MARCATORI BIOLOGICI E TARGET MOLECOLARI NEI LINFOMI DEL SISTEMA NERVOSO CENTRALE

•

۲

0

0

۲

0

0

Dott.ssa Lucia Bongiovanni IRCCS Ospedale San Raffaele Università Vita-Salute San Raffaele

Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
			IO DISCL	OSURES			

The young side of LYMPHOMA

CLINICAL CASE #1

left hemisoma paresthesias Male 63 yo + left leg hyposthenia + dizziness and persistent vomitus

The young side of LYMPHOMA **STEREOTACTIC BIOPSY**

PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA

gli under 40 a confronto

CLINICAL CASE #1

Ieft hemisoma paresthesias Male 63 yo + left leg hyposthenia + dizziness and persistent vomitus

Consolidative whole-brain irradiation

MATRix polychemiotherapy

HD-MTX/cytarabine/thiotepa/rituximab

PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA

PRIMARY LARGE B CELL LYMPHOMA OF THE IMMUNOPRIVILEGED SITES WHO 5ed. Non invasive options

Cerebrospinal fluid

Cytology

Low diagnostic accuracy

Flow cytometry

(antigens and free light chains)

- **Molecular analysis** (clonality studies, ctDNA)

Peripheral blood VS

Low sensitivity

Sensitivity 13,3%

Sensitivity 23,3%

Circulating Tumor DNA Profiling for Detection, Risk Stratification, and Classification of Brain Lymphomas

Mutter, BSc^{1,2}; Stefan K. Alig, MD³; Mohammad S. Esfahani, PhD³; Eliza M. Lauer, MD¹; Jan Mitschke, PhD¹; David M. Kurtz. MD. PhD³: Julia Kühn, MD¹: Sabine Bleul¹: Mari Olsen, PhD³: Chih Long Liu, PhD³: Michael C. Jin, BS³ Macaulay, MSc³; Nicolas Neidert, MD^{4,5}; Timo Volk, MD⁶; Michel Eisenblaetter, MD⁷; Sebastian Rauer, MD⁶; iland, MD⁴; Jürgen Finke, MD¹; Justus Duyster, MD¹; Julius Wehrle, MD¹; Marco Prinz, MD^{8,9,10}; Gerald Illerhaus, MD Peter C. Reinacher, MD^{12,13}; Elisabeth Schorb, MD¹; Maximilian Diehn, MD, PhD¹⁴; Ash A. Alizadeh, MD, PhD³; and Florian Scherer, MD^{1,1}

Biochemical analysis (Interleukines, Chemokines, APRIL, BAFF, TACI, BCMA, PD-L1, metabolic markers...)

Schroers et al. Eur Journal of Haematology, 2010

Canovi et al. Diagnostic pathology, 2016

TUMOR MICROENVIRONMENT IN PCNSL

Within tumor, CD8+ tumor infiltrating lymphocytes (TILs) and tumor associated macrophages (TAMs) are the most represented components of TME in PCNSL.

Around tumors, CD4-positive cells predominate

Anti-tumoral M1-like CD68+ CD163^{low}

Pro-tumoral M2-like CD68+ CD163^{high}

M2-like macrophages are positioned in the **central portion of** the tumor, where they form palisades around the necrotic areas.

Immunological targets —> PD-L1 TIM-3

The absolute count of CD163+ M2 macrophages is not prognostically relevant

—> low M1/M2 ratio a worse outcome

Modified from Cai et al. 2019 Sasayama et al. 2016

macrophage M2-like

PATHWAYS IN PCNSL

- **BAFF and APRIL** can active mTOR/AKT pathway
- **IL-10 and IL-6** can activate STAT3 and can be produced by both cancer cells and TAMs
- **MYD88 mutations** are detectable in 58% to 86% of PCNSL cases

Elevated expression of **pSTAT6** in PCNSL, in association with the expression of **IL-4 in neoplastic cells** and in the endothelium, correlated with higher levels of IL-10 and IL-4 in the CSF and a worse prognosis

