. 

> Machine-Learning in onco-hematology for prognosis in lymphomas: Application to microenvironment in DLBCL *Gian Maria Zaccaria, PhD*





### **Disclosures of Name Surname**

| Company name | Research<br>support | Employee | Consultant | Stockholder | Speakers<br>bureau | Advisory<br>board | Other |
|--------------|---------------------|----------|------------|-------------|--------------------|-------------------|-------|
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |





## High-performance Medicine

The convergence of human and artificial intelligence

- New specialists
  - Debugging
  - Interpretation
- Robust Hypotheses
  - Simulation
  - Robust validation
- Prospective scrutiny
- Clinical translation



Milano, 14-15 aprile 2023

gli under 40 a confronto



PROSPECTIVE **CLINICAL/TRANSLATIONAL TRIALS** 

NETWORK OF CENTERS, LAB FACILITIES, INDUSTRY

Courtesy of S. Ciavarella



### nature methods

About the journal ~ Publish with us  $\sim$ Explore content ~

<u>nature > nature methods > brief communications > article</u>

Published: 24 August 2015

### **Predicting effects of noncoding variants with deep** learning-based sequence model

Jian Zhou & Olga G Troyanskaya

Nature Methods 12, 931–934 (2015) Cite this article 67k Accesses 1051 Citations 158 Altmetric Metrics

### Abstract

Identifying functional effects of noncoding variants is a major challenge in human genetics. To predict the noncoding-variant effects de novo from sequence, we developed a deep learning-based algorithmic framework, DeepSEA (http://deepsea.princeton.edu/), that directly learns a regulatory sequence code from large-scale chromatin-profiling data, enabling prediction of chromatin effects of sequence alterations with single-nucleotide sensitivity. We further used this capability to improve prioritization of functional variants including expression quantitative trait loci (eQTLs) and disease-associated variants.

### nature biotechnology

Explore content ~ About the journal ~ Publish with us ~

<u>nature</u> > <u>nature biotechnology</u> > <u>analyses</u> > article

### Published: 27 July 2015

### Predicting the sequence specificities of DNA- and RNAbinding proteins by deep learning

Babak Alipanahi, Andrew Delong, Matthew T Weirauch & Brendan J Frey

Nature Biotechnology 33, 831–838 (2015) Cite this article 185k Accesses | 1443 Citations | 273 Altmetric | Metrics

### Abstract

Knowing the sequence specificities of DNA- and RNA-binding proteins is essential for developing models of the regulatory processes in biological systems and for identifying causal disease variants. Here we show that sequence specificities can be ascertained from experimental data with 'deep learning' techniques, which offer a scalable, flexible and unified computational approach for pattern discovery. Using a diverse array of experimental data and evaluation metrics, we find that deep learning outperforms other state-of-the-art methods, even when training on *in vitro* data and testing on *in vivo* data. We call this approach DeepBind and have built a stand-alone software tool that is fully automatic and handles millions of sequences per experiment. Specificities determined by DeepBind are readily visualized as a weighted ensemble of position weight matrices or as a 'mutation map' that indicates how variations affect binding within a specific sequence.

### Milano, 14-15 aprile 2023

### gli under 40 a confronto

### nature methods

Publish with us  $\checkmark$ Explore content  $\checkmark$  About the journal  $\checkmark$ 

<u>nature</u> > <u>nature methods</u> > <u>articles</u> > article

Article Published: 12 October 2020

### DeepC: predicting 3D genome folding using megabasescale transfer learning

Ron Schwessinger, Matthew Gosden, Damien Downes, Richard C. Brown, A. Marieke Oudelaar, Jelena Telenius, Yee Whye Teh, Gerton Lunter 🗠 & Jim R. Hughes 🗠

Nature Methods 17, 1118–1124 (2020) Cite this article 10k Accesses 54 Citations 43 Altmetric Metrics

### Abstract

Predicting the impact of noncoding genetic variation requires interpreting it in the context of three-dimensional genome architecture. We have developed deepC, a transfer-learningbased deep neural network that accurately predicts genome folding from megabase-scale DNA sequence. DeepC predicts domain boundaries at high resolution, learns the sequence determinants of genome folding and predicts the impact of both large-scale structural and single base-pair variations.







### nature methods

Publish with us  $\sim$ About the journal ~ Explore content ~

<u>nature > nature methods > brief communications > article</u>

Published: 24 August 2015

### **Predicting effects of noncoding variants with deep** learning-based sequence model

Jian Zhou & Olga G Troyanskaya

Nature Methods 12, 931–934 (2015) 67k Accesses 1051 Citations 1!



Abstract

Identifying functional effects of n Graphical Abstract To predict the noncoding-variant learning-based algorithmic fram directly learns a regulatory seque enabling prediction of chromatin sensitivity. We further used this c including expression quantitative

### **Predicting Splicing from Primary Sequence with Deep Learning**



### Authors

Kishore Jaganathan, Sofia Kyriazopoulou Panagiotopoulou, Jeremy F. McRae, ..., Serafim Batzoglou, Stephan J. Sanders, Kyle Kai-How Farh

### Correspondence

kfarh@illumina.com

### In Brief

A deep neural network precisely models mRNA splicing from a genomic sequence and accurately predicts noncoding cryptic splice mutations in patients with rare genetic diseases.

