

gli under 40 a confronto

Milano, 14-15 aprile 2023

Nuovi concetti sulla profilassi del sistema nervoso centrale

Chiara Pagani Ematologia ASST Spedali Civili di Brescia

Disclosures of Chiara Pagani

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Sandoz			X				

BACKGROUND

- CNS relapses of DLBCL: relatively rare but often devastating estimates incidence: about 5% of DLBCL
- Most occur during or closely following frontline immunochemotherapy (median time 6-8 months)
- Secondary CNS lymphomas have poor outcomes

- Identify patients at highest risk of CNS relapse
 - Clinical risk factor
 - Biological risk factor
- How to manage patients at high risk of CNS dissemination
- Treatment of patients with CNS involvement
- Future perspectives
 - Improve baseline screening
 - Novel therapies

February 2018

HISTORY-PRESENTATION

ECOG 0

REPORT 1

CASE

34-year-old pregnant women (29 week), no comorbidities

Physical examination: unilateral breast mass in progressive growth, no B symptoms

Laboratory test: normal LDH

HISTOLOGY

Breast biopsy: Diffuse large B cell Lymphoma

IHC: Ki67 80%, Myc>40%, Bcl2 80%, Bcl6+, CD10+, MUM1+

FISH: BCL6 rearranged, MYC and BCL2 negative

Bone marrow biopsy: pathological lymphocyte infiltrate (7%)

IMAGING

Whole body MRI: breast mass, liver node, increased nodes above diaphragm, focal vertebral lesion (C2)

March 2018

1° course R-CHOP

20 March spontaneous delivery

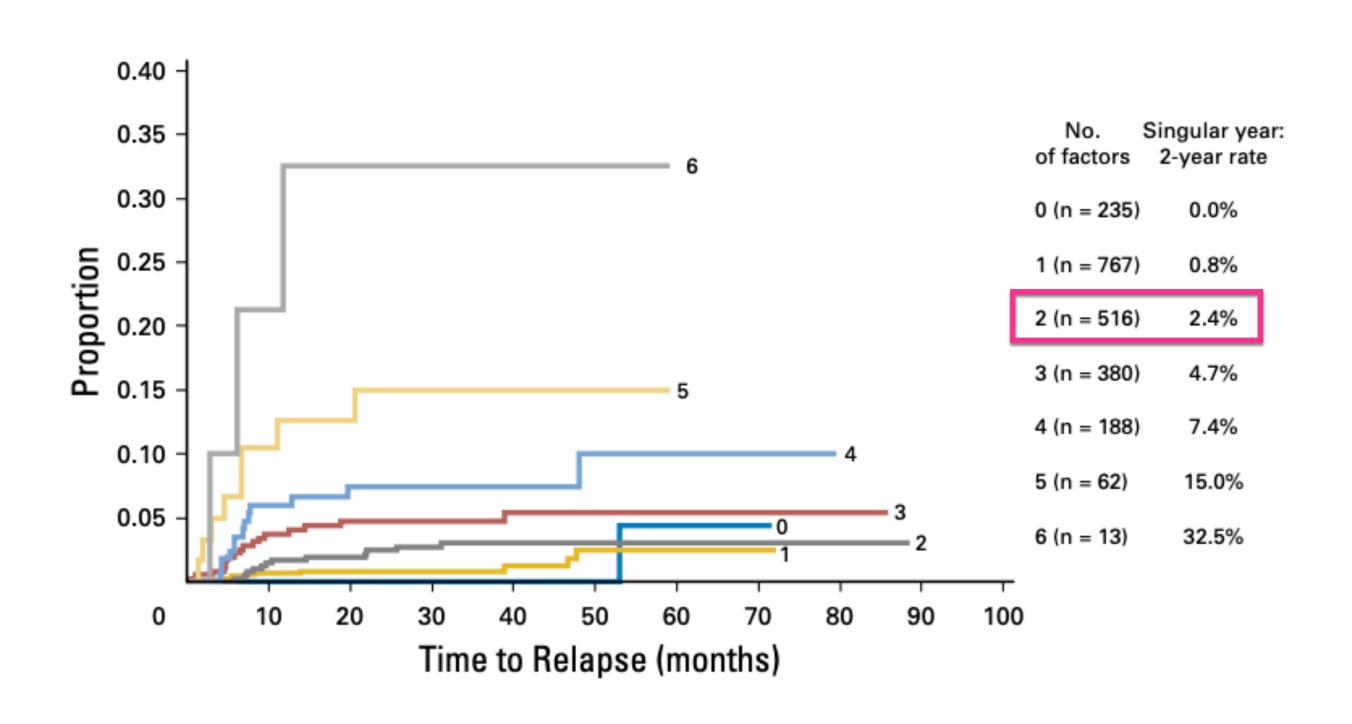
DLBCL "double expressor" non GCB (Hans algorithm)
Stage IVA (breast, bone marrow, bone, liver)

IPI: 2/5 CNS IPI: 2/6

CASE REPORT 1

Does this patient have risk factors for CNS recurrence?

