

## GIORNATE EMATOLOGICHE VICENTINE

X edizione

**12-13 Ottobre 2023** Palazzo Bonin Longare - Vicenza

Emostasi, complemento e danno endoteliale nel TMO: una interazione complessa

Alessandro Rambaldi

Professor of Hematology, Department of Oncology and Hematology, University of Milan and Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Piazza OMS, 1 - 24127 Bergamo

#### Disclosures

| Company<br>name | Research<br>support | Employee | Consultant | Stockholder | Speakers<br>bureau | Advisory<br>board | Travel support |
|-----------------|---------------------|----------|------------|-------------|--------------------|-------------------|----------------|
| Omeros          |                     |          | V          |             |                    | ۷                 | ~              |
| Amgen           |                     |          | V          |             |                    | v                 |                |
| Pfizer          |                     |          |            |             |                    | •                 |                |
| Jazz            |                     |          |            |             |                    | •                 |                |
| Incyte          |                     |          |            |             |                    | v                 |                |
| Abbvie          |                     |          |            |             |                    |                   | V              |
| Kite-Gilead     |                     |          |            |             |                    |                   | V              |
| Novartis        |                     |          |            |             |                    | •                 |                |
| Celgene-BMS     |                     |          |            |             |                    |                   | $\checkmark$   |
| Astellas        |                     |          |            |             |                    | $\checkmark$      |                |
| Roche           |                     |          |            |             |                    |                   | $\checkmark$   |

### Case study: a 67-year-old patient with high risk MDS

#### January 2018:

- Female, Caucasian, 67-years-old MDS patient with isolated del(5q).
- Treatment: lenalidomide.

#### December 2019:

• RCMD with complex karyotype.

#### August 2020:

- alloHSCT due to high-risk disease
- IPSS-R: 5.5 (high risk)

#### Donor:

HLA aploidentical donor: son (44 old); ABO match: patient B-, donor B+.

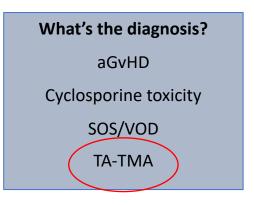
#### Conditioning (reduced intensity regimen):

Thiotepa; Busulfan; Fludarabine

#### GvHD prophylaxis:

Post-transplant Cyclophosphamide, CSA and MMF.

Day +39:


- Cutaneous aGvHD stage III (overall grade II)
- Steroid therapy (methylpred 2 mg/kg) with good response (on day +46 acute cutaneous GvHD stage I, grade I) and subsequent tapering of steroid therapy.

#### Day +74:

- Sudden thrombocytopenia and anemia;
- Elevated LDH.

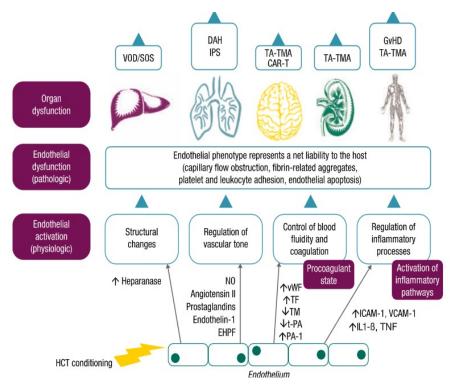
### Case study: a 67-year-old patient with high risk MDS

- 3 schistocytes/HPF;
- LDH 495 U/L (ULN 246 U/L);
- Negative Coombs test;
- Platelets 12.000/mmc;
- Hb 7.9 g/dl;
- Haptoglobin 0,23 g/l (LLN 0,4 g/l);
- Proteinuria 0,27 g/L ;
- Protein/creatinine ratio 400 mg/g;
- Reticulocyte: 129.8 x 10^9/L;
- Circulating endothelial cells: 35/ml;
- Normal coagulation tests;
- Normal ADAMTS13 activity,
- No anti ADAMTS13 Ab.
- Cyclosporine blood level: 276 ng/ml