### nature biotechnolog

Explore content ~ About the jou

<u>nature > nature biotechnology > ar</u>

Published: 27 July 2015

### Predicting the sequence specificities of DNA- and RNAbinding proteins by deep learning

Babak Alipanahi, Andrew Delong, Matthew T Weirauch & Brendan J Frey 🖂

### gli under 40 a confronto

| ,<br>У                                          | nature methods                                                                           |  |  |
|-------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Irnal $\checkmark$ Publish with us $\checkmark$ | Explore content $\checkmark$ About the journal $\checkmark$ Publish with us $\checkmark$ |  |  |
| nalyses > article                               | nature > nature methods > articles > article                                             |  |  |

Article Published: 12 October 2020 DeepC: predicting 3D genome folding using megabasescale transfer learning

Ron Schwessinger, Matthew Gosden, Damien Downes, Richard C. Brown, A. Marieke Oudelaar, Jelena

Article

### nature protocols

PROTOCOL

Investigating RNA editing in deep transcriptome datasets with REDItools and REDIportal

Claudio Lo Giudice<sup>1</sup>, Marco Antonio Tangaro<sup>1</sup>, Graziano Pesole<sup>1,2,3</sup> and Ernesto Picardi<sup>1,2,3\*</sup>

RNA editing is a widespread post-transcriptional mechanism able to modify transcripts through insertions/deletions or base substitutions. It is prominent in mammals, in which millions of adenosines are deaminated to inosines by members of the ADAR family of enzymes. A-to-I RNA editing has a plethora of biological functions, but its detection in large-scale transcriptome datasets is still an unsolved computational task. To this aim, we developed REDItools, the first software package devoted to the RNA editing profiling in RNA-sequencing (RNAseq) data. It has been successfully used in human transcriptomes, proving the tissue and cell type specificity of RNA editing as well as its pervasive nature. Outcomes from large-scale REDItools analyses on human RNAseq data have been collected in our specialized REDIportal database, containing more than 4.5 million events. Here we describe in detail two bioinformatic procedures based on our computational resources, REDItools and REDIportal. In the first procedure, we outline a workflow to detect RNA editing in the human cell line NA12878, for which transcriptome and whole genome data are available. In the second procedure, we show how to identify dysregulated editing at specific recoding sites in post-mortem brain samples of Huntington disease donors. On a 64-bit computer running Linux with  $\geq$  32 GB of random-access memory (RAM), both procedures should take ~76 h, using 4 to 24 cores. Our protocols have been designed to investigate RNA editing in different organisms with available transcriptomic and/or genomic reads. Scripts to complete both procedures and a docker image are available at https://github.com/BioinfoUNIBA/REDItools.





### The young side of LYMPHOMA gli under 40 a confronto

## Artificial Intelligence, Machine/Deep-Learning



Nagy et al., Machine Learning in Oncology: What should clinicians knows ?, JCO-Clinical Cancer Informatics, 2020



## Techniques

- response, progression, death)
  - Tree-based vs. Neural Network based algorithms





### Supervised – clinical outcomes are known and already defined (e.g., clinical



## Techniques

- response, progression, death)
  - Tree-based vs. Neural Network based algorithms





### Supervised – clinical outcomes are known and already defined (e.g., clinical

Images top-left from "The Guide to Decision Tree-based Algorithms in Machine Learning", https://omdena.com/blog/decision-tree-based-algorithms/ Images top-right from Radakovich et al., Machine Learning in hematology malignancies, The Lancet Hematology, 2020



## Techniques

- response, progression, death)
  - Tree-based vs. Neural Network based algorithms





Unsupervised – outcomes are not defined (e.g., UMAP, NMF)



### Supervised – clinical outcomes are known and already defined (e.g., clinical

Images top-left from "The Guide to Decision Tree-based Algorithms in Machine Learning", https://omdena.com/blog/decision-tree-based-algorithms/ Images top-right from Radakovich et al., Machine Learning in hematology malignancies, The Lancet Hematology, 2020 Image bottom-left from "Hierarchical Clustering Algorith fro Machine-Learning" https://medium.com/geekculture/hierarchical-clustering-simply-explained-f86b9ed96db7 Image bottom-right from "Basic Machine\_learning" https://genomicsclass.github.io/book/pages/clustering\_and\_heatmaps.html



| l | l |   |   |  |
|---|---|---|---|--|
| i | i |   |   |  |
| ł | ł | 1 | l |  |
|   | l |   | l |  |
|   |   |   |   |  |
|   |   |   |   |  |
|   |   |   |   |  |
|   |   |   |   |  |
|   |   |   |   |  |

