

GIORNATE EMATOLOGICHE VICENTINE

X edizione

12-13 Ottobre 2023 Palazzo Bonin Longare - Vicenza

Anticorpi bispecifici e CAR-T a confronto nel trattamento delle malattie linfoproliferative

Carlo Visco

12-13 Ottobre 2023

Disclosures of Carlo Visco

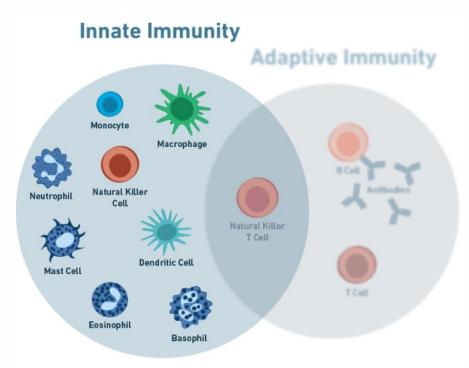
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
AbbVie			х		Х	Х	
Kite-Gilead						Х	
Janssen	х		Х		Х	Х	
Gentili					Х	Х	
Lilly			Х		Х	Х	
Novartis						Х	
Pfizer			Х		х	Х	
Roche						Х	
Incyte						Х	
Kyowa-Kirin					х		

Bispecifics versus CAR-T cells

-background and history-

The concept of **immunotherapy** goes back to 1880 [*Fred Stein*]. One immigrant with neck tumor and erysipela infection

Years later *Coley* injected live bacteria, and then heat-killed pathogens into tumors to enhance immunity, and had some responses, particularly in sarcomas [*Coley's vaccine*]

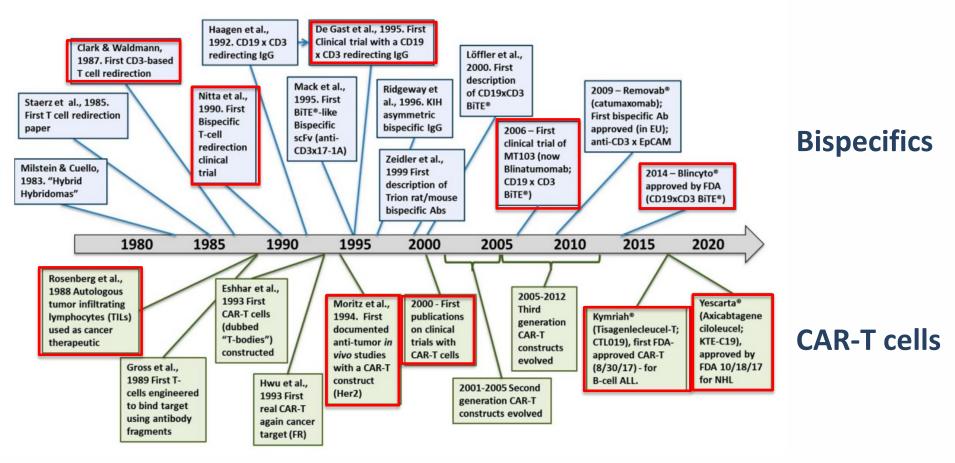

In the late 90s, *Beutler* demonstrated that bacterial lipopolysaccharides stimulate TLR, thus activating the immune system against cancer

Coley WB, Ann Surg 1891; Poltorak A et al, Science 1998; Stroll WR, Antibodies 2019

Bispecifics versus CAR-T cells

-background and history-

12-13 Ottobre 2023


The native immune system prevents and combats malignancies

immune surveillance

senescence

checkpoints

GVL

Bispecifics versus CAR-T cells

-what they are-

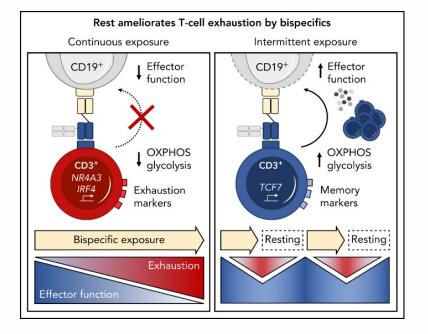
- Bispecific antibodies are recombinant proteins that bind 2 antigens; CAR-T cells are re-directed autologous T lymphocytes
- Over years bispecifics have been engineered in >50 different formats, with the BiTEs* that are largely the most used
- Both BiTE and CAR approaches are independent of the endogenous T-cell receptor and of MHC system on tumor cells