## Agenda

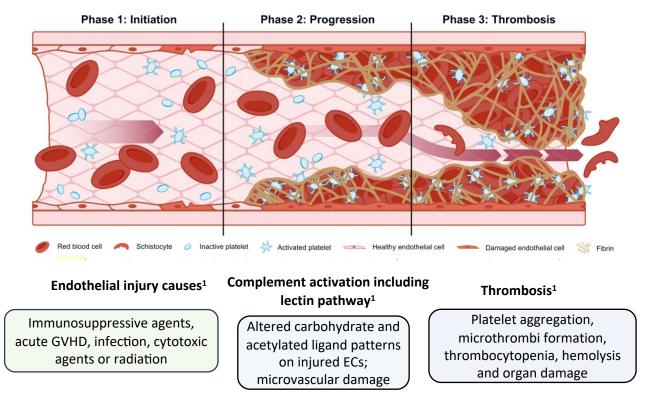
- Introduction to TA-TMA
- One disease, many diagnostic criteria: the International Harmonization Effort
- A new biomarker: focus on **C5b-9**
- TA-TMA therapy: from supportive care to complement inhibition
- **Narsoplimab**, from clinical trial to real-life data: a new standard of care?
- **Concomitant GvHD and TA-TMA**: a case report
- What's next: **prospective evaluation of C5b-9** in patients with TA-TMA treated with Narsoplimab


# Introduction to TA-TMA: from complement activation to organ damage

### Introduction to HSCT-TMA The Spectrum of Transplant-Associated Endothelial Injury

#### Endothelial injury syndromes

post-HSCT complications characterized by endothelial injury as a common pathophysiology and include:<sup>[1]</sup>


- Thrombotic microangiopathy (TMA)
- GvHD
- Hepatic veno-occlusive disease (VOD)
- Idiopathic pneumonia syndrome (IPS)
- Diffuse alveolar hemorrhage (DAH)
- Capillary leak syndrome (CLS)



[1] Gavriilaki. Exp Hematol Oncol. 2021 Dec 19;10(1):57.

Figure: Hildebrandt; Br J Haematol . 2020 Aug;190(4):508-519

### Pathophysiology of HSCT-TMA: Endothelial Injury Pathways



#### The Role of the Complement System in HSCT-TMA

- Endothelial injury activates the complement system
- Three complement activation pathways (classical, lectin, and alternative) eliminate or clear infection, or damaged host cells; however, dysregulation can cause excessive complement activation and organ damage
- Terminal complement activation can be measured by elevated levels of sC5b-9 in blood

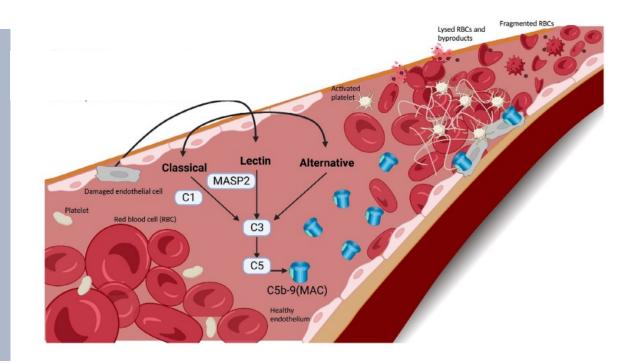
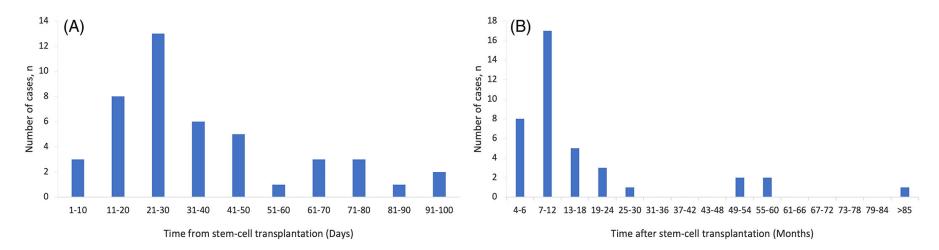



Figure: Jodele S, et Al.. Am J Hematol. 2023 Feb 6.