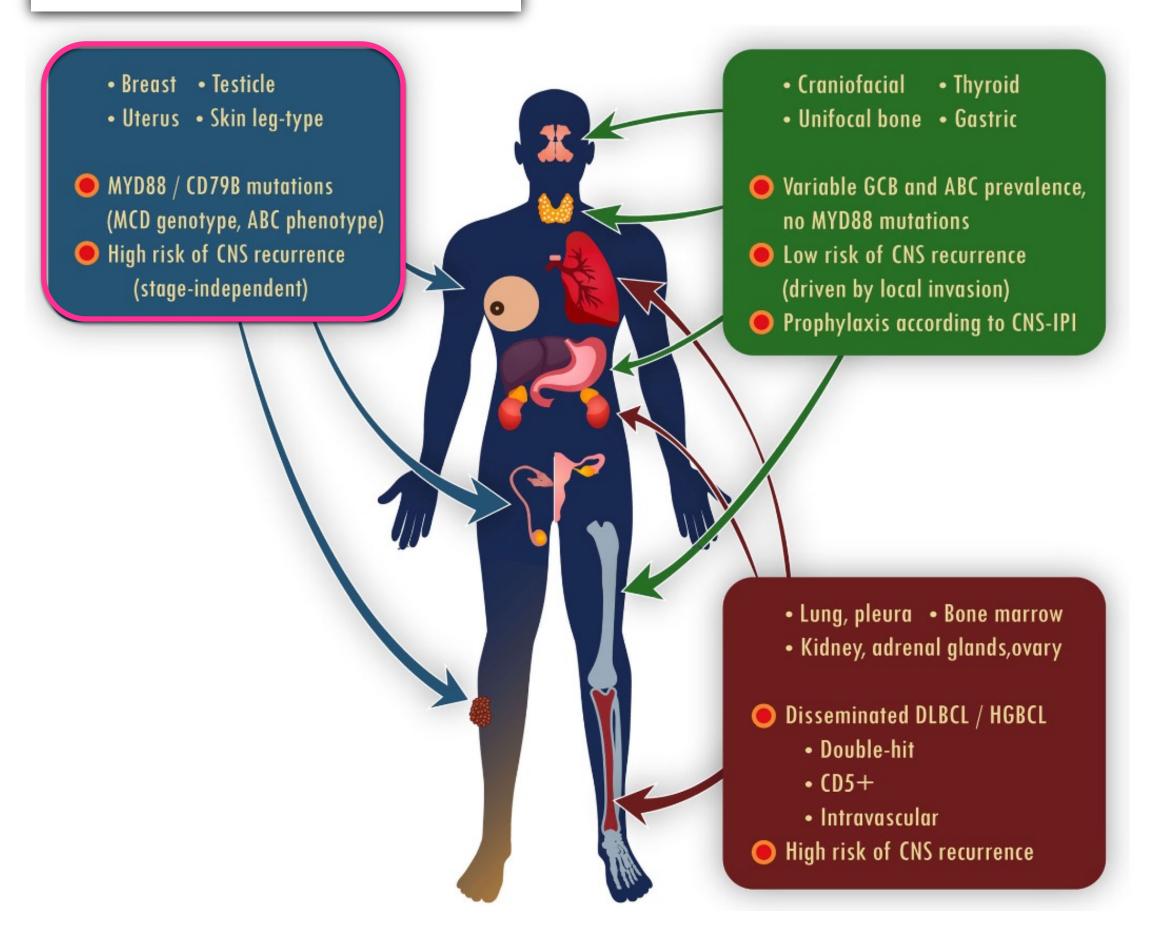
IDENTIFY PATIENTS AT HIGHEST RISK OF CNS RELAPSE


Guideline	Patient selection	Method for CNS prophylaxis suggested		
British Society for Haematology (2021) ⁸	 Offer to: High (4-6) CNS-IPI ≥3 EN sites High-risk EN site involvement—testicular, renal/adrenal, intravascular Consider in: Breast involvement Uterine involvement 	 HD-MTX (≥3g/m² for 2-3 cycles) as early as possible as part of first-line therapy without compromising dose and time intensity of R-CHOP-like treatment IT prophylaxis not recommended if HD-MTX successfully delivered Consider IT as well as systemic prophylaxis in testicular DLBCL 		
NCCN (2022) ⁴⁸	Consider in: • High (4–6) CNS-IPI • Double/triple-hit HGBL • High-risk EN site involvement—testicular, breast, primary cutaneous, renal/adrenal	 HD-MTX (3-3.5g/m² for 2-4 cycles) during or after th course of treatment and/or IT methotrexate and/or cytarabine (4-8 doses) during or after the course of treatment 		
ESMO (2018) ⁴⁹	Consider in: • High IPI • High-risk EN site involvement—testicular, renal/adrenal, breast, bone marrow, bone	 HD-MTX is "an option even though the level of supporting evidence is low" "Little or no role" for IT therapy 		

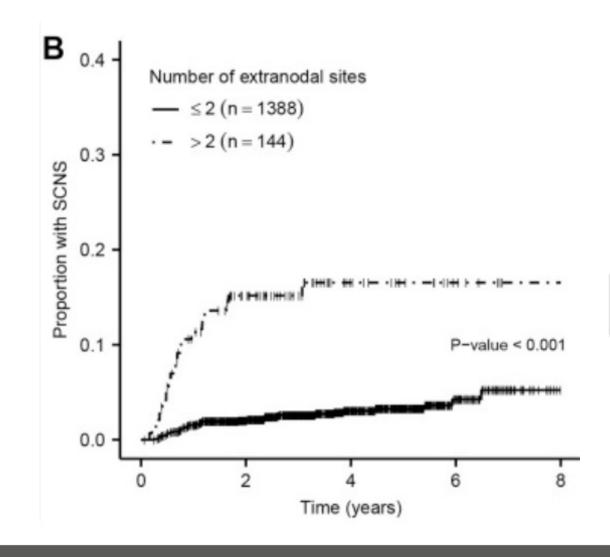
ESMO, European Society for Medical Oncology; HGBL, high-grade B-cell lymphoma; NCCN, National Comprehensive Cancer Network.

Wilson et al. Hematology Am Soc Hematol Educ Program. 2022 McKay et al. BJH 2020 NCCP B-Cell Lymphoma Version 3 2022 Tilly el al. Ann Oncol 2015

CLINICAL FACTORS


CNS International Prognostic Index (CNS-IPI)

CNS IPI score (1 post per risk factor)
Age>60 years
LDH> upper limit normal
ECOG Performance status>1
Stage III/IV disease
Extranodal involvement ≥ 2 sites
Kidney and/or adrenal involvement


Schmitz N et al. J Clin Oncol. 2016 Eyre TA et al. Lancet Oncol 2022

CLINICAL FACTORS

Ollila T et al, Curr Treat Options in Oncol 2018 Calimeri T et al, Ann Lymphoma 2019 El-Galaly T et al, Eur J Cancer 2017

Anatomical site	Number of assessed patients (ref)	Cumulative risk of CNS relapse	Treatment (Induction + Prophylaxis)
Renal/adrenal gland	55 (DLBCL) (23)	35%	R-CHOP (46%)/CHOP-like (54%); IT (14%)
Testis	371 (DLBCL) (24)	34%	Anthracyclines-based chemo; IT (18% of pts)
	73 (DLBCL) (26)	25%	R-CHOP + variable prophylaxis (6 HD-MTX; 2 HD-MTX + IT)
Breast	204 (DLBCL) (25)	5%	Anthracycline-based chemo + IFRT; IT (4%)
	84 (51 high grade) (27)	14%	Variable Treatment w/o prophylaxis
	75 (DLBCL) (28)	20%	Chemo with Rtx (in 69%) + IT (in 8%)
Paranasal sinus	44 (37 DLBCL) (17)	11%	Anthracycline-based chemo; IT (89%)
	40 (DLBCL) (29)	1.5%	R-CHOP + IT proph (in 30% of pt)
Orbit	143 (not specified) (30)	5%	Not specified
Spine/epidural soft tissue	48 (28 Intermediate; 12 High Grade) (31)	8%	Anthracycline-based chemo; IT (19% o pts; none of those who relapsed)

3-year cumulative incidence of SCNS

extranodal sites >2: 15.2%

≤2: 2.6%

BIOLOGICAL FACTORS

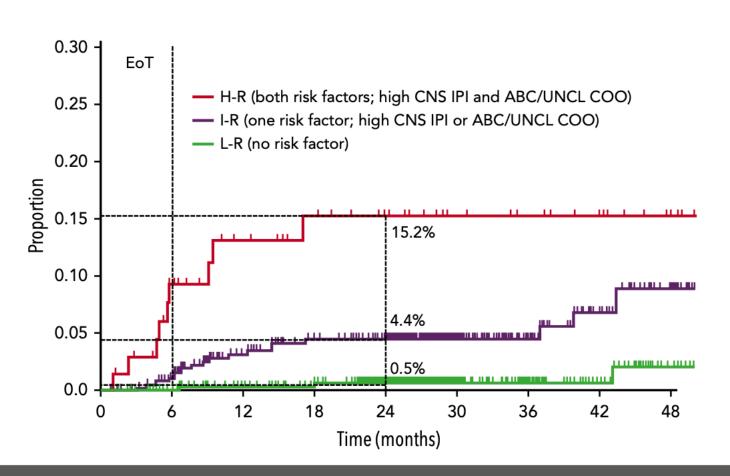
MYC and BCL2 translocations-overexpression

- "Double-triple hit lymphomas": historically associated with high CNS risk (5-20%)
 - early stage: low rate of CNS events
 - selection bias and non uniform application of FISH
 - risk may be rated to high risk clinical features

- "Double expressor" lymphomas: most ABC

Cell of Origin (COO)

- Activated B-cell phenotype (determined by GEP): independent risk factor for CNS