*Bispecific T-cell engagers

Bispecifics versus CAR-T cells -PROs and CONs-

<mark>BiTEs</mark>

12-13 Ottobre 2023

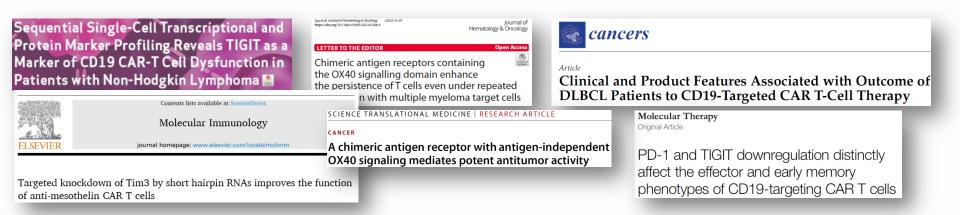

- Off the shelf, no turn-around time
- Less hospitalization
- Quite lower CRS and ICAN
- Combination possible
- Prolonged Tx but all moving to fixed

<mark>CAR-T</mark>

- Engineered for each individual patient, complex process, but one shot
- In the Juliet, 54 days turn around, 111 of 165 received the cells; some % not enough lymphocytes, manufactoring failure

• Need sufficient T-cell count

T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals



Continuous exposure to a CD19xCD3 bispecific molecule induces T-cell exhaustion

Treatment-free intervals transcriptionally reprogram and functionally reinvigorate T cells

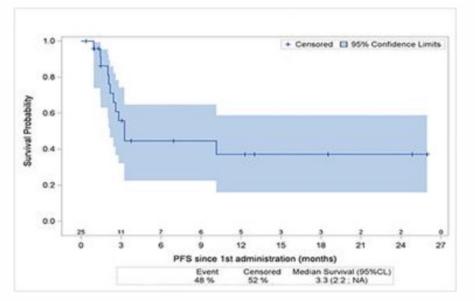
T-cell exhaustion and CAR-T failure

- CAR-T cell exhaustion and reduced function of endogenous immune system are main reasons causing CAR-T treatment failure
- T-cell exhaustion is characterized by loss of effector functions and reduced proliferating capacities
 - Increased expression of inhibitory checkpoint receptors is a common feature

Bispecifics versus CAR-T cells -PROs and CONs-

<mark>BiTEs</mark>	CAR-T
Not applicable	CAR T-cell product variability due to differences in T-cell subset composition, CAR transduction efficacy, number of viable CAR T cells; number of transfused CAR T cells differs from 0.2×10^6 to $6 \times 10^{8,26}$
Endogenous CD4 and CD8 T cells	Engineered, commonly using autologous CD4 and CD8 T cells
Relies on endogenous T-cell composition and function at time of infusion	Relies on T-cell composition and function at time of leukapheresis; further modulation of CAR T function after transfusion through patient- and disease-related parameters (eg TME) ²⁶
No lymphodepletion required But premedication	Lymphodepletion with cyclophosphamide and fludarabine prior to CAR T-cell transfusion mandatory (tisa-cel: exceptions in case of WBCs <1×10 ⁹ /L within 1 wk prior to transfusion) ³⁹
Recovery after completion of infusion: 6-18 mo ⁴¹	Months to years depending on persistence of functional CAR T cells; hypogammaglobulinemia for months to years ¹⁵
	Not applicable Endogenous CD4 and CD8 T cells Relies on endogenous T-cell composition and function at time of infusion No lymphodepletion required But premedication

Financial Toxicity

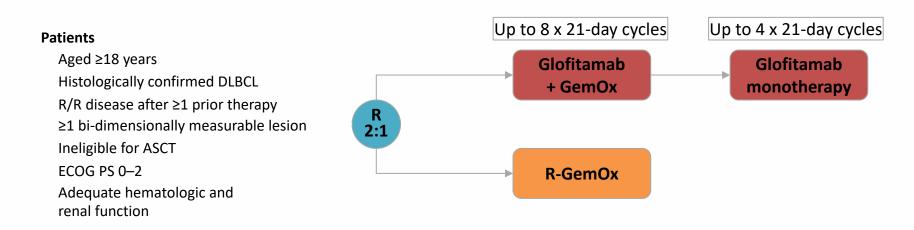


Subkleve M, Blood Adv 2021

- No face to face comparison
- We have data on bispecifics post CarT, not much in the pre-CarT setting, or less pretreated patients
- Soon we will need to consider combos (Glofi-Gemox, Pola-Glofi, Epco-Zanu, Epco-ICE etc)

CAR T-Cell Therapy Remain Effective in Patients with Relapse/Refractory B-Cell Non-Hodgkin Lymphoma after Bispecific Antibodies Exposure: Results of a Lysa Study Based on the Descar-T Registry

The efficacy of CART preserved in B-NHL patients progressing after prior treatment with bispecific antibodies.