### *Epidemiology of HSCT-TMA Incidence by Transplant Type and Patient's Age*

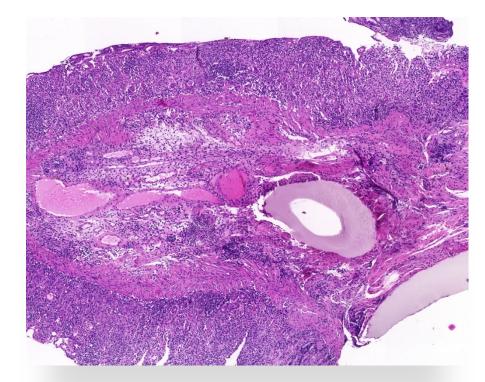
| Type of Transplant | Incidence in<br>Children | Incidence in Adults |  |
|--------------------|--------------------------|---------------------|--|
| Allogeneic HSCT    | 19% to 30% [2]           | 4% to 68% [1]       |  |
| Autologous HSCT    | 10% [2]                  | Not well studied    |  |

[1]: Gavriilaki. Exp Hematol Oncol. 2021 Dec 19;10(1):57.[2] Dandoy, Blood Adv. 2021 Jan 12;5(1):1-11

#### HSCT-TMA: time of onset

TA-TMA is most often described as an early event in allo-HSCT with a time of onset between 32 and 86 days, although a recent study by Heybeli et al. [1] documented a bimodal distribution of TA-TMA, with a first peak at day 27 and a second peak around day 200.




[1] Heybeli, C. et al. Am. J. Hematol. 2020, 95, 1170–1179.

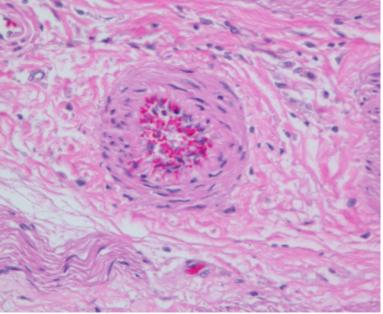
#### Multi-Organ Injury in HSCT-TMA Common Manifestations by Organ System

| Organ                     | Manifestations                                                                                                                                                                                              |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Renal                     | ≥50% reduction in GFR from pre-HCT conditioning value calculated by serum creatinine or increase in serum creatinine≥2 times baseline                                                                       |  |  |
| Pulmonary                 | Any need for positive-pressure ventilation for >24 hours in the absence of definite etiology (i.e adenovirus pneumoniae, fluid overload or severe sepsis), diffuse alveolar hemorrhage                      |  |  |
| Cardiovascular            | Pulmonary hypertension diagnosed by a cardiologist using cardiac catheterization, or pulmonary hypertension diagnostic criteria on echocardiography                                                         |  |  |
| Serositis                 | Clinically significant serositis (pleural or pericardial effusions or ascites) requiring medical therapy (i.e diuretics) or dreinage in the absence of other causes (eg, VOD/SOS, congestive heart failure) |  |  |
| Central Nervous<br>System | Confusion, altered mental status, seizures with or without imaging evidence of posterior reversible encephalopathy syndrome (PRES)                                                                          |  |  |
| GI                        | GU bleeding and/or intestinal strictures requiring medical or surgical interventions.                                                                                                                       |  |  |

#### HSCT-TMA: the role of Histologic Tissue Evaluation

- GvHD often co-exist with TA-TMA and both conditions may require simultaneous therapy.
- TA-TMA and GvHD are known **to trigger one another** which could explain the overlap in their clinical picture.
- The most challenging differential is between intestinal TA-TMA and intestinal GvHD.
- Tissue biopsies are useful but not mandatory for diagnosis.