| 205820        | - 5  | -88       |
|---------------|------|-----------|
| 205108        | - 61 | "at       |
| 219465        | -51  | ~         |
| 348,422       | -37  |           |
| 212400        | -0-  | -02       |
| 202091        | _S.  | .85       |
| 219912        | _5   | .at       |
| 216238        | - 54 | a.        |
| 205719        | - 8° | 'at       |
| 211298        | -61  | at        |
| 205054        | -51  | ~         |
| 212174        | -2"  |           |
| 212140        | -0-  | -02       |
| 500050        | _5.  | .85       |
| 211357        | -5   | .at       |
| 217238        | -8   | `at       |
| 215125        | -8-  | "at       |
| 205892        | -21  | -at       |
| 211420        | - 01 | - 57      |
| 574263        | -3-  | -31       |
| 202033        |      | -82       |
| 204/00        | .×.  | .80       |
| 215076        | -5   | -M        |
| 202310        | - B. | "at       |
| 203296        | -91  | "at       |
| 209169        | -61  | -         |
| 205358        | - 54 |           |
| 310103        | -27  |           |
| 210120        | а.   | 63        |
| 209970        | _5,  | ,at       |
| 209469        | - 64 |           |
| 203485        | ∵at  |           |
| 209167        | -at  |           |
| 200170        | - 5  | -         |
| 202625        | -34  | , ea.     |
| 101230        |      |           |
| 203130        | а.   | , m.      |
| 209072        | _81  |           |
| 209956        | - 54 | , at      |
| 202508        | 15   | 'at       |
| 203001        | -61  | at        |
| 205171        | -0   | , <b></b> |
| 513865        | -21  |           |
| 214003        | а.   | -82       |
| VER NUMBER OF |      |           |

## Typical Machine-Learning pipeline



Image from Radakovich et al., Machine Learning in hematology malignancies, The Lancet Hematology, 2020



## Typical Machine-Learning pipeline



Image from Radakovich et al., Machine Learning in hematology malignancies, The Lancet Hematology, 2020



## Typical Machine-Learning pipeline



Image from Radakovich et al., Machine Learning in hematology malignancies, The Lancet Hematology, 2020



## The young side of LYMPHOMA Typical Machine-Learning pipeline



Image from Radakovich et al., Machine Learning in hematology malignancies, The Lancet Hematology, 2020



## Typical Machine-Learning pipeline



Image from Radakovich et al., Machine Learning in hematology malignancies, The Lancet Hematology, 2020



## Typical Machine-Learning pipeline



Image from Radakovich et al., Machine Learning in hematology malignancies, The Lancet Hematology, 2020





Abbreviations. ROC: Receiver Operating Characteristic; AUC: Area under curve

Milano, 14-15 aprile 2023

Image on the left from "Glass box, Machine Learning and Medicine", https://glassboxmedicine.com/





Abbreviations. ROC: Receiver Operating Characteristic; AUC: Area under curve

Milano, 14-15 aprile 2023

Image on the left from "Glass box, Machine Learning and Medicine", https://glassboxmedicine.com/





Image on the left from "Glass box, Machine Learning and Medicine", https://glassboxmedicine.com/ Image on the right from Radakovich et al., Machine Learning in hematology malignancies, The Lancet Hematology, 2020

Abbreviations. ROC: Receiver Operating Characteristic; AUC: Area under curve; TN=True Negative; TP=True Positive; FP= False Positive; FN= False Negative









Image on the left from "Glass box, Machine Learning and Medicine", https://glassboxmedicine.com/ Image on the right from Radakovich et al., Machine Learning in hematology malignancies, The Lancet Hematology, 2020

Abbreviations. ROC: Receiver Operating Characteristic; AUC: Area under curve; TN=True Negative; TP=True Positive; FP= False Positive; FN= False Negative





## Machine Learning in Hematology

- Prognostication
- stratification for primary prevention



## The young side of LYMPHOMA

Translational Medicine. Biomarker discovery, Drug-targeted prioritization, Drug discovery, Prediction of chemical toxicity, Genetic variant annotation,

• Clinical Practice. Disease Diagnosis, Interpretation of patients' genomics, Treatment selection, Automated surgery, Patient Monitoring, Patient risk

P. Becker, Machine Learning in Hematology, 60th ASH Annual Meeting, 7-10 Dec 2019, Orlando, USA



## Machine Learning in Hematology

- Prognostication
- stratification for primary prevention
- At the 2021 ASH meeting, 74 abstracts included within either title or Intelligence", respectively. Of these, 9 were on lymphoma projects

## The young side of LYMPHOMA

Translational Medicine. Biomarker discovery, Drug-targeted prioritization, Drug discovery, Prediction of chemical toxicity, Genetic variant annotation,

• Clinical Practice. Disease Diagnosis, Interpretation of patients' genomics, Treatment selection, Automated surgery, Patient Monitoring, Patient risk

methods the keywords "Machine-Learning", "Deep-Learning", and "Artificial

• At the 2022 ASH meeting, 31 abstracts and a dedicated congress section

P. Becker, Machine Learning in Hematology, 60th ASH Annual Meeting, 7-10 Dec 2019, Orlando, USA





Machine Learning Approaches Incorporating High-Dimensional Longitudinal Data Improve the Prediction of Survival after Allogeneic Hematopoietic Cell Transplantation

| 10:30-10:45<br>Sat 10 Dec | 5<br>(Central)  |         | ENMCC - 388-390<br>Paper No: 0131 |             |  |
|---------------------------|-----------------|---------|-----------------------------------|-------------|--|
| S Yr                      | wang Zhou       | ı, PhD  |                                   | >           |  |
| Rate ★                    |                 |         |                                   |             |  |
| Disclosure                | :               |         |                                   |             |  |
| Home                      | <b>Schedule</b> | Program | Search                            | •••<br>More |  |



🖉 78% 🔳 08:15 Session On-Site COVID-19 Testing Dashboard CLICK HERE Presentation I 634. Myeloproliferative Syndromes - Clinical and. Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis ENMCC - 217-219 Paper No: 0339 Adrian Mosquera Orgueira ....