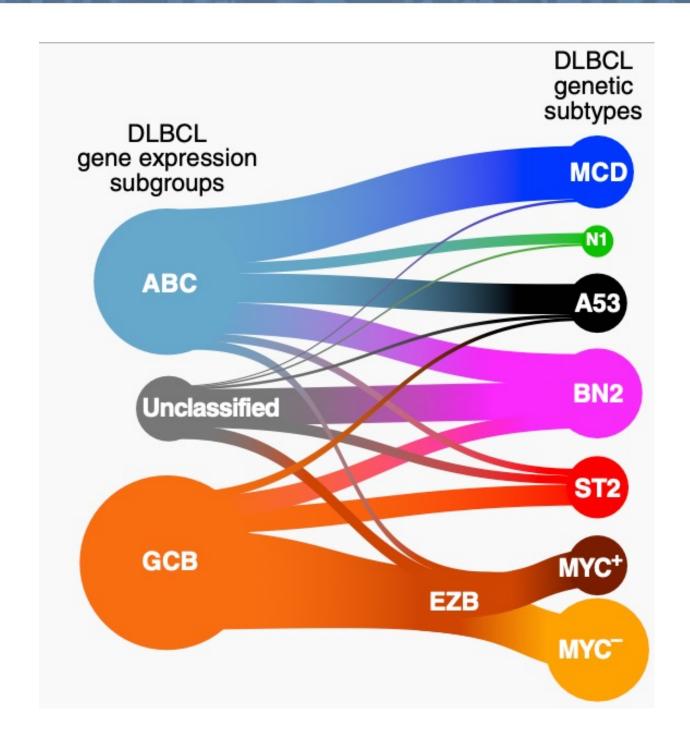

relapse—> CNS Relapse risk: 7-9%

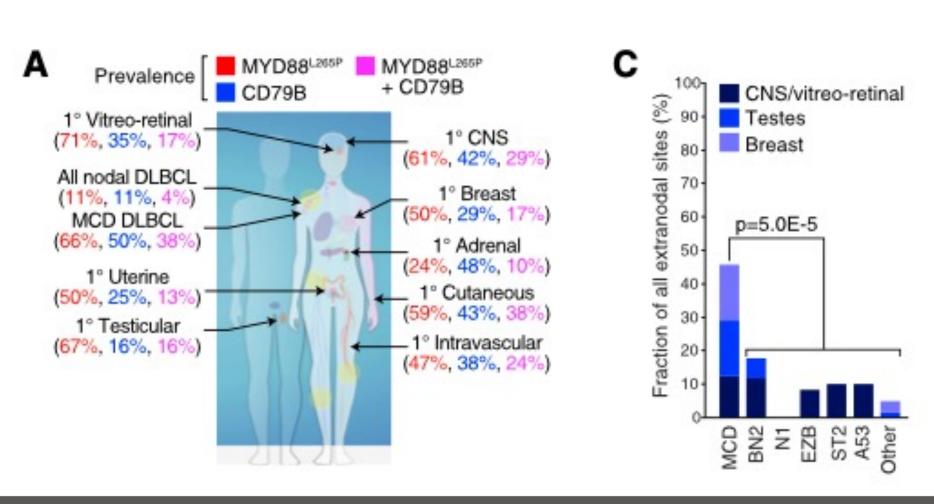
- GOYA post-hoc analysis: ABC (GEP)+CNS IPI

CNS relapse risk 15% (8% of study population)

Savage KJ et al. Blood 2016 Torka P et al. Blood Adv 2022 Klanova M et al. Blood 2019

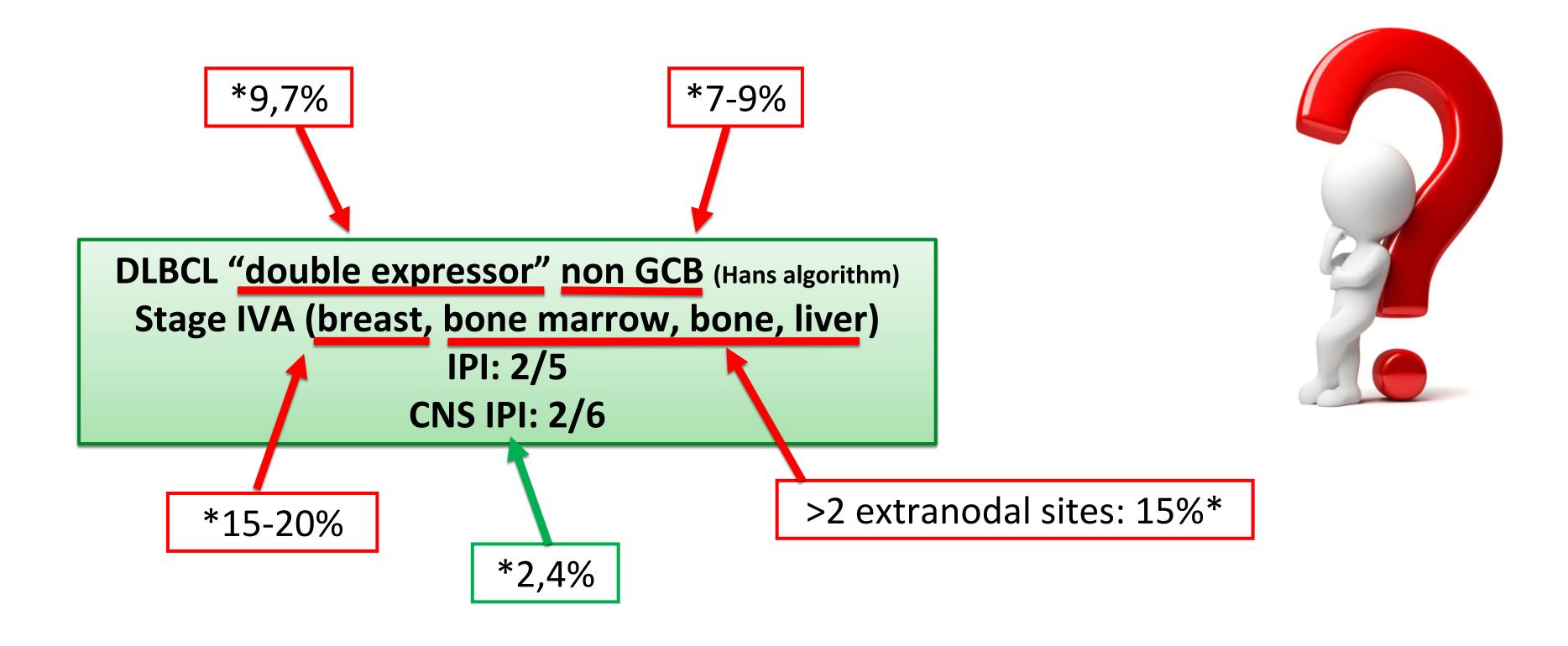
BIOLOGICAL FACTORS


New taxonomy of DLBCL


Multiplatform analyses encompassing point mutations, structural variants and copy-number alterations identify new molecular subgroup:

MCD and C5 clusters

- almost exclusively ABC subtypes
- high frequency of MYD88, CD79, PIM1, and ETV6 mutations
- genetic features overlap with those observed in primary extranodal lymphomas of immune-privileged sites (e.g. CNS, testes, breast, vitreo-retina)
- elevated CNS risk (38% vs 8%)
- present in almost 50% of CNS relapses


Schmitz R et al. NEJM 2018 Chapuy B et al. Nat Medicine 2018 Wright GW et al. Cancer Cell 2020 Ollila T et al. Blood 2021

CASE REPORT 1

Does this patient have risk factors for CNS recurrence?