By courtesy of Dr A. Gianatti, Pathology Unit of Papa Giovanni XXIII Hospital, Bergamo (Italy)

### HSCT-TMA: the role of Histologic Tissue Evaluation

- Loss of glands
- Mucosal hemorrhages
- Intraluminal schistocytes ٠
- Intraluminal fibrin (debris)
- Intraluminal microthrombi
- Endothelial cell swelling ٠
- Endothelial cell denudation
- Total mucosal denudation

El-Bietar J. Biol Blood Marrow Transplant. 2015;21:1994–2001

Microangiopathy in Mesenteric Vessel



Warren M. Arch Pathol Lab Med. 2017;141(11):1558-1566

# One disease, many diagnostic criteria: the International Harmonization Effort

## *The diagnosis of HSCT-TMA: historical Lack of Consensus on Diagnostic Criteria*

| Parameter                      | CTN 2005 <sup>8</sup>                                                  | IWG 2007 <sup>9</sup>                              | Overall TMA,<br>Cho et al. <sup>7</sup> | TMA by Jodele et al. <sup>5</sup>                  |
|--------------------------------|------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------------------------------|
| Schistocytes                   | ≥ 2/HPF                                                                | >4%                                                | ≥ 2/HPF                                 | Present                                            |
| Serum LDH                      | Elevated                                                               | Sudden or persistent elevation                     | Elevated                                | Elevated                                           |
| Renal and/or<br>neurological   | Serum creatinine $2 \times$ baseline or 50% dec'd creatinine clearance | NA                                                 | NA                                      | Proteinuria ≥ 30 mg/dL or hypertension             |
| dysfunction                    |                                                                        |                                                    |                                         |                                                    |
| Direct and indirect            | Negative                                                               | NA                                                 | Negative                                | NA                                                 |
| Coombs test                    |                                                                        |                                                    |                                         |                                                    |
| Thrombocytopenia               | NA                                                                     | De novo prolonged or<br>progressive                | De novo prolonged or progressive        | De novo                                            |
| Anemia                         | NA                                                                     | Decreased Hb or increased transfusion requirements | Decreased Hb                            | Decreased Hb or increased transfusion requirements |
| Serum haptoglobin              | NA                                                                     | Decreased                                          | Decreased                               | NA                                                 |
| Terminal complement activation | NA                                                                     | NA                                                 | NA                                      | Elevated sC5b-9                                    |

Abbreviations: CTN = Blood and Marrow Transplant Clinical Trials Network; Hb = hemoglobin; HPF = high-power field; IWG = European LeukemiaNet International Working Group; LDH = lactate dehydrogenase; NA = not applicable; TA-TMA = transplantation-associated thrombotic microangiopathy.

8. Ho VT. Et al. Biol Blood Marrow Transplant. 2005;11(8):571-575; 9. Ruutu T. et al. Haematologica. 2007;92(1):95-100 7. Cho BS. Et al. Transplantation. 2010;90(8):918-926; 5. Jodele S. et al. Blood. 2014;124(4):645-653.

## The diagnosis of HSCT-TMA: International Effort to Establish Harmonization Criteria

#### Problem:

the lack of harmonization of diagnostic/prognostic markers for HSCT-TMA makes it difficult to compare the results of interventional trials or conduct multiinstitutional studies

#### Solution:

convene an expert panel of nominated representatives from 4 organizations: American Society for Transplantation and Cellular Therapy Center for International Bone Marrow Transplant Research Asia-Pacific Blood and Marrow Transplantation European Society for Blood and Marrow Transplantation