16:30-16:45 Sat 10 Dec (Central)



Disclosure:



Program



Supervised Machine Learning Improves Risk Stratification in Newly Diagnosed Myelodysplastic Syndromes: An Analysis of the Spanish Group of Myelodysplastic Syndromes



### Milano, 14-15 aprile 2023

Search

More





Machine Learning Algorithm Correctly Identifies 95% of Cells in Differential Count of Blood Smears: A Prospective Study on >29,000 Cases and >17 Million Single Cells

10:30-10:45 Mon 12 Dec (Central) ENMCC - 391-392 Paper No: 0787



Torsten Haferlach, MD

Disclosure:



33 Schedule



... Search More

> Image from Chen et al., Automatic identifying and counting blood cells in smear images by using single shot detector and Taguchi method, BMC Bioinformatics 22 (Suppl 5), 635 (2021). https://doi.org/10.1186/s12859-022-05074-2







### 451 Combining PET Radiomic Features with MYC Gene Rearrangement Results in High Prediction of Outcome in Diffuse Large B-Cell Lymphoma

Program: Oral and Poster Abstracts

Type: Oral

Session: 627. Aggressive Lymphomas: Clinical and Epidemiological: Clinical Management of Aggressive B cell NHL Hematology Disease Topics & Pathways:

Lymphomas, Non-Hodgkin Lymphoma, Clinically Relevant, Diseases, Lymphoid Malignancies, Technology and Procedures, Machine Learning

### Sunday, December 12, 2021: 12:00 PM

Jakoba J Eertink, MSc1\*, Gerben J.C Zwezerijnen, MD2\*, Sanne E Wiegers, MSc3\*, Martine E.D Chamuleau, MD, PhD3, Pieternella Lugtenburg, MD, PhD<sup>4</sup>, Daphne De Jong, MD, PhD<sup>5\*</sup>, Bauke Ylstra<sup>6\*</sup>, Matias Mendeville<sup>5\*</sup>, Ulrich Dührsen, Prof, MD, PhD<sup>7\*</sup>, Andreas Hüttmann, MD<sup>8</sup>, Christine Schmitz, MD<sup>7\*</sup>, Julia Richter, PhD<sup>9\*</sup>, Wolfram Klapper<sup>9\*</sup>, Otto S Hoekstra, Prof, MD, PhD<sup>2\*</sup>, Henrica C.W de Vet, Prof, PhD<sup>10\*</sup>, Ronald Boellaard, PhD<sup>2\*</sup> and Josée M Zijlstra, MD, PhD<sup>3</sup>



Abbreviations. AUC: Area under curve; AAStage: Ann Arbor Stage; LDH: Lactate Dehydrogenase; EN: Extranodal involvement; PS: WHO Performance Status; MTV: Metabolic Tumor Volume; SUV: standardized uptake value; Dmax<sub>bulk</sub>: maximum distance between the largest lesion and any other lesions; DSUVpeak<sub>pat</sub>: the maximum difference in SUV<sub>peak</sub> between two lesions; Dvol<sub>pat</sub>: maximum difference in volume between two lesions



### 451 Combining PET Radiomic Features with MYC Gene Rearrangement Results in High Prediction of Outcome in Diffuse Large B-Cell Lymphoma

Program: Oral and Poster Abstracts

Type: Oral

Session: 627. Aggressive Lymphomas: Clinical and Epidemiological: Clinical Management of Aggressive B cell NHL Hematology Disease Topics & Pathways:

Lymphomas, Non-Hodgkin Lymphoma, Clinically Relevant, Diseases, Lymphoid Malignancies, Technology and Procedures, Machine Learning

### Sunday, December 12, 2021: 12:00 PM

Jakoba J Eertink, MSc1\*, Gerben J.C Zwezerijnen, MD2\*, Sanne E Wiegers, MSc3\*, Martine E.D Chamuleau, MD, PhD3, Pieternella Lugtenburg, MD, PhD<sup>4</sup>, Daphne De Jong, MD, PhD<sup>5\*</sup>, Bauke Ylstra<sup>6\*</sup>, Matias Mendeville<sup>5\*</sup>, Ulrich Dührsen, Prof, MD, PhD<sup>7\*</sup>, Andreas Hüttmann, MD<sup>8</sup>, Christine Schmitz, MD<sup>7\*</sup>, Julia Richter, PhD<sup>9\*</sup>, Wolfram Klapper<sup>9\*</sup>, Otto S Hoekstra, Prof, MD, PhD<sup>2\*</sup>, Henrica C.W de Vet, Prof, PhD<sup>10\*</sup>, Ronald Boellaard, PhD<sup>2\*</sup> and Josée M Zijlstra, MD, PhD<sup>3</sup>