No new toxicity signals have been identified.

32 pts in the DESCAR-T registry mainly receiving Glofitamab

12-13 Ottobre 2023

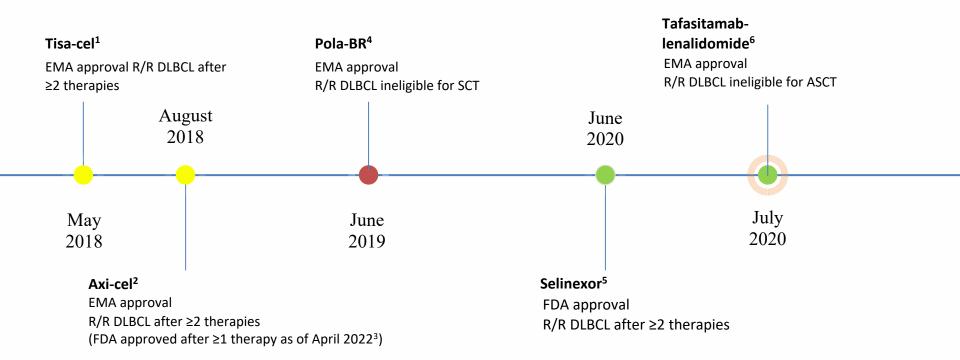
Crochet G, ASH 2022

Glofitamab plus R-GemOx vs R-GemOx is under investigation in the Phase 3 GO41944 STARGLO study

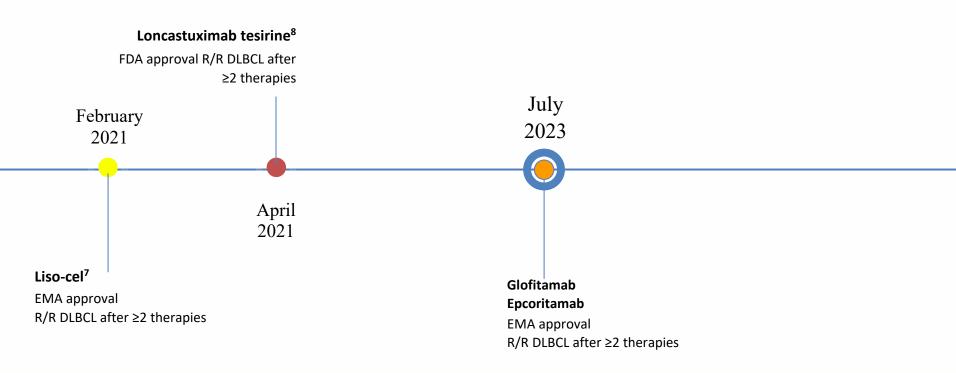
Endpoints

12-13 Ottobre 2023

Primary: OS **Secondary:** Other efficacy and safety endpoints


- This debate applies to:
 - DLBCL
 - FL
 - MCL
 - Multiple Myeloma

- This debate applies to:
 - DLBCL
 - FL
 - MCL
 - Multiple Myeloma


- This debate applies to:
 - DLBCL
 - FL
 - MCL
 - Multiple Myeloma

12-13 Ottobre 2023

The treatment landscape is evolving in R/R DLBCL

The treatment landscape is evolving in R/R DLBCL

CD20/CD3 bispecific antibodies approved or under development in R/R DLBCL

Treatment	Structure	Description	Continuous or fixed	Treatment schedule
Mosunetuzumab ¹	1:1 format	Fully humanized, IgG1-like with modified Fc region	Fixed	IV 8 or 17 cycles based on response
Epcoritamab ²		DuoBody full-length, human IgG1 with a silent Fc region	Continuous	Subcutaneous Until PD or unacceptable toxicity
Odronextamab ³		Hinge-stabilized, fully humanized, full-length IgG4 with a modified Fc region	Continuous	IV Until PD or unacceptable toxicity
Glofitamab ⁴	2:1 format	Fully humanized, IgG1-like with modified Fc region	Fixed	IV Maximum 12 cycles, unless PD or unacceptable toxicity

Budde LE, et al. J Clin Oncol 2022;40:481–91; Clausen MR, et al. J Clin Oncol 2021;39(15_suppl):7518; Bannerji R, et al. Lancet Haematol 2022;9:E327-39; Hutchings M, et al. J Clin Oncol 2021;39:1959–70

Glofitamab, fixed schedule i.v.