## Harmonization Criteria for the diagnosis of HSCT-TMA

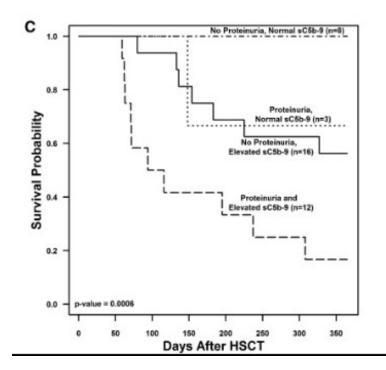
HSCT-TMA can be diagnosed using clinical and laboratory criteria *or* tissue biopsy of kidney or gastrointestinal tissue; **however, biopsy is not required.** 

#### ≥ 4 of the following 7 consensus diagnostic criteria must occur twice within 14 days:

- Anemia (failure to achieve transfusion independence despite neutrophil engraftment, hemoglobin decline by 1 g/dL, or new-onset transfusion dependence). DAT negativity.
- **Thrombocytopenia** (failure to achieve platelet engraftment, higher-than-expected transfusion needs, refractoriness to platelet transfusions, or 50% reduction in baseline platelet count after full platelet engraftment)
- Elevated LDH (≥ ULN)
- Schistocytes (present)
- Hypertension (Children: > 99th percentile for age, Adults: Systolic ≥ 140 mm Hg or diastolic ≥ 90 mm Hg)
- Elevated sC5b-9 (≥ ULN)
- **Proteinuria** (rUPCR ≥ 1 mg/mg)

## Harmonization Criteria to define high-risk HSCT-TMA

Patients with any of the following features should be stratified as having **high-risk HSCT-TMA**:

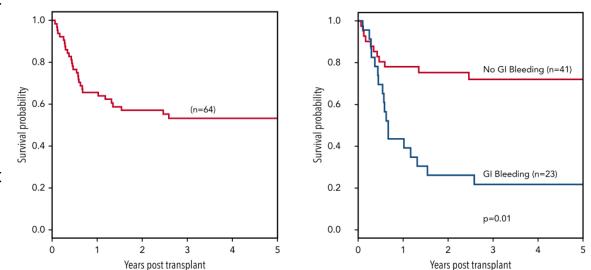

- Elevated sC5b-9
- Peak LDH > 2 times the ULN
- rUPCR  $\geq$  1 mg/mg
- Multiorgan dysfunction
- Concurrent grade II-IV acute GvHD
- Infection (bacterial or viral)

## A new biomarker: focus on C5b-9

## *Terminal Complement Activation Is an Indicator of Reduced Survival*

Proteinuria (≥ 30 mg/dl or urine protein to creatinine ratio ≥ 2 mg/mg) and elevated markers of complement activation (sC5b-9) at TMA diagnosis are associated with poor outcome [1].

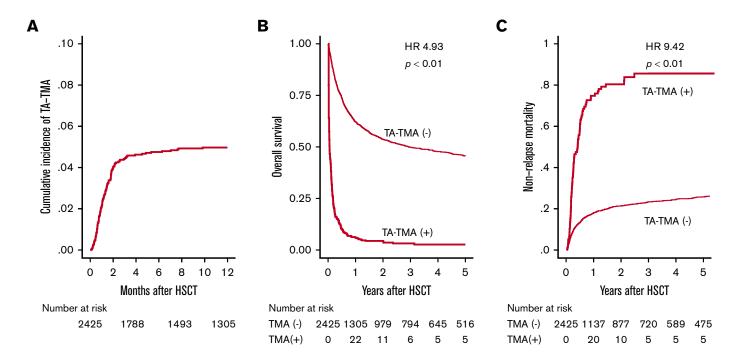
 Increased organ injury also associated with sC5b-9 levels [2].