Abbreviations. AUC: Area under curve; AAStage: Ann Arbor Stage; LDH: Lactate Dehydrogenase; EN: Extranodal involvement; PS: WHO Performance Status; MTV: Metabolic Tumor Volume; SUV: standardized uptake value; Dmax<sub>bulk</sub>: maximum distance between the largest lesion and any other lesions; DSUVpeak<sub>pat</sub>: the maximum difference in SUV<sub>peak</sub> between two lesions; Dvol<sub>pat</sub>: maximum difference in volume between two lesions

European Journal of Nuclear Medicine and Molecular Imaging (2022) 49:932–942 https://doi.org/10.1007/s00259-021-05480-3

### **ORIGINAL ARTICLE**

### <sup>18</sup>F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma

Jakoba J. Eertink<sup>1</sup> · Tim van de Brug<sup>2</sup> · Sanne E. Wiegers<sup>1</sup> · Gerben J. C. Zwezerijnen<sup>3</sup> Elisabeth A. G. Pfaehler<sup>4</sup> · Pieternella J. Lugtenburg<sup>5</sup> · Bronno van der Holt<sup>6</sup> · Henrica C. W. de Vet<sup>2</sup> · Otto S. Hoekstra<sup>3</sup> · Ronald Boellaard<sup>3</sup> · Josée M. Zijlstra<sup>1</sup>

| Models                                                       | Included features                                                                                                                                                                            |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model 1: IPI                                                 | IPI                                                                                                                                                                                          |
| Model 2: clinical model                                      | Ann Arbor stage, age, WHO performance status, extranodal involvement, LDH, and b                                                                                                             |
| Model 3: MTV                                                 | MTV                                                                                                                                                                                          |
| Model 4: limited radiomics model                             | MTV, SUV <sub>max</sub> , SUV <sub>peak</sub> , SUV <sub>mean</sub> , TLG, number of lesions, Dmax <sub>patient</sub> , Dmax <sub>bulk</sub> , Sp<br>Spread <sub>bulk</sub> , and Sphericity |
| Model 5: all radiomics features (largest and hottest lesion) | 485 features for the largest and hottest lesion                                                                                                                                              |
| Model 6: combined model                                      | Features model 2 and model 4                                                                                                                                                                 |

 Table 1
 Description of prediction models included in this study



pread<sub>patient</sub>,

oulky disease



| Model                             | AUC (95%CI)      | CV-AUC (95%CI)   | Log-likelihood ratio | Specificity | Sensitivity | NPV  | PPV  |
|-----------------------------------|------------------|------------------|----------------------|-------------|-------------|------|------|
| IPI (model 1)                     | 0.68 (0.61-0.75) | 0.68 (0.51-0.80) | - 126.11             | 0.79        | 0.40        | 0.86 | 0.29 |
| Clinical model (model 2)          | 0.73 (0.66–0.80) | 0.71 (0.56-0.86) | -123.52              | 0.87        | 0.38        | 0.87 | 0.38 |
| MTV (model 3)                     | 0.66 (0.58–0.74) | 0.66 (0.50-0.81) | - 129.96             | 0.84        | 0.27        | 0.84 | 0.27 |
| Limited radiomics model (model 4) | 0.76 (0.69–0.82) | 0.75 (0.59-0.88) | - 117.61             | 0.88        | 0.44        | 0.88 | 0.44 |
| Combined model (model 6)          | 0.79 (0.73–0.86) | 0.77 (0.61-0.90) | -113.4               | 0.88        | 0.44        | 0.88 | 0.44 |

Abbreviations. AUC: Area under curve; AAStage: Ann Arbor Stage; LDH: Lactate Dehydrogenase; EN: Extranodal involvement; PS: WHO Performance Status; MTV: Metabolic Tumor Volume; SUV: standardized uptake value; Dmax<sub>bulk</sub>: maximum distance between the largest lesion and any other lesions; DSUVpeak<sub>pat</sub>: the maximum difference in SUV<sub>peak</sub> between two lesions; Dvol<sub>pat</sub>: maximum difference in volume between two lesions

European Journal of Nuclear Medicine and Molecular Imaging (2022) 49:932–942 https://doi.org/10.1007/s00259-021-05480-3

### **ORIGINAL ARTICLE**

### <sup>18</sup>F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma

Jakoba J. Eertink<sup>1</sup> · Tim van de Brug<sup>2</sup> · Sanne E. Wiegers<sup>1</sup> · Gerben J. C. Zwezerijnen<sup>3</sup> Elisabeth A. G. Pfaehler<sup>4</sup> · Pieternella J. Lugtenburg<sup>5</sup> · Bronno van der Holt<sup>6</sup> · Henrica C. W. de Vet<sup>2</sup> Otto S. Hoekstra<sup>3</sup> · Ronald Boellaard<sup>3</sup> · Josée M. Zijlstra<sup>1</sup>

| Models                                                       | Included features                                                                                                                                                                            |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model 1: IPI                                                 | IPI                                                                                                                                                                                          |
| Model 2: clinical model                                      | Ann Arbor stage, age, WHO performance status, extranodal involvement, LDH, and b                                                                                                             |
| Model 3: MTV                                                 | MTV                                                                                                                                                                                          |
| Model 4: limited radiomics model                             | MTV, SUV <sub>max</sub> , SUV <sub>peak</sub> , SUV <sub>mean</sub> , TLG, number of lesions, Dmax <sub>patient</sub> , Dmax <sub>bulk</sub> , Sp<br>Spread <sub>bulk</sub> , and Sphericity |
| Model 5: all radiomics features (largest and hottest lesion) | 485 features for the largest and hottest lesion                                                                                                                                              |
| Model 6: combined model                                      | Features model 2 and model 4                                                                                                                                                                 |