Milano, 14-15 aprile 2023

The young side of **LYMPHOMA**

Zhou et al. Front Imm, 2020 From, Chapuy et al. Blood, 2016

Mondello P et al. 2019

From Cai et al. 2019

IL10 and CXCL13

CSF IL-10 in	Biomarker/Method.	Number of Patients	Body Fluid	Sensitivity (%)	Specificity (%)	References
patients with	IL-10 (cut-off 9.5 pg/mL)	66	CSF	71	100	Sasayama et al.
PCNSL or systemic	IL-10 (cut-off 4 pg/mL)	119	CSF	88.6	88.9	Nguyen-Them et al.
	IL-10 (cut-off 8.2 pg/mL)	102	CSF	95.5	96.1	Song et al.
	IL-10 (cut-off 8.3 pg/mL)	108	CSF	59	98	Shao et al.
than in other brain	IL-10/IL-6 ratio (cut-off 1.6 pg/mL)	108	CSF	66	91	Shao et al.
tumors,	IL-10/IL-6 ratio (cut-off 0,72 pg/mL)	102	CSF	95.5	100	Song et al.
lymphomas and	CXCL13	220	CSF	69.9	92.7	Rubenstein et al.
disorders	Combination of CXCL13 and IL-10	77	CSF	76.7	90.9	Mabray et al.
	Combination of CXCL13, IL10, sIL2R, β2-microglobulin	248	CSF	97	97	Maeyama et al 2020

IL-10

- diagnosis of CNS lymphomas. The optimal cut-off level is still debated.
- **CXCL-13**
- prognosticators.
- The CXCL-13/CXCR-5 axis has also been targeted by drugs

Milano, 14-15 aprile 2023

• CSF IL-10 levels display high specificity and sensitivity and is a useful non-invasive tool for

• Elevated levels detected in PCNSL and secondary DLBCL have been proposed as **negative**

Modified from Baraniskin et al, Cancers 2021

MYD88 L265P mutation and interleukin-10 in PCNSL

Neoplastic B lymphocytes are the main source of IL10

IL10 mRNA expression in PCNSL

	Sensitivity	Specificity	AUC
Interleukin-6	72%	52%	0.66 (0.55 - 0.78)
Interleukin-10 >2pg/mL	88%	99%	0.94 (0.86 - 1.00)
IL-10/IL-6 ratio	85%	99%	0.92 (0.84 - 0.99)
MYD88 mutational status & IL-10	94%	98%	0.96 (0.91 - 1.00)

Milano, 14-15 aprile 2023

The young side of LYMPHOMA

- IL6 expression was negligible in brain biopsies —> low discriminating sensitivity
- 82% concordance in MYD88mut in brain biopsies and CSF (taqPCR)
- Combined MYD88mut and IL10 in CSF have elevated accuracy in both **newly diagnosed** and relapsed PCNSL

Use of inhibitors of IL-10 and IL-10R deserve to be investigated

BAFF, APRIL and PD-L1

 BAFF and APRIL and its receptor are expressed 	Biomarker
by neoplastic B cells in PCNSL promoting neoplastic cell growth by activation of PI3K and	APRIL
AKT/mTOR pathway	BAFF
CSF levels of BAFF and APRIL in PCNSL	Elevation of APRI and/or BAFF
correlated with a more aggressive disease and worse outcome	TACI
 TACI and BCMA levels are 	BCMA
significantly more elevated in patients	Combination of TACI and BCMA
with PCNSL compared to other neurological diseases	Combination of TACI and BAFF
PD-L1 levels are elevated in newly diagnosed and	Diagnosis
relapsed PCNSL	Newly diagnosed
Higher CSF PD-L1 levels correlated with high	Relapsed PCNSI
al DH lovals lontomoning on and doon-brain	Other primary b
SEDITIEVEIS, IEptomeningear and deep-brain	Metastatic brain
	Neuro-inflamm
CSF PD-L1 could predict poor survival in PCNSL	Other tumours w

Milano, 14-15 aprile 2023

	Number of patients	Sample	Methods	Sensitivity	Specificity	Referen
	53 CNSL (30 PCNSL) and 63 controls	CSF	ELISA	62.3%	93.7%	Mulazza
		CSF	ELISA	47.1%	93.7%	
RIL				77.3%	96.1%	
	33 PCNSL and 143 controls	CSF	ELISA	87.9%	88.3%	Thaler e
			ELISA	72.7%	71.8%	
				63.9%	96.7%	
	9 PCNSL and 73 controls	CSF	ELISA	100%	100%	Mizutan

	Number	Age (median)	Sex (M/F)	sPD-L1 (ng
ed PCNSL	35	64	23/12	0.498 (0-4.
SL	11	68	5/6	0.565 (0.01
brain tumours	10	65	7/3	0.039 (0.00
in tumours	31	46	23/8	0.04 (0-1.9
nation/infection	70	50	37/33	0.02 (0-1.6
without CNS involvement	42	45	19/23	0.002 (0-0.