[1] Jodele S. Blood. 2014 Jul 24;124(4):645-53. [2] Jodele S. Transplant Cell Ther. 2022;28(7):392.e1-392.e9

## *sC5b-9 Levels Predict Response to Complement Blocker Therapy*

 Subjects with a higher sC5b-9 at HSCT-TMA diagnosis were less likely to respond to eculizumab treatment [1]

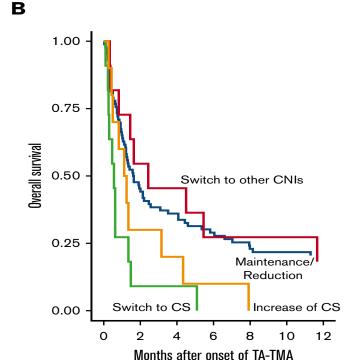

Subjects with a higher sC5b-9 at HSCT-TMA diagnosis **required more eculizumab doses for treatment** (*P* = .0004) [1]



[1] Jodele S. Blood. 2020;135(13):1049-1057.

# TA-TMA therapy: from supportive care to complement inhibition

## The natural history of HSCT-TMA: the Kyoto Stem Cell Transplantation Group (KSCTG)




Blood advances 14 july 2020 volume 4, number 13, 3169-3179

## Should we withdraw CNIs as a therapeutic intervention for HSCT-TMA?

#### Key Points

- aGVHD and VOD/SOS syndrome were associated with a higher incidence of TA-TMA, performance status, and HLA mismatch.
- CNI maintenance or reduction induced a better outcome, whereas replacement with steroids and plasma infusion/exchange were not recommended.



## Should we withdraw CNIs as a therapeutic intervention for HSCT-TMA?

- In a large, single-center, retrospective study [1] discontinuation of CNIs failed to improve survival, no matter the type of GvHD prophylaxis
- This may be attributed to a subsequent development or exacerbation of GvHD

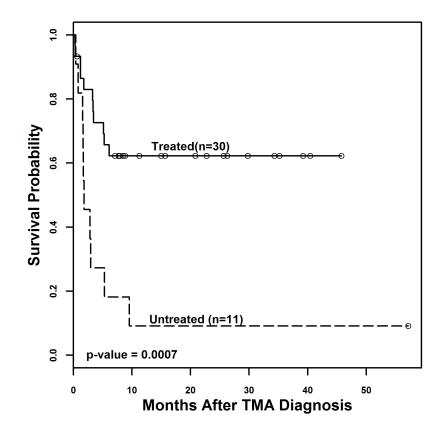
#### Standard practice at our center

- Avoid inappropriate high blood levels of CNIs
- Continue GvHD prophylaxis with CNIs unless severe nephrotoxicity develops

### Complement Inhibitors for Management of HSCT-TMA Overview of Agents Under Investigation

| Agent                          | Mechanism              | Class                               | Status                                                                                         | Clinical Trials (Patient Ages)                            |
|--------------------------------|------------------------|-------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Eculizumab <sup>[a,b]</sup>    | C5 inhibition          | mAb                                 | <ul> <li>Phase 2 ongoing</li> <li>FDA approved for PNH,<br/>aHUS, gMG, and NMOSD</li> </ul>    | NCT03518203 (pediatric/adult)                             |
| Narsoplimab <sup>[c]</sup>     | MASP-2<br>inhibition   | mAb                                 | <ul> <li>Phase 2 complete</li> <li>Currently pursuing FDA<br/>approval for HSCT-TMA</li> </ul> | NCT02222545 (adult)                                       |
| Ravulizumab <sup>[d-f]</sup>   | C5 inhibition          | mAb                                 | <ul> <li>Phase 3 ongoing</li> <li>FDA approved for PNH,<br/>aHUS, and gMG</li> </ul>           | NCT04543591 (adolescent/adult)<br>NCT04557735 (pediatric) |
| Nomacopan <sup>[g]</sup>       | C5 and LTB4 inhibition | Recombinant<br>protein              | Phase 3 ongoing                                                                                | NCT04784455 (pediatric)                                   |
| Pegcetacoplan <sup>[h-i]</sup> | C3 inhibition          | PEGylated<br>recombinant<br>protein | <ul> <li>Phase 2 ongoing</li> <li>FDA approved for PNH</li> </ul>                              | NCT05148299 (adult)                                       |