 Table 1
 Description of prediction models included in this study



pread<sub>patient</sub>,

oulky disease

### Proposed New Dynamic Prognostic Index for Diffuse Large B-Cell Lymphoma: International **Metabolic Prognostic Index**

N. George Mikhaeel, MD<sup>1</sup>; Martijn W. Heymans, PhD<sup>2</sup>; Jakoba J. Eertink, PhD<sup>3</sup>; Henrica C.W. de Vet, PhD<sup>2</sup>; Ronald Boellaard, PhD<sup>4</sup> Ulrich Dührsen, MD<sup>5</sup>; Luca Ceriani, MD<sup>6,7</sup>; Christine Schmitz, MD<sup>5</sup>; Sanne E. Wiegers, PhD<sup>3</sup>; Andreas Hüttmann, MD<sup>5</sup>; Pieternella J. Lugtenburg, MD<sup>8</sup>; Emanuele Zucca, MD<sup>6,7</sup>; Gerben J.C. Zwezerijnen, MD<sup>4</sup>; Otto S. Hoekstra, MD<sup>4</sup>; Josée M. Zijlstra, MD<sup>3</sup>; and Sally F. Barrington, MD<sup>9</sup>



American Society of Hematology 2021 L Street NW, Suite 900, Washington, DC 20036 hone: 202-776-0544 | Fax 202-776-0545 editorial@hematology.org

Baseline PET radiomics outperform the IPI risk score for prediction of outcome in diffuse large B-cell lymphoma

Tracking no: BLD-2022-018558R1



European Journal of Nuclear Medicine and Molecular Imaging (2022) 49:932–942 https://doi.org/10.1007/s00259-021-05480-3

### **ORIGINAL ARTICLE**

### <sup>18</sup>F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma

Jakoba J. Eertink<sup>1</sup> · Tim van de Brug<sup>2</sup> · Sanne E. Wiegers<sup>1</sup> · Gerben J. C. Zwezerijnen<sup>3</sup> Elisabeth A. G. Pfaehler<sup>4</sup> · Pieternella J. Lugtenburg<sup>5</sup> · Bronno van der Holt<sup>6</sup> · Henrica C. W. de Vet<sup>2</sup> Otto S. Hoekstra<sup>3</sup> · Ronald Boellaard<sup>3</sup> · Josée M. Zijlstra<sup>1</sup>



## TME



TAM: Tumor Associated Macrophage, CD28, CTL, TCR : CD4/8 T-cell, Fibroblast, Treg: regulatory T-Cell, MDSC: Myeloid Derived Suppressor Cell, Dendritic Cells, NK cell: natural killer cells, . . . . Adipocytes, Pericytes, Artery endothelial cells, Mast cells, Neutrophils, Eosinophils, Monocytes, Follicular helper T-cells, Gamma-delta T-cells, Plasma cells, Memory B cells, Naïve B cells





Figure 1



Milano, 14-15 aprile 2023

Vegliante et al., Hematological Oncology, 2022



Figure 1

### Milano, 14-15 aprile 2023

### gli under 40 a confronto



| Variable |          | Number | HR   | HR (95% CI)        | p-value |
|----------|----------|--------|------|--------------------|---------|
| NR1H3    |          |        | 1    |                    |         |
|          | High     | 266    | ¢    | Reference          |         |
|          | Low      | 48     | •    | 3.51 (2.21, 5.56)  | <0.001  |
| IPI      |          |        |      |                    |         |
|          | Low      | 121    | ₽    | Reference          |         |
|          | Low-Int  | 76     | ¦⊷⊕⊷ | 2.73 (1.39, 5.36)  | 0.004   |
|          | High-Int | 68     | ¦ ⊷  | 3.97 (2.00, 7.89)  | <0.001  |
|          | High     | 49     | ¦ ⊷  | 5.50 (2.83, 10.70) | <0.001  |
| соо      |          |        |      |                    |         |
|          | GCB+UC   | 172    | Ð    | Reference          |         |
|          | ABC      | 142    | ₩    | 2.23 (1.44, 3.47)  | <0.001  |