Ciclo e giorno	C1D1	C1D8	C1D15	C2D1	C3D1	C4D1	C5D1	C6D1	C7D1	C8D1	C9D1	C10D1	C11D1	C12D1
Obinutuzumab	1000 mg													
Glofitamab		2.5 mg	10 mg	30 mg										

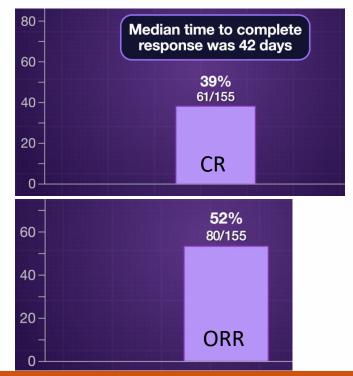
Epcoritamab, until progression s.c.

	Once	Weekly			Once	Neekly		Every 2	Weeks	Every 4 Weeks	
1	8	15	22	1	8	15	22	1	15	1	
Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	
0.16 mg	Epco 0.8 mg	48 mg	48 mg	48 mg	48 mg	48 mg	48 mg	48 mg	48 mg	48 mg	
Free	Cycl		_	_		e 2-3	_		5-6-7-8-9	Cycle 10+	
Study Pe 28-Day Cyc											

12-13 Ottobre 2023

Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma

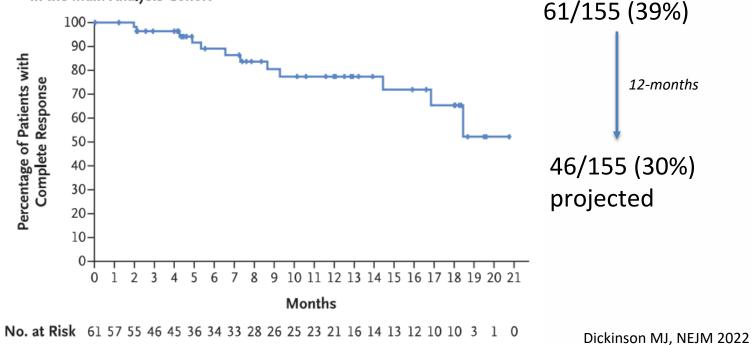
Characteristic	Value
Median age (range) — yr	66 (21–90)
Male sex — no. (%)	100 (65)
ECOG performance-status score — no. (%)†	
0	69 (45)
1	84 (55)
Ann Arbor stage at time of study entry — no. (%)	
I	10 (6)
II	25 (16)
III	31 (20)
IV	85 (55)
Missing data	3 (2)
Non-Hodgkin's lymphoma subtype — no. (%)	
Diffuse large B-cell lymphoma, not otherwise specified	110 (71)
Transformed follicular lymphoma	27 (18)
High-grade B-cell lymphoma	11 (7)
Primary mediastinal B-cell lymphoma	6 (4)


12-13 Ottobre 2023

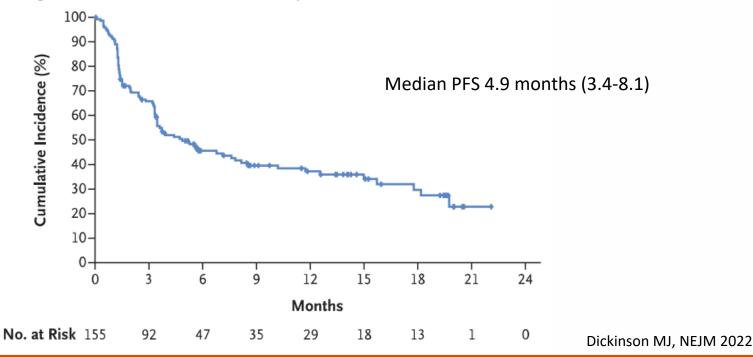
Bulky disease at study entry		
>6 cm	64 (42)	
>10 cm	18 (12)	
Previous lines of therapy		
Median no. of lines (range)	3 (2-7)	
Only 2 previous lines — no. (%)	62 (40)	
≥3 previous lines — no. (%)	92 (60)	
Previous therapy for lymphoma — no. (%)		
Anti-CD20 antibody	154 (100)	
Anthracycline	149 (97)	
CAR T-cell therapy	51 (33)	
Autologous stem-cell transplantation — no. (%)	28 (18)	
Relapsed or refractory status — no. (%)‡		
Refractory to any previous therapy	139 (90)	
Refractory to last previous therapy	132 (86)	
Primary refractory	90 (58)	
Refractory to any previous anti-CD20 therapy	128 (83)	
Refractory to previous CAR T-cell therapy	46 (30)	
		D:-l-