aHUS, atypical hemolytic uremic syndrome; gMG, generalized myasthenia gravis; LTB4, leukotriene B4; mAb, monoclonal antibody; MASP-2, mannan-binding lectinassociated serine protease 2; NMOSD, neuromyelitis optica spectrum disorder; PNH, paroxysmal nocturnal hemoglobinuria. a. NCT03518203; b. Eculizumab [PI]. Approved 2007; Revised Nov 2020; c. NCT02222545; d. NCT04543591; e. NCT04557735; f. Ravulizumab-cwvz [PI]. Approved 2018; Revised April 2022; g. NCT04784455; h.NCT05148299; i. Pegcetacoplan [PI]. Approved May 2021.

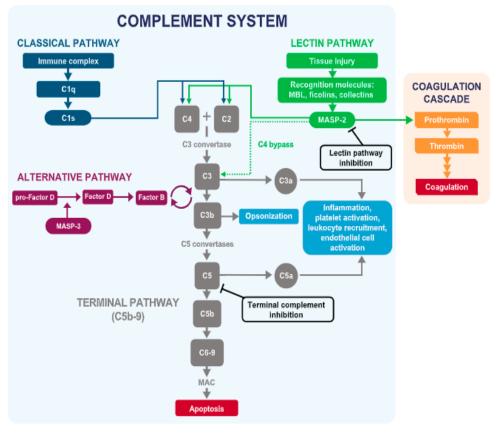

### Eculizumab

#### Anti-C5 monoclonal antibody

- Inhibits cleavage of C5 to C5a and C5b
- Blocks C5b-9 from forming on the surface of endothelial cells

#### **Clinical development**

- Currently approved by FDA for PNH, aHUS, gMG, and NMOSD
- Approved by EMA (but not yet available in most EU countries)
- Phase 2 trial in HSCT-TMA is ongoing [2]
- Higher risk of infections




Survival of Pediatric Patients With Post-Allogeneic HSCT-TMA Comparing Outcomes After Eculizumab With Historical Controls [1]

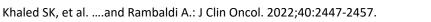
## Narsoplimab

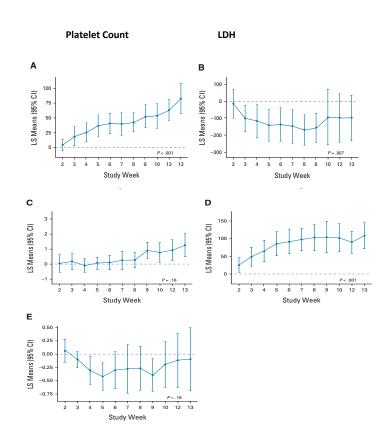
## Narsoplimab

- Is a fully human monoclonal antibody
- Binds to MASP-2, the effector enzyme of the lectin pathway of complement
- Leaves intact the effector function of the adaptive immune response, important for fighting infection
- Blocks MASP-2-mediated coagulation (conversion of prothrombin to thrombin and activation of Factor XII to XIIa) and activation of kallikrein
- The only agent that targets MASP-2 and blocks the lectin pathway



## A Phase 2 Trial with Narsoplimab for high-risk HSCT-TMA


- Single-arm, open-label, phase 2 study of 28 poorrisk patients with persistent HSCT-TMA
- Dosing regimen: 4 mg/kg IV narsoplimab once weekly for ≥ 4 weeks


#### Primary endpoints:

- Efficacy (response-based):
  - Improvement in TMA laboratory markers of platelet count and LDH
  - Improvement in clinical status
  - Safety and tolerability