Modified from Zhai et al, Ther Adv Med Onc 2022 Modified from Cheng et al, BJH 2022

miRNA espression

Controversial results

CSF miR21, miR19b and miR92a showed **95% sensitivity and 97% specificity** for CNSL compared with other neurological disorders (Baraniskin et al.)

A set of CSF miR-21, miR-19b, and miR-92a differentiated CNS DLBCL from n-ML, with a specificity of 80.77% and a sensitivity of 63.33% (Zajdel et al.)

Milano, 14-15 aprile 2023

The young side of LYMPHOMA

Individual miRNAs and miRNA signatures potent non-invasive diagnostic and prognostic tools

Nevertheless, the available data are scarce and further validation is necessary

MicroRNA expression in CSF samples of cerebral lesions from patients with CNS DLBCL and non-malignant brain lesions

CLINICAL CASE #2

Phosphenes, myodesopsia, decline in vision

Treatment with Luxazone for hemovitreus

Nov, 2021 Bilateral severe vitreitis OD>OS with sheets and clumps of retinic cells, small detachment of the RPE

Dec, 2021 **Diagnostic vitrectomy**

The young side of LYMPHOMA **DIAGNOSTIC VITRECTOMY**

VITREORETINAL LYMPHOMA

CLINICAL CASE #2

HD-MTX/cytarabine/thiotepa/rituximab

The young side of LYMPHOMA

Dec, 2021 **Diagnostic vitrectomy**

No SNC involvement at MRI

VIREORETINAL LYMPHOMA

PRIMARY LARGE B CELL LYMPHOMA OF THE IMMUNOPRIVILEGED SITES WHO 5ed.

Subset of PCNSL affecting the **retina** with/out vitr

56%–90% of patients with VRL develop CNS (**CNS lymphoma spreads via the optic nerve to**

High index of suspicion (mimic uveitis)

Frequent false negative at diagnostic cytopathole

Multiple diagnostic interventions are needed

Cytology (vitrectomy) + flow cytometry **gold stan**

Chorioretinal biopsies or subretinal aspirates

The young side of **LYMPHOMA**

Carbonell et al Ocul Imm and inflamm 2021

VIREORETINAL LYMPHOMA

IL10 levels intraocular fluids (both aqueous and vitreous)

JAMA Ophthalmology | Original Investigation IL10/IL 6 ratio >1 intraocular fluids seen Potential Diagnosis of Vitreoretinal Lymphoma by Detection of MYD88 Mutation in Aqueous Humor With Ultrasensitive MYD88 L265P mutation by RT-PCR (70 Droplet Digital Polymerase Chain Reaction Jeannette Ossewaarde-van Norel, PhD; Joke H. de Boer, PhD; Floor F —> Vitreous testing sensitivity 75% Manon M. H. Huibers, PhD; Jolanda D. F. de Groot-Mijnes, PhD; Jonas -> aqueous testing sensitivity 67%

Clonality IGH and IGL by PCR or flow cytometry -> sensitivity between 46%-95%, depending on the choice of primer sets —> false positive