Subgroup	No. of Patients	Complete Response (95% CI) percent	
Overall	155	⊢∔ −1	39 (32-48)
Sex			
Female	54	⊢ •−−1	52 (38-66)
Male	101	⊢ • ÷i	33 (24-43)
Age			
<65 yr	71	⊢ ••••	41 (29-53)
≥65 yr	84	i i i i i i i i i i i i i i i i i i i	38 (28-49)
Previous CAR T-cell therapy			
Yes	52	⊢ •;1	35 (22-49)
No	103	⊢ •−-1	42 (32-52)
Non-Hodgkin's lymphoma subtype at study	entry		
DLBCL	110	⊢ , →	40 (31-50)
HGBCL	11	• • • • • • • • • • • • • • • • • • • •	0 (NC-NC)
PMBCL	6	⊢ − − − − − − − − − − − − − − − − − − −	50 (12-88)
Transformed follicular lymphoma	28	→	50 (31-69)
Relapsed or refractory to last previous therap	у		
Refractory	132	⊢ • •	34 (26-43)
Nonrefractory	23	· · · · · · · · · · · · · · · · · · ·	70 (47-87)
Disease status after ASCT			
Refractory	7	⊢	71 (29-96)
Nonrefractory	21	· · · · · · · · · · · · · · · · · · ·	67 (43-85)
Cell of origin			
Germinal-center B cell	66	⊢•¦1	36 (25-49)
Activated B cell	17	⊢	59 (33-82)
Non-germinal-center B cell	34		32 (17-51)
Missing or unclassified	38	⊢	42 (26-59)
No. of previous lines of therapies			
2	62	⊢ ● ∔ I	32 (21-45)
≥3	92	⊢ •−−1	44 (34-55)
Double-hit lymphoma			
Yes	20	⊢ ●	25 (9-49)
No	134	⊢¦e—i	41 (33-50)
Unknown or missing data	1	•	100
Double-expressor lymphoma			
Yes	15	⊢ − ●	20 (4-48)
No	139	⊢ ;• −1	41 (33-50)
Unknown or missing data	1	•	100

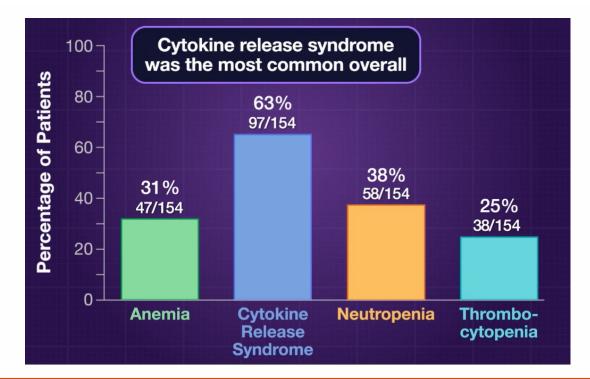
Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma


Primary Endpoint: CR rate

12-13 Ottobre 2023

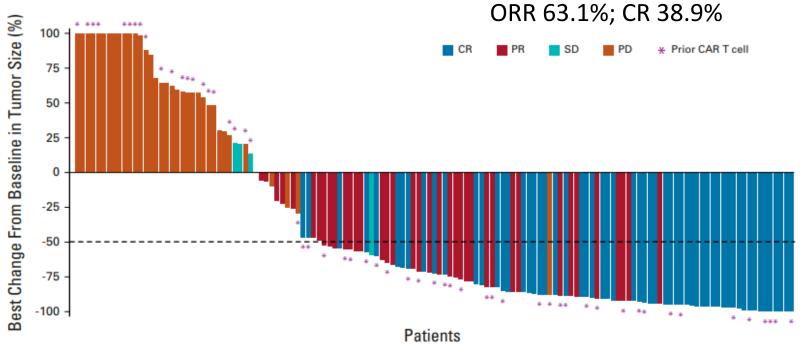

Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma

A Duration of Complete Response among Patients with a Complete Response in the Main Analysis Cohort

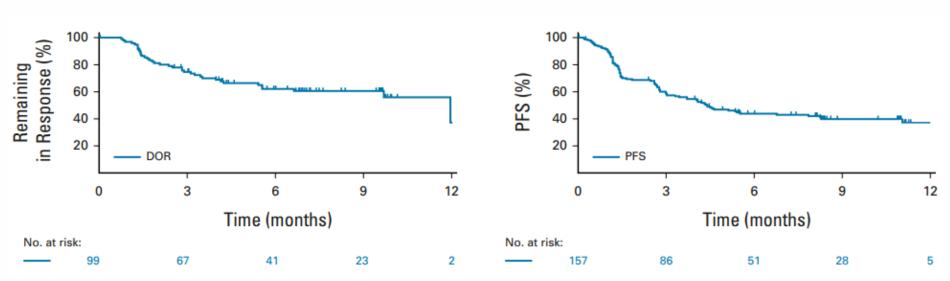

Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma

B Progression-free Survival in the Main Analysis Cohort

12-13 Ottobre 2023


Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma

Epcoritamab, a Novel, Subcutaneous CD3xCD2O Bispecific T-Cell–Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial


Thieblemont C, et al. JCO 2022

Epcoritamab, a Novel, Subcutaneous CD3xCD20 Bispecific T-Cell–Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial

Thieblemont C, JCO 2022

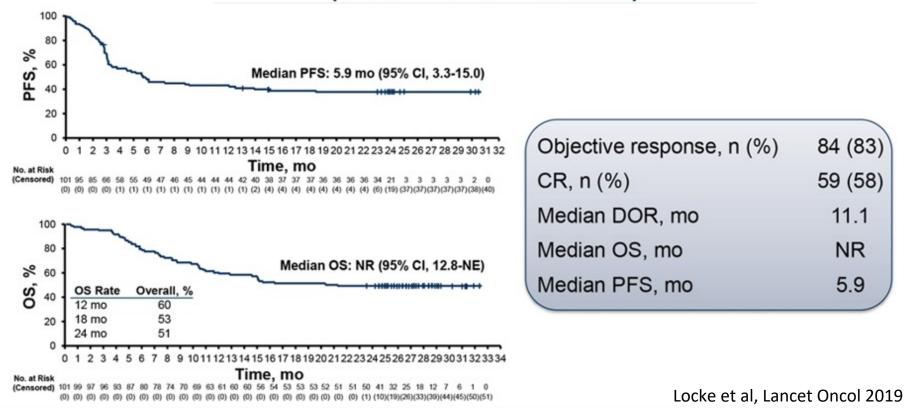
Epcoritamab, a Novel, Subcutaneous CD3xCD2O Bispecific T-Cell–Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial

Median PFS 4.4 months (3-7.9)

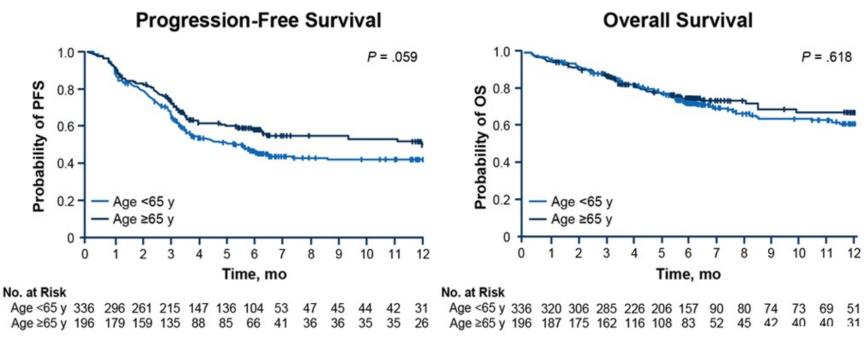
Thieblemont C, JCO 2022

Bispecific antibodies

	Glofitamab n=154	Epcoritamab n=157
Histology	DLBCL ≥2 lines	DLBCL <u>></u> 2 lines
PS	0-1	0-2 (n=5 PS2)
Age	66.0 (21–90)	64 (20–83)
Median prior lines of therapy (range)	3 (2–11)	3 (2–7)
Prior CAR T therapy, n (%)Refractory/progressed within 6mo	51 (33.1) 132 (85.7)	61 (39) 46/61 (75)
Median Follow-up (months)	12.6 (0–22)	10.7 (0.3–17.9)
ORR CR	80 (51.6%) ORR 61 (39.4%) CR	99 (63%) ORR 61 (39%) CR
Median OS	NR	11.5 (7.9, 15.7)
Median PFS	4.4 (3.0–7.9) NR for pts in CR	4.9 (3.4, 8.1)
Gr ≥ 3 CRS / ICANS	2,5%/0,6%	3,9% /2,6%


Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma The NEW ENGLAND JOURNAL OF MEDICINE S.S. Neelapu, et al. Dec 10, 2017

ZUMA-1 is a prospective, registrational, single arm, phase 1-2 study at 22 Medical centers in USA and Israel


119 patients enrolled (median age 58, range 34-69)

Previous therapies	Phase 1 (n=7)	Phase 2 (n=101)
Median (IQR)	3 (3-4)	3 (2-4)
1	0	3 (3%)
2	1 (14%)	28 (28%)
≥3	6 (86%)	70 (69%)
History of primary refractory disease†	1 (14%)	26 (26%)
History of resistance to two consecutive lines	1 (14%)	54 (53%)