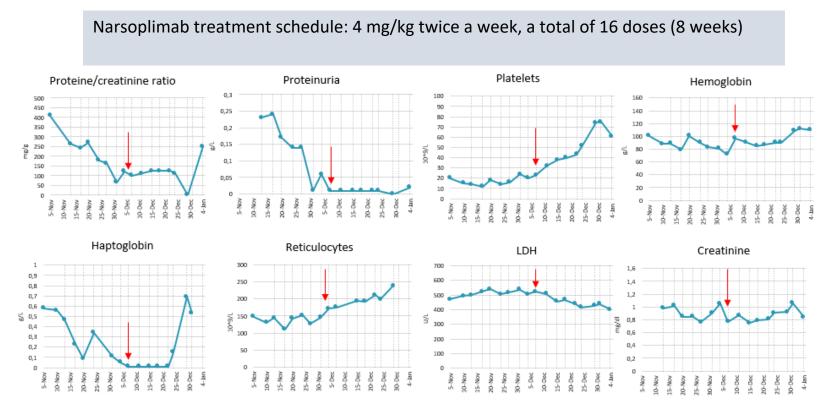
#### Secondary endpoints:

- Survival (100-day and overall)
- Change from baseline in laboratory markers





## A Phase 2 Trial with Narsoplimab for high-risk HSCT-TMA


| Responders [95% CI]                                                                                                                                                         | 17/28 (61) [41, 79]                                                     | 100 + Censored                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Improvement in TMA markers, overall<br>Platelet count improvement<br>Baseline $\leq 20 \times 10^9$<br>Baseline $> 20 \times 10^9$<br>LDH improvement to $< 1.5 \times ULN$ | <b>17/28 (61)</b><br>14/23 (61)<br>3/6 (50)<br>11/17 (65)<br>21/28 (75) | Median survival (days; 95% Cl)                                                                                                                                                                |
| Improvement in organ function, overall<br>Kidney function<br>Pulmonary function<br>Neurologic function<br>GI function                                                       | <b>20/27 (74)</b><br>18/27 (67)<br>NA<br>3/6 (50)<br>1/1 (100)          |                                                                                                                                                                                               |
| Achievement of transfusion independence, overall<br>From platelet transfusions<br>From RBC transfusions                                                                     | <b>12/25 (48)</b><br>8/18 (44)<br>11/22 (50)                            | - 0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,50<br>Survival Time From Diagnosis to Death (days)<br>No. at risk:<br>Full Analysis 28 19 15 11 9 9 7 7 6 3 2 2 2 1 1 |

FAS, full analysis set;

MAGIC, Mount Sinai Acute GVHD International Consortium; NA, not applicable.

Khaled SK, et al. ....and Rambaldi A.: J Clin Oncol. 2022;40:2447-2457.

### Case study: a 67-year-old patient with GvHD and TA-TMA



#### Case study: a 67-year-old patient with high risk MDS

• 08/08/2023 (last follow up, day +1082)

Disease status:

 CR confirmed (immunophenotype, karyotype) on day +30, +60, +91, +182, +382, +727

Chimerism:

• Full donor on day +30, +60, +182, +382, +727

#### Blood count:

- Hb: 13,5 g/dL
- PLT: 81x10^9/L
- WBC: 4.5x10^9/L
- Kidney function:
- Creatinine: 0.91 mg/dL
- GvHD: No
- **TA-TMA**: No clinical or laboratory evidence

## Concomitant aGvHD and TA-TMA: a high-risk TA-TMA case report

## Conclusions

- HSCT-TMA is a rare, but frequently lethal transplant complication
- There are currently **no approved treatments** for HSCT-TMA.
- A concomitant diagnosis of GvHD and TA-TMA is frequent and represents a therapeutic challenge. Patients with acute GvHD and concomitant or sequential TA-TMA should not withdraw CNIs.
- **Complement inhibition** is increasingly recognized as a rationale, pathophysiologically driven, potentially effective treatment strategy.
- In a poor risk population with HSCTA-TMA, **Narsoplimab** proved to be effective and safe with a low rate of infectious complications.