^{*} Cumulative risk of CNS relapse

HOW TO MANAGE PATIENTS AT HIGH RISK OF CNS DISSEMINATION

Optimize baseline screening

- Watch out for symptoms

in DLBCL	
Symptoms	Incidence
Cranial nerve palsy	30%
Intracranial hypertension (nausea, vomiting)	4–10%
Mental status changes	20–30%
Gait/balance disturbance	10%

Table 4 Most common neurological symptoms at CNS dissemination

25% Peripheral sensory/motor symptoms 20-50% Visual symptoms (uveitis, floaters or campimeter 5–10% 5% Seizures, brain stem or cerebellum symptoms Focal CNS deficits 50%

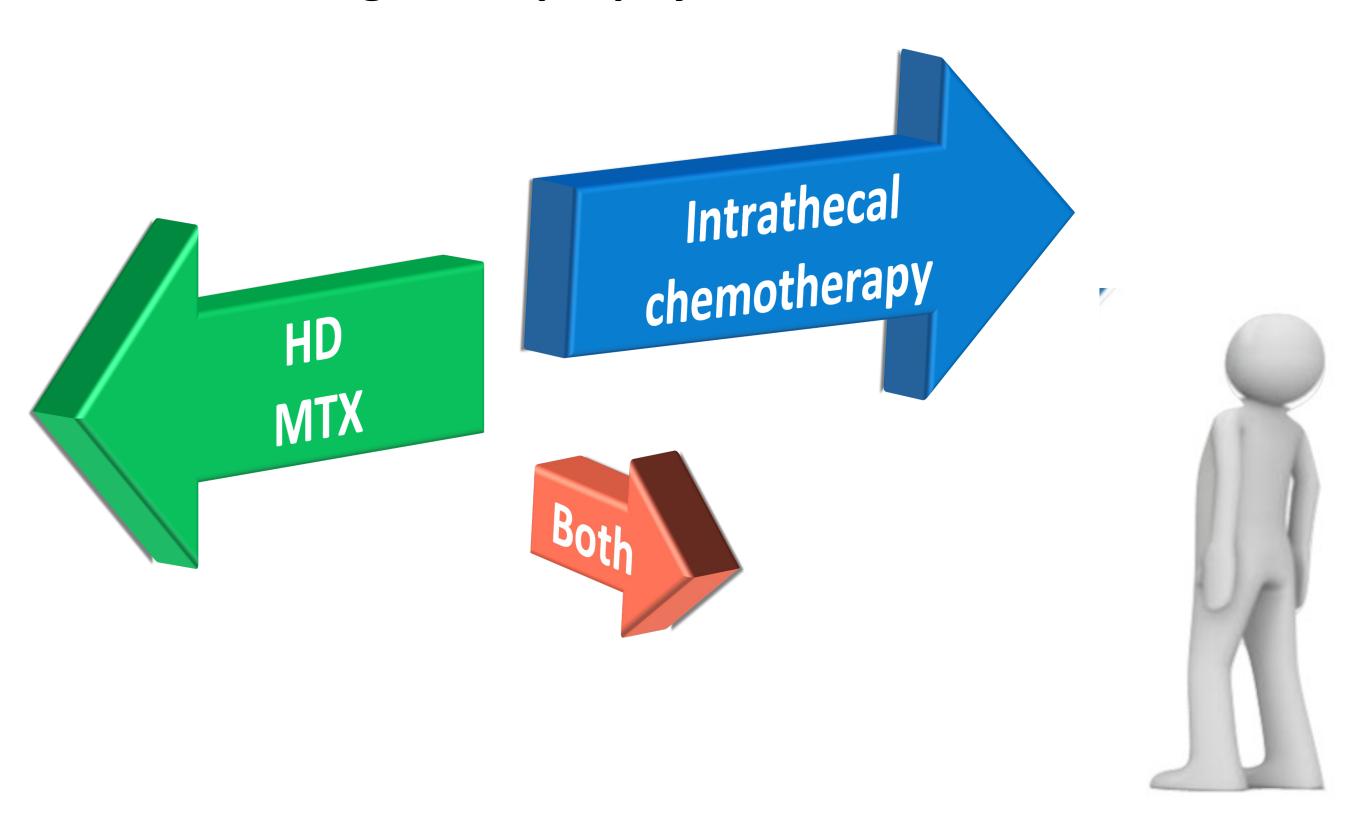
- Consider baseline CNS assessment (CSF study, MRI brain +/- spine)

CSF studies

- Cytology (high specific, limited sensitivity) Increased soluble CD19 protein
- Flow citometry

<5%

- ctDNA


No symptoms

- MYD88 and ASXL2 mutations

Bobillo S et al. Haematologica 2023 Calimeri T et al, Ann Lymphoma 2019

HOW TO MANAGE PATIENTS AT HIGH RISK OF CNS DISSEMINATION

Strategies for prophylaxis of CNS

INTRATHECAL CHEMOTHERAPY (IT)

- Large systematic review (>7000 patients):
- Most of CNS relapses are parenchymal
- NO benefit of stand-alone IT prophylaxis
- exception: testicular DLBCL IELSG-10 and IELSG-30 study

No CNS relapses with 6RCHOP-2HD-MTX-IT liposomal cytarabine and contralateral RTT (54 pts)

Study (year)	Study design	N	Patients	Treatment	IT MTX prophylaxis	Time to CNS relapse	CNS relapse risk
Boehme V <i>et al.</i> (2009) ⁹⁰	Post-hoc analysis RICOVER-60	1,217	61-80 yr "aggressive"	CHOP vs. R-CHOP	57%	8 mth	6.9% vs. 4.1% (2 yr) No benefit in the rituximab group
Tai WM <i>et al.</i> (2011) ⁹¹	Retrospective	499	≥18 yr (R)-CHOP	18%*	6%* (2 yr)	6.7 mth	No benefit
Villa D <i>et al.</i> (2011)92	Retrospective	435	>16 yr, III-IV or testicular	(R)-CHOP	4%*	6.7 mth	6.4% (R-CHOP) No benefit
Schmitz N <i>et al.</i> (2012)93	Post-hoc analysis MinT trial and others	2,210	18-60 yr	CHOP vs. R-CHOP	NR	7 mth	2.3% (2 yr) No benefit in the rituximab group
Kumar A <i>et al.</i> (2012) ⁹⁴	Prospective NCCN database	989	≥18 yr	R-CHOP	11% (72% IT)	12.8 mth	2% (2.5 yr) 5.4% with prophylaxis vs. 1.4% without prophylaxis No benefit
Gleeson M <i>et al.</i> (2017)95	Post-hoc analysis UK NCRI trials	984	≥18 yr, II-IV or I Bulky	R-CHOP 14 vs. R-CHOP 21		8 mth	1.9% (6 yr) No benefit No benefit by CNS-IP
Klanova M <i>et al.</i> (2019) ²⁵	Post-hoc analysis GOYA	1,418	≥18 yr	R-CHOP vs. G-CHOP	10%	8.5 mth	2.5% (2 yr) No benefit No benefit by CNS-IP
Eyre T <i>et al.</i> (2019)35	Retrospective	690	>70 yr	R-CHOP	14%	9.4 mth	3.1% (3 yr) No benefit

Bobillo S et al. Haematologica 2023 Eyre T et al. Haematologica 2020

HIGH-DOSE METHOTREXATE (HD-MTX)

HD-MTX (≥3g/m²)

- several large retrospective studies have failed to demonstrate a reduction in CNS relapse or superiority over IT
- No consensus on the optimal dose or timing of HD-MTX

Intercalated vs end of treatment HD-MTX (i-MTX vs EOT-MTX):

- increased toxicity and risk of RCHOP delay (19,3%) with i-MTX
- No differences in CNS relapses
 (3y CNS relapse 9,1%)