| Variable |        | Number | HR                     | HR (95% CI)       | p-value |
|----------|--------|--------|------------------------|-------------------|---------|
| NR1H3    |        |        | <br> <br>              |                   |         |
|          | High   | 154    | ।<br>∲<br>।            | Reference         |         |
|          | Low    | 21     | ı<br><b>'⊢⊕</b>  <br>' | 2.48 (1.18, 5.25) | 0.02    |
| COO      |        |        |                        |                   |         |
|          | GCB+UC | 137    | ।<br>₽<br>1            | Reference         |         |
|          | ABC    | 38     | ।<br>¦ <b>⊢⊕</b> ⊣     | 4.02 (2.12, 7.61) | <0.001  |



| Variable |          | Number | HR             | HR (95% CI)        | p-value |
|----------|----------|--------|----------------|--------------------|---------|
| NR1H3    |          |        | 1              |                    |         |
|          | High     | 120    | ¢              | Reference          |         |
|          | Low      | 24     | ⊕•             | 2.55 (1.29, 5.04)  | 0.007   |
| IPI      |          |        |                |                    |         |
|          | Low      | 51     | <b>⊕</b>       | Reference          |         |
|          | Low-Int  | 38     | - <del> </del> | 1.37 (0.53, 3.56)  | 0.514   |
|          | High-Int | 40     | ¦⊷             | 4.12 (1.91, 8.87)  | <0.001  |
|          | High     | 15     | ╏┝╋╍           | 4.71 (1.86, 11.92) | 0.001   |
| соо      |          |        | !              |                    |         |
|          | GCB+UC   | 87     | <b>⊕</b>       | Reference          |         |
|          | ABC      | 57     | •              | 1.93 (1.09, 3.39)  | 0.023   |

Figure 2

### prile 2023

### Vegliante et al., Hematological Oncology, 2022

## Objectives

Study of both clinical and TME variables to combine a novel clinical prognostic index able to define patients' risk

Translational applicability for potential drug discovery



Milano, 14-15 aprile 2023



## Objectives

Study of both clinical and TME variables to combine a novel clinical prognostic index able to define patients' risk

Translational applicability for potential drug discovery



Step 1. Clinical variables collection: GSE117556 dataset including 928 DLBCL patients was used as training set. Nine clinical features were considered (gender, age at diagnosis, LDH>ULN, ECOGps, AAStage, extra-nodal involvements, Rev IPI, and COO, treatment arm).

Step 2. Biological variables collection: percentages of 24 TME cytotypes as derived by CIBERSORT were dichotomized in two groups by maximally selected rank statistics according to PFS and OS in the training set.

Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables for PFS, whereas Rev-IPI and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the expression of NR1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3, NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training

Step 9. Application of CIBERSORT algorithm and correlation analysis to GSE98588 dataset used as validation cohort.

Step 10. NR1H3 and ACTA2 expression values from the validation cohort were dichotomized according to the cutoff derived from training set and recursive tree-based model analysis applied including Rev-IPI as clinical variable.

### Milano, 14-15 aprile 2023





### gli under 40 a confronto

## The young side of LYMPHOMA

DATA PREPARATION

Step 1. Clinical variables collection: GSE117556 dataset including 928 DLBCL patients was used as training set. Nine clinical features were considered (gender, age at diagnosis, LDH>ULN, ECOGps, AAStage, extra-nodal involvements, Rev IPI, and COO, treatment arm).

Step 2. Biological variables collection: percentages of 24 TME cytotypes as derived by CIBERSORT were dichotomized in two groups by maximally selected rank statistics according to PFS and OS in the training set.

### Milano, 14-15 aprile 2023



## The young side of LYMPHOMA

FEATURE SELECTION AND DATA-MODELING ON TRAINING-SET

Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables for PFS, whereas Rev-IPI and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the expression of NR1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3, NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training

### Milano, 14-15 aprile 2023



Milano, 14-15 aprile 2023

## The young side of LYMPHOMA

FEATURE SELECTION AND DATA-MODELING ON TRAINING-SET

Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables for PFS, whereas Rev-IPI and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the expression of NR1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3, NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training