Phase 2 ZUMA-1: Long-Term Follow-Up (Median of 27.1 Months)¹

Axi-Cel CIBMTR Registry for Large B-Cell Lymphoma: Survival Outcomes¹

Pasquini et al, Transpl Cell Th 2023

Summary of CRS and Neurotoxicity From Major CAR-T Cell Trials in DLBCL¹⁻³

Study	CRS All Grades	CRS Grade ≥3	Neurotoxicity All Grades	Neurotoxicity Grade ≥3
ZUMA-1	93%	13%	65%	31%
JULIET	57% ^a	17%ª	21%	12%
TRANSCEND	37%	1%	23%	13%

Notes

- 1. Lee criteria used for CRS grading on ZUMA-1 and TRANSCEND
- 2. U Penn criteria used for CRS grading on JULIET
- 3. CTCAE criteria used for neurotoxicity grading

^a Post hoc regrading per Lee criteria.

1. Neelapu SS et al. N Engl J Med. 2017;377:2531-2544. 2. Schuster SJ et al. N Engl J Med. 2019;380:45-56.

3. Abramson JS et al. HemaSphere. 2018;2(suppl 1): Abstract S800.

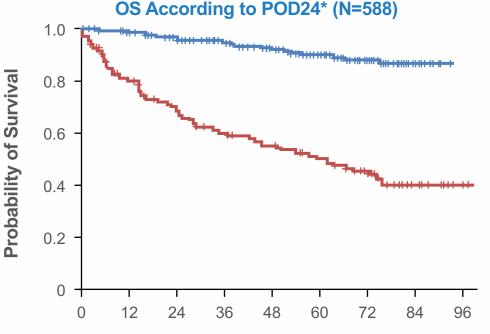
Bispecifics versus CAR-T cells

-Conclusions in DLBCL-

Early toxicity favours BiTEs, but long time evaluation needed

Efficacy favours CAR-Ts, especially because of plateau

Use of BiTEs before CAR-T to improve response as bridging might be the future, but combinations coming


On both sides, failure to achieve CR remains an unmet need

- This debate applies to:
 - DLBCL

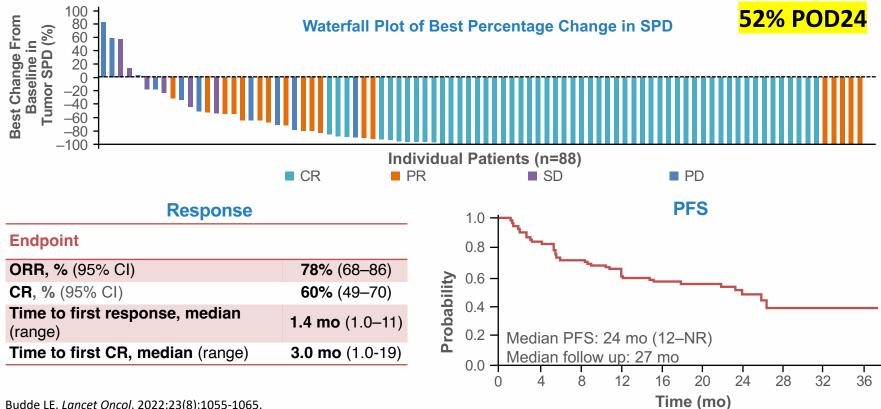
- MCL
- Multiple Myeloma

Early Relapsed Patients Represent an Unmet Need and Lack Consensus on Their Therapy Following R-CHOP

Time From Risk-Defining Events (months)

POD24

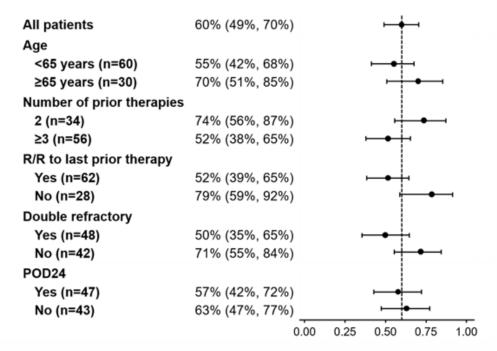
- 15% to 20% after 1L
- High risk of transformation (up to 80%)
- Chemorefractoriness
- Undefined role for ASCT
- Rapidly get to 3L+ of therapy


	Patients, n	5-year OS, %
— POD24*	110	50
Reference	420	90

Patients With R/R FL Receiving Tisa (ELARA) or Axicell (ZUMA-5)