Wilson et al. Blood 2022

Study (year)	n	Design	Risk factors	Systemic treatment	CNS Prophylaxis	CNS relapse	Comments
Lewis et al ³² (2022)	2300	Multicenter, retrospective	CNS-IPI ≥4 Testicular, breast involvement DHL	R-CHOP (94%) R-EPOCH (6%)	1. HD-MTX (18%) 2. No HD-MTX (82%)	1. 9.2% (5y) 2. 8.1% (5y)	No benefit HD-MTX
Wilson et al ³³ (2022)	1384	Multicenter, retrospective	High-risk EN sites CNS-IPI ≥4 ≥2 EN and LDH ↑	R-CHOP	1. HD-MTX (all, intercalated, or EOT)	1. 5.7% (3y) 2. 5.8% (3y)	No difference between EOT and intercalated HD-MTX
Orellana-Noia et al ³⁴ (2022)	1030	Multicenter, retrospective	Not described	R-CHOP (48%) R-EPOCH (45%) Other (7%)	1. HD-MTX (20%) 2. IT (77%)	1. 6.8% 2. 5.4%	No benefit HD-MTX vs IT
Puckrin et al ³⁵ (2021)	326	Multicenter, retrospective	CNS-IPI ≥4 Testicular DHL LDH ↑ + ECOG >1 + >1 EN	R-CHOP (85%) Intensive chemo- therapy (15%)	1. HD-MTX (35%) 2. No HD-MTX (65%)	1. 12.2% 2. 11.2%	No benefit HD-MTX
Bobillo et al ³⁶ (2021)	585	Single-center, retrospective	CNS-IPI ≥4 High-risk EN sites DHL	R-CHOP (68%) R-EPOCH (15%) Other (17%)	1. HD-MTX (7%) 2. IT MTX (43%) 3. None (50%)	1. 7.5% (5y) 2. 5.5% (3y) 3. 5%	No benefit (IT or HD-MTX)
Ong et al ³⁷ (2021)	226	Multicenter, retrospective	High-risk EN sites CNS-IPI ≥4	R-CHOP	1. HD-MTX (29%) 2. No HD-MTX (71%)	1. 3.1% (3y, isolated) 2. 14.6% (3y, isolated)	HD-MTX signifi- cantly reduced risk of isolated CNS relapse
Wilson et al ³⁸ (2020)	334	Multicenter, retrospective	CNS-IPI ≥4 High-risk EN sites ≥2 EN sites and LDH ↑	R-CHOP	1. HD-MTX (all, intercalated, or EOT)	1. 6.8% (3y) 2. 4.7% (3y)	No difference between EOT and intercalated HD-MTX
Lee et al ³⁹ (2019)	130	Single-center, retrospective	CNS-IPI ≥4 High-risk EN sites ≥2 EN and LDH ↑	R-CHOP	1. HD-MTX (49%) 2. None (51%)	1. 6.9% (2y) 2. 8.1% (2y)	No benefit HD-MTX
Goldschmidt et al ⁴⁰ (2019)	480	Multicenter, retrospective	High-risk EN sites Stage IV, LDH ↑, ≥1 EN	CHOP +/-R (80%)	1. HD-MTX (27%) 2. None (73%)	1. 6.9% 2. 6.3%	No benefit HD-MTX

Wilson et al. Hematology Am Soc Hematol Educ Program. 2022 Bobillo S et al. Haematologica 2023

34-year-old women

DLBCL "double expressor" non GCB (Hans algorithm)

Stage IVA (breast, bone marrow, bone, liver)

IPI: 2/5

CNS IPI: 2/6

CASE REPORT 1

What therapy would you suggest to this patient? Would you recommend CNS prophylaxis?

- 1. R-CHOP without CNS prophylaxis
- 2. R-CHOP with CNS prophylaxis
- 3. Intensified chemotherapy with CNS prophylaxis

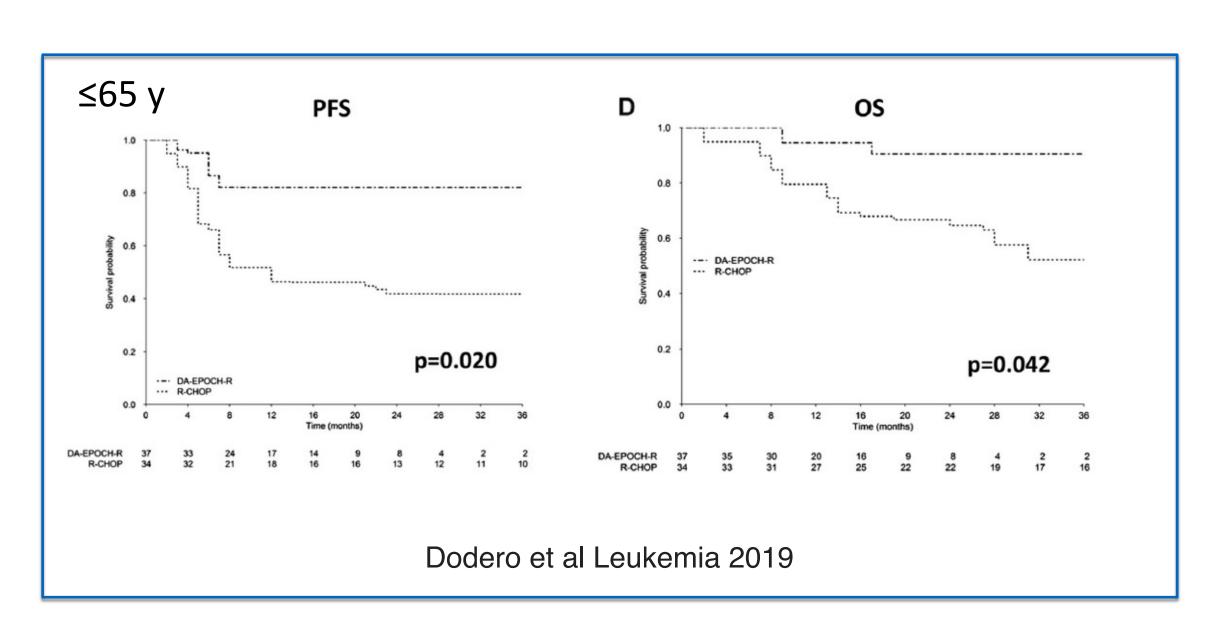
34-year-old women

DLBCL "double expressor" non GCB (Hans algorithm)

Stage IVA (breast, bone marrow, bone, liver)

IPI: 2/5

CNS IPI: 2/6



TREATMENT

R-DAEPOCH + IT MTX Prophylaxis

Dose-adjusted EPOCH plus rituximab improves the clinical outcome of young patients affected by double expressor diffuse large B-cell lymphoma

A. Dodero¹ · A. Guidetti^{1,2} · A. Tucci³ · F. Barretta⁴ · M. Novo⁵ · L. Devizzi¹ · A. Re³ · A. Passi³ · A. Pellegrinelli⁶ · G. Pruneri^{2,6} · R. Miceli⁴ · A. Testi⁶ · M. Pennisi¹ · M. C. Di Chio¹ · P. Matteucci¹ · C. Carniti¹ · F. Facchetti⁷ · G. Rossi³ · P. Corradini (D^{1,2})

TREATMENT

CASE REPORT 1

April 2018

1° RDAEPOCH level 0 + 1° IT MTX 2° RDAEPOCH level 0 + 2° IT MTX 3° RDAEPOCH level 1 + 3° IT MTX

4° RDAEPOCH level 2 + 4° IT MTX 5° RDAEPOCH level 1 + 5° IT MTX 6° IT MTX Restaging