Milano, 14-15 aprile 2023

Diagnosis

OCULAR IMMUNOLOGY AND INFLAMMATION 2021, VOL. 29, NO. 3, 507-520 ps://doi.org/10.1080/09273948.2021.1878233

RESEARCH ARTICLE

Consensus Recommendations for the Diagnosis of Vitreoretinal Lymphoma

Denise Carbonell, MD^a, Sarakshi Mahajan, MD^{b*}, Soon-Phaik Chee, MBBS, M Med(Ophth), FRCS(Glasg), FRCS(Ed), FRCOphth [1]^{a,c,d,e}, Bianka Sobolewska, MD^f, Rupesh Agrawal, FRCS, MMed, DNB, DO [1]⁹, Tanja Bülow, MSc [1]^h, Vishali Gupta, MDⁱ, Nicholas P. Jones, BSc MBChB DO FRCSEd FRCOphthⁱ, Massimo Accorinti, MD, PhD ^b, Mamta Agarwal, MD, Tracy Batchelor, MD, MPH^m, Jyotirmay Biswas, MS, FAMS, FIC Path, FAICO^I, Luca Cimino, MD in the second se Ninette H. tenDam-van Loon, MD°, Alejandra de-la-Torre, MD, PhD 🝺º, Shahar Frenkel, MD, PhD 🝺º, Jacob Pe'er, MDº, Michal Kramer, MD, MPH^r, Elisabetta Miserocchi, MD, PhD^s, Manabu Mochizuki, MD, PhD^t, Thomas Ness, MD, PhD^u, James T. Rosenbaum, MD^v, H. Nida Sen, MD, MHS^w, Mr. Michael Simion (VRL patient)^x, Helmut Sitter, MD^y, Daniel V. Vasconcelos-Santos, MD, PhD ², Zohar Habot-Wilner, MD^{aa}, Sarah E. Coupland, MBBS, PhD^{bb}, José S. Pulido, MD, MBA, MPH^{cc}, Justine Smith, MD, FRANZCO, PhD, FARVO ^{[bdd}, Jennifer E. Thorne, MD, PhD^{ee,ff}, Manfred Zierhut, MD, PhD^f, and the Study Group for Vitreoretinal Lymphoma Diagnostics**f

Carbonell et al Ocul Imm and inflamm 2021

BAFF AND APRIL

APRIL and **BAFF** appeared to distinguish between uveitis and VRL

ng/mL) were higher than those in patients with VRL

were higher than those in patients with VRL

Tian el al. Clin Ch Acta 2022

VIREORETINAL LYMPHOMA

Similar frequencies in primary, synchronous or secondary VRL High frequency of MYD88 (74%), PIM1 (71%) and CD79B (55%) mutations Frequently mutations IGLL5 (52%), TBL1XR1 (48%), and ETV6 (45%) Frequent homozygous deletions of 9p21/CDKN2A (75%). High number of CNAs (18.6 CNAs per case) reflecting genomic instability

Mutational Landscape

According to Gu et al.

combined **MYD88 and ETV6** mutation in intraocular fluid high sensitivity (91,3%) and specificity (95%) for **VRL**

CD79B mutation has been associated with higher IL10 levels in intraocular fluids

BTG2 mutation is associated with intracranial involvement

Belhouachi et al. Blood Adv 2022 Bonzheim et al. Blood Adv 2022 Gu et al, Front Oncol, 2022

VIREORETINAL LYMPHOMA **MiRNA**

MiR-92, miR-19b and miR-21 have been found to be significantly upregulated in vitreous specimens from patients with PVRL

High-throughput Vitreous and Serum miRNA analysis (Minezaki et al.)

miR-6513-3p and miR-361-3p could discriminate VRL from uveitis with vitre

MiR-1236-3p correlated with vitreous interleukin (IL)-10 concentrations

MiR-326 appeared the most promising for differential diagnosis between PVRL and controls, such as healthy patients, or patients with uveitis, macular holes, and epiretinal membranes

Downregulation of vitreous miR-4795-3p and miR-29b-2-5p may be related to the reported increase of their target gene MYD88, which is strongly associated with VRL pathogenesis

The young side of LYMPHOMA

Involvement in pathways and genes related linked to ECMreceptor interaction, antigen processing and presentation, inflammatory and interleukin signaling

Kakkassery et al, Blood, 2017 Minezaki et al. J. Clin. Med. 2020

TAKE HOME MESSAGES

PRIMARY LARGE B CELL LYMPHOMA OF THE IMMUNOPRIVILEGED SITES WHO 5ed.

PCNSL AND VRL

Challenging diagnosis and treatment

- Heterogeneous clinical outcome
- Need for biomarkers for early diagnosis and risk stratification
- Biomarkers for treatment response
- Need for prospective and large studies for validation

The young side of LYMPHOMA

stereotactic biopsy/vitrectomy GOLD STANDARD

PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA

Oncogenic Drivers and targeted therapies

Calimeri T et al, Leukemia 2021