ELARA	Characteristics Median age, years, (range) Stages 3–4 disease, n (%) Median prior lines, n (range) Refractory to last line of therapy, n (%) Prior HSCT, n (%) TEAEs of Interest Grades ≥3 CRS, % ^a Grades ≥3 neurological toxicity, n (%)	Patients (N=97) 57 (49–64) 83 (85.6) 4 (2–13) 76 (78.4) 35 (36.1) Tisa-cel 0 3 (3.1)	PFS 62% POD24	 <u>ORR: 86%</u> <u>CRR: 69%</u> Median DoR, PFS, and OS were not reached 24-mo DoR: 66% <u>Event-Free Probability % (95% CI)</u> 12-mo PFS, all patients 67 (56–76) 24-mo PFS, patients in CR 87 (76–93) 24-mo PFS, patients in CR 75 (62–84)
ZUMA-5	Characteristics Median age, years (range) Tumor type, n (%) FL MZL Stages 3–4 disease, n (%) Median prior lines, n (range) Refractory disease, n (%) Prior HSCT, n (%)	Patients (N=148) 60 (53–67) 124 (83.8) 24 (16.2) 106 (85) 3 (2–4) 84 (68) 33 (22)	PFS PFS 0 0 0 0 0 0 0 0 0 0 0 0 0	ORR: 94% CRR: 79% 12-mo DoR: 72% 18-mo OS: 87.4% (median OS not reached) Median PFS FL MZL All patients
	TEAEs of interest Grades ≥3 CRS, n (%)ª	Axi-cel 8 (6)	Time (mo) — All patients — Patients with FL — Patients with MZL	(n= 86) (n=23) (n=109) NR 12.0 NR
	Grades \geq 3 neurological toxicity, n (%)	19 (15)		(23.5–NE) (9.1–NE) (23.5–NE)

Fowler NH, et al. Nat Med. 2022;28(2):325-332; Jacobson CA, et al. Lancet Oncol. 2022;23(1):91-103.


Mosunetuzumab Efficacy Profile

Budde LE. Lancet Oncol. 2022;23(8):1055-1065.

Mosunetuzumab Efficacy Profile

CR rate (95% CI) by IRF

Budde LE. Lancet Oncol. 2022;23(8):1055-1065.

0

Mosunetuzumab Safety Profile

CRS by ASTCT criteria CRS (any grade) Grade 1 Grade 2 Grade 3 Grade 4	N=90 44% 26% 17% 1% 1%	 CRS was predominantly grade ≤2 and during Cycle 1 	
Median time to CRS onset, hours (range) C1D1 C1D15 Median CRS duration, days (range) Corticosteroids for CRS management	5.2 (1.2–24) 27 (0.1–391) 3 (1–29) 11%	 All CRS events resolved No new events reported within 10 months of additional follow-up 	
Tocilizumab for CRS management	8%		
Events resolved	100%	_	
N (%) N=90		Additional Details	
ICANS* 4 (4.4%)		Confusional state (3.3%; all grades 1–2), disturbance in attention and cognitive disorder (1.1% each; all grade 1); all resolved	

No cases of aphasia, seizures, encephalopathy, or cerebral edema

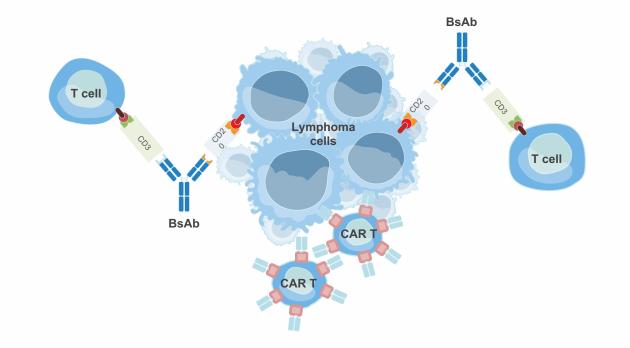
disorder (1.1% each; all grade 1); all resolved

ICANS events were infrequent and all grades 1–2

Budde LE. Lancet Oncol. 2022;23(8):1055-1065.

Grade 3

Bispecifics versus CAR-T cells -Conclusions in FL-


Toxicity seems low for both (outpatient?)

Efficacy looks similar, but we need more follow-up

POD-24 patients will benefit, not clear in which order

Again, on both sides, failure to achieve CR an unmet need

New Hopes by Engaging T cells in lymphomas

Adapted from Khurana A, et al. Ann Lymphoma. 2021;5:9. http://dx.doi.org/10.21037/aol-20-48.

Grazie per l'attenzione