PET: negative

Whole body MRI: complete remission

August 2018

Restaging (PET, TC, BM biopsy): COMPLETE METABOLIC RESPONSE

April 2019

Back pain, paresthesias —> Whole spine and brain MRI: bone lesions (D2, D4, L4, L5, ribs), radiculitis of the cauda and lumbar nerve roots

- -> CFS exam: T reactive lymphocytes
- -> bone biopsy: Diffuse large B cell Lymphoma

WB PET-TC: diffuse bone lesions and pathological tissue from right iliac region to medullary canal, solid intramedullary tissue between D12 and L5

CNS and systemic RELAPSE of DLBCL

3 MATRix-3 RICE-ASCT ("MARIETTA")

CASE REPORT 1

May 2019

1° MATRix + IT MTX arac

2° MATRix + IT MTX arac

Whole spine and brain MRI- WB TC: PR

3° MATRix + IT MTX arac

Leukapheresis

1° RICE + IT MTX arac

2° RICE + IT MTX arac

Evaluation for CAR-T therapy:

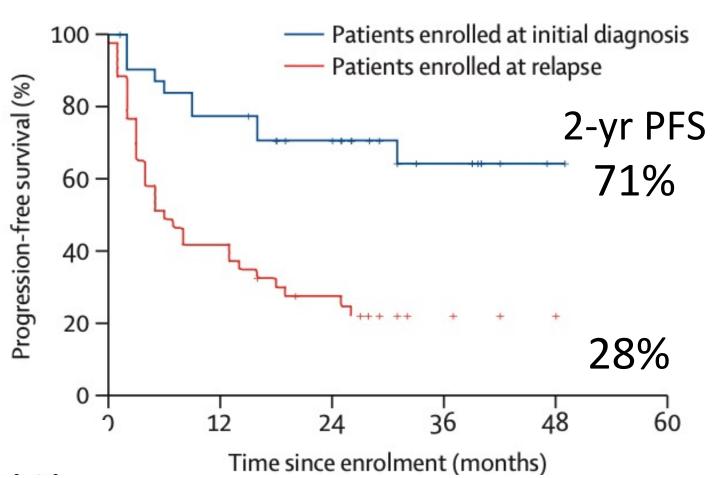
Not elegible

BONE PROGRESSION

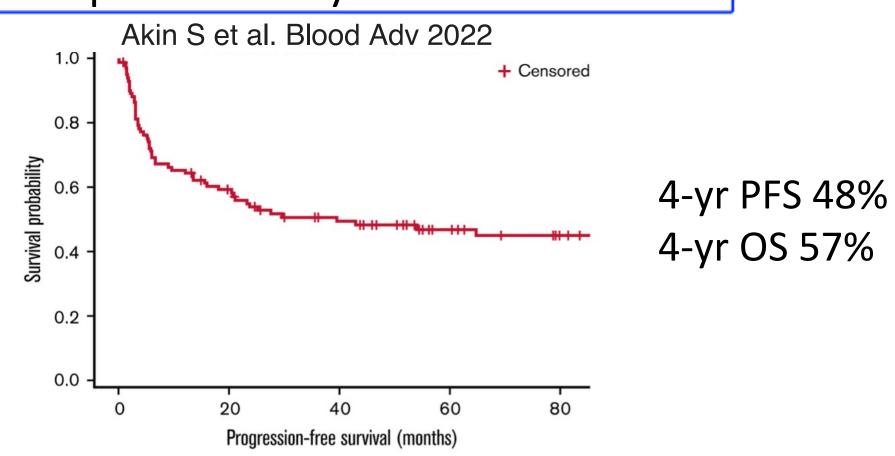
2RMEGA CHOP —> responsive

ASCT—> ALLOGENEIC sibling SCT

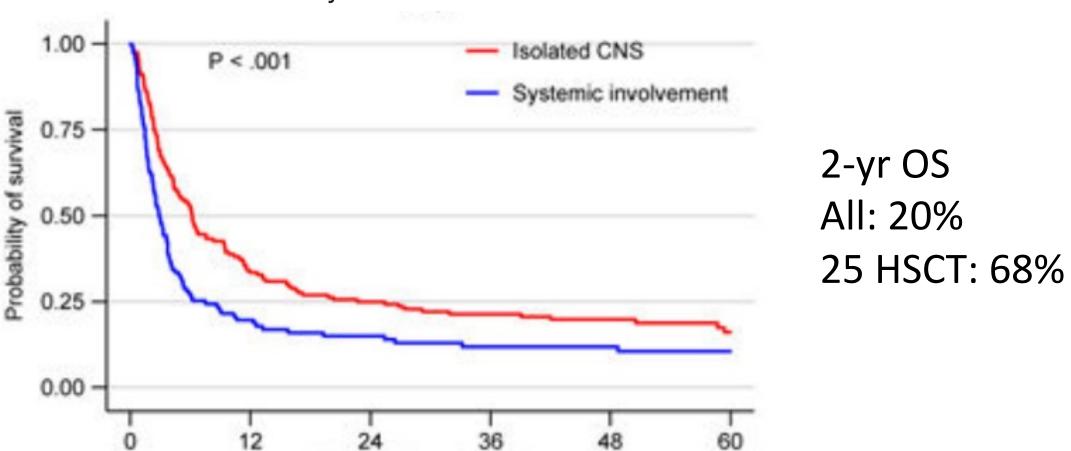
SPLENIC-EPATIC PROGRESSION


August 2020

DEATH FOR LYMPHOMA PROGRESSION

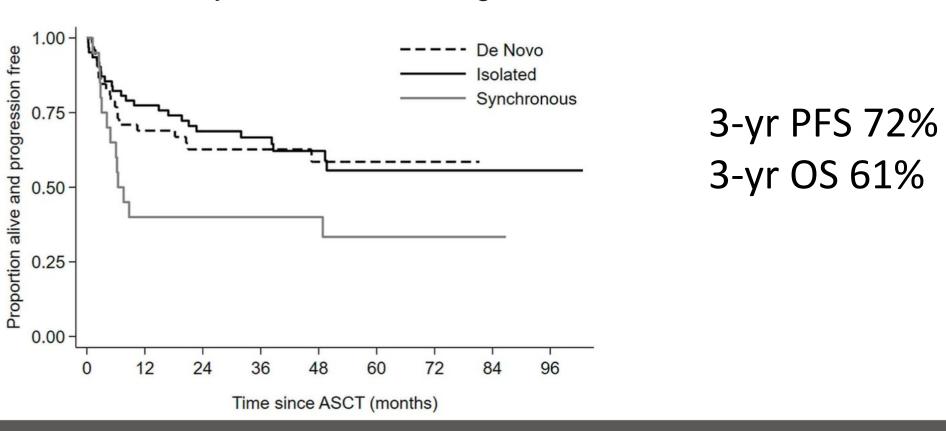

TREATMENT OF PATIENTS WITH CNS INVOLVEMENT

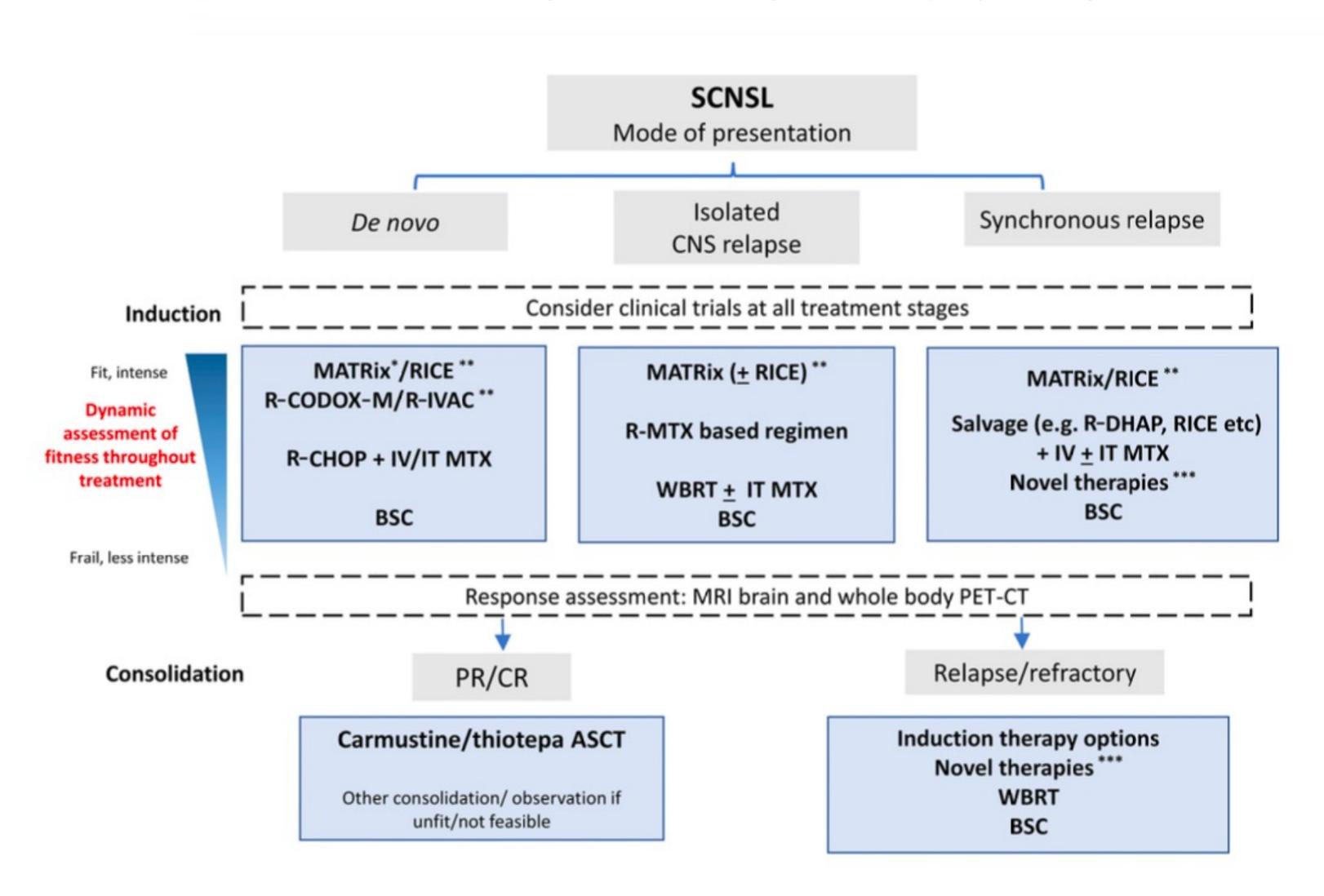
Prospective Study: MARIETTA n=75 -> HSCT=37



Retrospective study SCNSL HSCT n=102

Retrospective study SCNSL n=291 -> HSCT=25




Retrospective study SCNSL HSCT n=134

Khwaja J et al Haematologica 2023

Months after diagnosis

TREATMENT OF PATIENTS WITH CNS INVOLVEMENT

Bobillo S et al. Haematologica 2023

February 2020

HISTORY-PRESENTATION

CASE REPORT 2

75-year-old women

Medical history: 2011 Lymphoplasmacytic lymphoma (LPL) treated with 4 FCR courses

(stop for cytopenias)

Physical examination-clinic: polistational adenopathies, pleural effusion, edema

Laboratory test: elevated LDH

ECOG 2

Simplified GA: unfit

HISTOLOGY

Lymphnode biopsy: Diffuse large B cell Lymphoma

IHC: Ki67 90%, Myc 50%, Bcl2 100%, Bcl6+, CD10-, MUM1+

