- Interaction between platelets, macrophages, neutrophils and endothelium is mediated by:
- P-selectin
- vWF / ADAMTS-13
- NETs
- inflammasome

Wagner DD & Heger LA, Aterioscler Thromb Vasc Biol 2022

INFLAMMASOME AND NETS

Inflammasome

- Pores on the cell membrane (pyroptosis) TF release
- IL-1β release → increases integrin expression and cellular interactions
- Supports the formation of NETs

NETosis

- It is a process of cell death with the formation of 'spider web' like chromatin structures
- It is designed to stop infectious processes, but induces tissue damage and thromboinflammation

PAD4 (protein arginine deiminase 4)

- Intra-cytoplasmic enzyme that supports both processes
- It adds citrulline by promoting chromatin unfolding (positively charges histones H3 and H4)

NLRP3 AND INTEGRINS

- The platelet NLRP3
 inflammasome promotes IL-1β secretion and is
 upregulated during platelet
 activation and thrombus
 formation in vitro
- NLRP3-/- platelets transfused into wild-type mice resulted in prolonged bleeding time, delayed arterial thrombus formation, defects in fibrinogen and thrombin function

Quiao J, Haematologica 2018

4. DEVISING MODELS OF THROMBO-INFLAMMATION IN MPNS

FROM PLATELET FIBRINOGEN RECEPTOR TO THE CIRCULATING WOUND

PLATELET FIBRINOGEN RECEPTORS

- A refined method for the determination of platelet activation appears to be the use of platelet PAC-1 antibody, able to identify the expression of the fibrinogen receptor of platelet glycoprotein IIb/IIIa (Lu et al. Artif Organs, 2011).
- This expression is indeed unique in the process of platelet activation, and yet rarely analyzed.

MPN: PLATELET FIBRINOGEN RECEPTOR

- Surprisingly, we have been able to verify a very low PAC-1 binding to platelets in patients with MPN not receiving cytoreduction nor antiplatelet agents if compared to that observed in healthy subjects (35.3 ± 12.9 vs 65.3 ± 24.2 respectively, *P*=0.008).
- The use of aspirin seems conversely to restore the expression of platelet fibrinogen receptor, as PAC-1 binding capacity is comparable to that of healthy volunteers (56.7 ± 18.7).

Lucchesi A et al, BJH 2020

ET: THROMBIN AND THE PAR1 RECEPTOR

Moore et al. Blood, 2013

An enhanced Protease-Acivated Receptor-1 (PAR1) mediated expression of GPIIb-IIIa after thrombopoietin stimulation, followed by the disappearance of fibrinogen binding sites.

An increased thrombin generation could secondly lead to PAR1 activation, determining both a major conversion of fibrinogen into fibrin and a disappearance of PAC-1 expression.

PAR receptors are expressed in platelets, endothelium, and smooth muscle, contributing to both normal and pathological hemostasis.

International Journal of Molecular Sciences

Review

Signaling Crosstalk of TGF-β/ALK5 and PAR2/PAR1: A Complex Regulatory Network Controlling Fibrosis and Cancer

Hendrik Ungefroren ^{1,2,*}, Frank Gieseler ¹^(D), Roland Kaufmann ³, Utz Settmacher ³, Hendrik Lehnert ¹ and Bernhard H. Rauch ⁴^(D)

- Platelet activation with a PAR1 agonist triggers TGF-beta secretion.
- Activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP, respectively, led to activation of adventitial fibroblasts from rat aorta, including their proliferation and differentiation, ECM synthesis, as well as production of TGF-beta, IL-6 and MCP-1.

THE «CIRCULATING WOUND» (MPN)

LUCCHESI A ET AL, IJMS 2021

ROTATIONAL THROMBOELASTOMETRY (ROTEM) FOR THE **ASSESSMENT OF** HYPERCOAGULABLE **STATES IN CHRONIC MYELOPROLIFERATIVE NEOPLASMS, WITH RESPECT TO DIFFERENT GENETIC DETERMINANTS** OF DISEASE

ROTEM PARAMETERS AND CELL COUNTS

- WBC: INTEM was involved in PV (rho= -0.61, p= 0.038), while in PMF the modified value was that of EXTEM (rho= -0.52, p= 0.016)
- PLT: CFT values on EXTEM were affected for all conditions, but particularly for PMF (rho= -0.75, p=0.001), the CFT values on INTEM only for PV (rho= -0.73, p= 0.001)
- Minimal impact on CALR mutated TE

DTA/HMR MUTATIONS

- Among the DTA mutations, the presence of DNMT3A shows a significant reduction in clotting time (CT) in EXTEM, while ASXL1 is associated with reduced maximum lysis (ML).
- EZH2 could be responsible for CFT elongations in the INTEM assay.

01

MPNs represent a model of perpetual vascular damage from sterile inflammation 02

Not only haemostasis: platelets as leading players in innate immunity 03

The prolonged action of inflammasomes is responsible for thromboinflammation, fibrosis and organ damage

04

The downstream signalling of NLRP3 represents a potential therapeutic target in MPNs

CONCLUSIONS

Gerardo Musuraca (Head)
Giovanni Martinelli (Scientific Director)
Gianantonio Rosti (Scientific Dean)
Piero Paolo Fattori (Clinical Dean)
Delia Cangini
Michela Ceccolini
Claudio Cerchione
Maria Benedetta Giannini
Eliana Valentina Liardo
Alessandro Lucchesi
Francesco Malaspina
Giovanni Marconi
Giorgia Micucci
Davide Nappi
Marianna Norata
Margherita Parolini
Monica Poggiaspalla
Costantino Riemma
Sonia Ronconi
Jessica Rosa
Pietro Rossi
Irene Zacheo