FISH: BCL6, BCL2 and MYC not rearranged

Bone marrow: pathological small-medium size lymphocyte infiltrate (15%), mutation of MYD88 L265P

IMAGING

WB PET-TC: pathological uptake of diffuse increased

lymphnodes, uterus, tibia, bones

CNS exam: B clonal lymphocytes CD19+CD20+CD5-CD38-

slgk, large lymphocytes (30 cells/mcl)

Whole spine-brain MRI: cauda equina thickening

Secondary CNS lymphoma

DLBCL "Double expressor" non GCB (Hans algorithm)

Stage IVA (bone marrow, bone, uterus, CNS)

IPI: 5/5

75-year-old women Unfit

Secondary CNS lymphoma

DLBCL "Double expressor" non GCB (Hans algorithm)

Stage IVA (bone marrow, bone, uterus, CNS)

IPI: 5/5

What therapy would you suggest to this patient?

- 1. Best supportive care
- 2. R-CHOP (reduced dose) + IV/IT MTX
- 3. MATRix/R-ICE

TREATMENT

February 2020

Proposed therapy: 6 R-CHOP21 + IT MTX-Cytarabine

1° course R-CHOP 100% (VCR 50%) + tibial RTT 8Gy

CASE REPORT 2

9/3/2020

2° course R-CHOP 100% (VCR 50%) + 1° IT MTX Cytarabine (4 cells/mcl)

2° IT MTX Cytarabine (negative IF e cytology)

16/4/2020

3° course R-CHOP 75%

3° IT MTX Cytarabine (negative IF e cytology)
4° IT MTX Cytarabine (negative IF e cytology)

CVC-related polymicrobial sepsis, enteritis, herpetic mucositis

28/5/2020

4° course R-miniCHOP + 5° IT MTX Cytarabine (negative)

Persistent neutropenia and thrombocytopenia

Neutropenic fever - FUO

Restaging after 4 courses

TC: CR

BOM: negative

16/7/2020

4 rituximab (21d) + 4 IT MTX Cytarabine

CASE REPORT 2

September 2020

Restaging at the end of treatment

WB TC-PET: inguinal increased nodes and pulmonary

nodules with increased uptake

Whole spine MRI: negative

Lymph node biopsy: Diffuse large B cell Lymphoma

Systemic relapse of DLBCL
Stage IVA (lung, lymphnodes)
IPI: 3/5

TREATMENT

Proposed therapy: Loncastuximab tesirine-ibrutinib

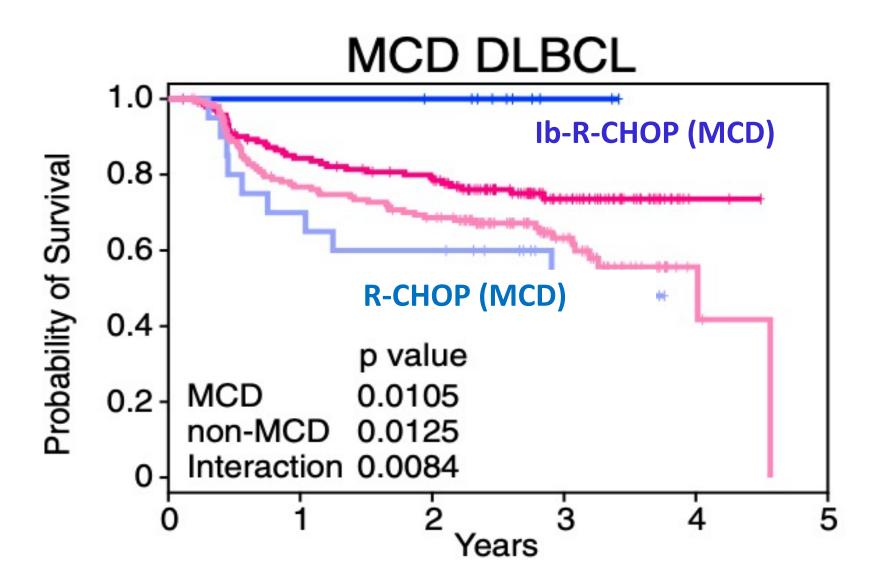
(Phase 1/2 Open-Label Study ADCT-402-103)

L= Loncastuximab-tesirine: 60 μg/kg IV Q3W × 2 ->QW4 x10 I= Ibrutinib: 560 mg/day po continuous beginning C1D1

CASE REPORT 2

```
November 2020
                           - C1 L-I
                                            thrombocytopenia grade II
                           - C2 L-I
                                            atrial fibrillation grade II
  Restaging
  WB TC-PET: PR
                           - C3 L-I
                           - C4 L-I
  WB TC-PET: improved PR
                           - C5 L-I
                                           neutropenia and
                           - C6 L-I
                                                                          stop Ibrutinib -> \downarrow 420 mg
                                           thrombocytopenia grade III
 WB TC-PET: improved PR
                           - C7 L-I
                           - C8 L-I
                                                                                         stop Ibrutinib -> \downarrow 280 mg
                                           neutropenia grade III + erythema grade III
                           - C9 L-I
  WB TC-PET: CR
                           - C10 L-I
                                                                                          stop Ibrutinib
                                                                           October 2021
                                       relapsing erythema grade III
                           - C11-13 I
  WB TC-PET: CR
                                                                           February 2023
                                                                                            Persistent CR
```

FUTURE PERSPECTIVES: Novel therapies


Ibrutinib

	Patients	Treatment	Response	Median Follow up	Outcome (median)
1	29 PCNSL R/R	Ibr	ORR 31/40 (78%)	22 m	PFS 4 m
	15 SCNSL R/R		17/40 (42%) CR		OS 19,5 m
2	9 PCNSL R/R	Ibr-R-MTX	ORR 12/15 (80%)	19,7 m	PFS 9,2 m
	6 SCNSL		8/15 CR (53%)		OS n.r
	(3 de novo)		4/15 PR (27%)		
3	13 PCNSL R/R	lbr-	17/18 reduction	15,5 m	PFS 15,5 m (R/R)
	5 PCNSL de	DA-TEDDI-R	15/18 (83%) PR*		OS n.r.
	novo				

^{* 39%} aspergillosis, ^ 3 pts stop for AE

Ongonig study with acalabrutinib and durvalumab (NCT04462328)

- 1. Grommes C et al. Blood 2018
- 2. Grommes C et al. Blood 2019
- 3. Lionakis et al. Cancer Cell 2017

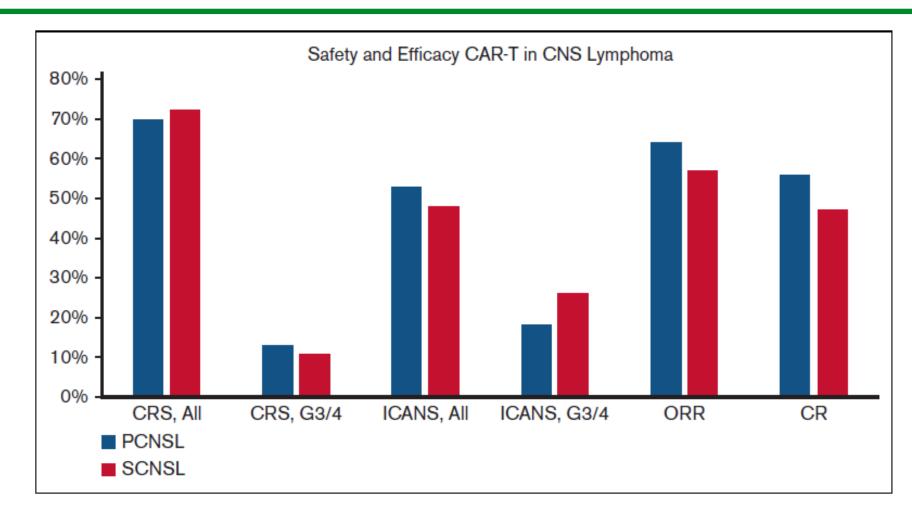
Wilson WH et al. Cancer Cell 2021

FUTURE PERSPECTIVES: Novel therapies

Immunomodulatory agents

	Patients	Treatment	Response	Median	Outcome
				Follow up	(median)
1	25 PCNSL or PVRL	pom-DMZ	ORR 12/25 (48%)	16,5 m	PFS 5 m
	R/R		8/25 (32%) CR/CRu		
			4/25 (16%) PR		
2	34 PCNSL R/R	len-RTX	ORR 16/45 (36%)	19,2 m	PFS 8 m
	11 PVRL R/R		13/45 (29%) CR		OS 18 m
	(+5 early death/PD)		3/45 (7%) PR		
3	6 PCNSL R/R	HD MTX/RTT +	ORR 64%	12,5 m	PFS 6 m
	8 SCNSL R/R	len-RTX	(4 sustained		
			response>18 m)		

R2CHOP (136 patients): 2y CNS relapse 0,7% (11)


- 1. Tun HW et al. Blood 2018
- 2. Ghesquieres H et al. Ann of Oncol 2019
- 3. Rubensteins JL et al. Blood Adv 2019

CAR-T

Toxicity and efficacy of CAR T-cell therapy in primary and secondary CNS lymphoma: a meta-analysis of 128 patients

Median follow up Ongoing response

PCNSL: 30 pts 12,2 m 37% SCNSL: 98 pts 10 m 46%

Cook M et al. Blood adv 2023

FUTURE PERSPECTIVES: Improve baseline screening

▶ ctDNA

- 136 patients (92 CNSL): ctDNA detectable in 100% of CFS and 78% of plasma samples
- Pretreatment plasma ctDNA is related to outcome

Mutter J et al JCO 2022

- 19 patients 6 isolated CNSL, 1 SCNSL, 12 systemic lymphomas (SL)
- ctDNA found only in all CNSL-SCNSL
- ctDNA detected in CSF before CNS relapse in 2 patients

Bobillo S et al. Haematologica 2021

Clonotypic DNA-NGS MRD

- 13 CNSL -> detected in 100% of CSF samples
- 22 DLBCL HR -> 8 (36%) detectable clonotypic DNA (ClDNA) in CSF: 2 relapsed in CNS 12 months CNS relapse risk 29% in clDNA+ vs 0% in clDNA-

Olszewski A et al. Blood Adv 2021

MYD88 L265P mutation

- 73 PCNSL de novo or R/R: Mut MYD88 in 88% of PCNSL biopsies- 82% concordance in paired tissue-CSF samples
- -> combined analysis of MYD88 and IL-10: sensibility 94% and specificity 98% in distinguishing PCNSL
- MYD88 mutations identified in 70% of primary testicular lymphomas

Ferreri AJM et al BJH 2021

CONCLUSIONS

- Try to optimize baseline screening (MRI-CSF) to identify very high risk patients
- ▶ To date, there is an absence of robust prospective data informing risk estimation and the definitive benefit of prophylactic strategies
 - in high-risk patients consider HD-MTX (at EOT)
 - IT therapy + HD-MTX in Testicular DLBCL
- Future direction:
 - expand ultrasensitive technology to detect occult CNS involvement at presentation (ctDNA, MYD88 mutation)
 - biological agents active against B lymphomas with good CNS bioavailability could improve front-line treatment effectiveness and reduce CNS dissemination