|        | -                              | Log-rank OS     | COX<br>proportional<br>hazards OS | Log-rank PFS    | COX<br>proportional<br>hazards PFS |
|--------|--------------------------------|-----------------|-----------------------------------|-----------------|------------------------------------|
|        |                                | <i>P</i> -value | <i>P</i> -value                   | <i>P</i> -value | <i>P</i> -value                    |
| es     | Gender                         | 0.6800          | 0.6300                            | 0.6320          | 0.6860                             |
| abl    | Age                            | 0.0092          | 0.0010                            | 0.7600          | 0.7550                             |
| ari    | LDH>ULN                        | 0.0001          | <0.0001                           | 0.0001          | <0.0001                            |
| v la   | ECOGps                         | 0.0001          | <0.0001                           | 0.0002          | 0.0002                             |
| lica   | AAStage                        | 0.0048          | 0.0054                            | 0.0018          | 0.0019                             |
| Clin   | Extranodal involvements        | 0.0880          | 0.0896                            | 0.0100          | 0.0106                             |
|        | Rev-IPI                        | 0.0001          | <0.0001                           | 0.0001          | <0.0001                            |
|        | 000                            | 0.0360          | 0.0416                            | 0.0610          | 0.0681                             |
|        | Treatment arm                  | 0.6200          | 0.6180                            | 0.3700          | 0.3750                             |
| ΛE     | Tumor Cells, GCB               | 0.0001          | <0.0001                           | 0.0063          | 0.0070                             |
| 2<br>F | Tumor Cells, ABC               | 0.0001          | 0.0001                            | 0.0050          | 0.0052                             |
| би     | Naïve B-cells                  | 0.0044          | 0.0049                            | 0.0009          | 0.0010                             |
| ndi    | Memory B-cells                 | 0.0001          | <0.0001                           | <0.0001         | <0.0001                            |
| ncl    | Plasmacells                    | 0.0260          | 0.0266                            | 0.1600          | 0.1570                             |
| ò, ii  | CD8 T-cells                    | 0.0340          | 0.0347                            | 0.0360          | 0.0370                             |
| oles   | CD4 T-cells                    | 0.0074          | 0.0079                            | 0.0150          | 0.0156                             |
| iat    | Gamma-delta T-cells            | 0.0480          | 0.0498                            | 0.2700          | 0.2670                             |
| van    | Follicular helper T-cells      | 0.0011          | 0.0017                            | 0.0240          | 0.0247                             |
| al     | Regulatory T-cells             | 0.0890          | 0.0901                            | 0.0360          | 0.0362                             |
| gic    | NK cells resting               | 0.4600          | 0.4560                            | 0.1100          | 0.1100                             |
| olo    | NK cells activated             | 0.0110          | 0.0119                            | 0.0200          | 0.0209                             |
| Bi     | Monocytes                      | 0.0180          | 0.0185                            | 0.0310          | 0.0320                             |
|        | Macrophages M1                 | 0.0001          | <0.0001                           | 0.0001          | 0.0001                             |
|        | Macrophages M2                 | 0.3800          | 0.3820                            | 0.3000          | 0.3060                             |
|        | Dendritic cells                | NA              | NA                                | NA              | NA                                 |
|        | Eosinophils                    | NA              | NA                                | NA              | NA                                 |
|        | Neutrophils                    | 0.0052          | 0.0056                            | 0.0014          | 0.0015                             |
|        | Mast cells                     | 0.1500          | 0.1540                            | 0.0290          | 0.0298                             |
|        | Myofibroblasts                 | 0.0003          | 0.0004                            | 0.0003          | 0.0004                             |
|        | Lymphatic endothelial<br>cells | NA              | NA                                | NA              | NA                                 |
|        | Artery endothelial cells       | 0.0001          | 0.0001                            | 0.0053          | 0.0056                             |
|        | Adipocytes                     | 0.0380          | 0.0392                            | 0.0026          | 0.0003                             |
|        | Pericytes                      | 0.0610          | 0.0644                            | 0.0300          | 0.0314                             |

Abbreviations. TME: tumor microenvironment; PFS: progression free survival; OS: overall survival; LDH>/≤ULN: lactate dehydrogenase >/□ upper level of normal, ECOGps: eastern cooperative oncology group performance status; AAstage: Ann Arbor Stage; Rev-IPI: Revised International Prognostic Index; COO: Cell of Origin; GCB: Germinal Center B-like; ABC: Activated B-center like: NA: not available.

## The young side of LYMPHOMA

FEATURE SELECTION AND DATA-MODELING ON TRAINING-SET

Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables for PFS, whereas Rev-IPI and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the expression of NR1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3, NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training

Milano, 14-15 aprile 2023



|                    |                                | Log-rank OS     | COX<br>proportional<br>hazards OS | Log-rank PFS    | COX<br>proportional<br>hazards PFS |
|--------------------|--------------------------------|-----------------|-----------------------------------|-----------------|------------------------------------|
|                    | 1                              | <i>P</i> -value | <i>P</i> -value                   | <i>P</i> -value | <i>P</i> -value                    |
| Clinical variables | Gender                         | 0.6800          | 0.6300                            | 0.6320          | 0.6860                             |
|                    | Age                            | 0.0092          | 0.0010                            | 0.7600          | 0.7550                             |
|                    | LDH>ULN                        | 0.0001          | <0.0001                           | 0.0001          | <0.0001                            |
|                    | ECOGps                         | 0.0001          | <0.0001                           | 0.0002          | 0.0002                             |
|                    | AAStage                        | 0.0048          | 0.0054                            | 0.0018          | 0.0019                             |
|                    | Extranodal involvements        | 0.0880          | 0.0896                            | 0.0100          | 0.0106                             |
|                    | Rev-IPI                        | 0.0001          | <0.0001                           | 0.0001          | <0.0001                            |
|                    | 000                            | 0.0360          | 0.0416                            | 0.0610          | 0.0681                             |
|                    | Treatment arm                  | 0.6200          | 0.6180                            | 0.3700          | 0.3750                             |
| Ш                  | Tumor Cells, GCB               | 0.0001          | <0.0001                           | 0.0063          | 0.0070                             |
| Z<br>⊢             | Tumor Cells, ABC               | 0.0001          | 0.0001                            | 0.0050          | 0.0052                             |
| ng                 | Naïve B-cells                  | 0.0044          | 0.0049                            | 0.0009          | 0.0010                             |
| s, includi         | Memory B-cells                 | 0.0001          | <0.0001                           | <0.0001         | <0.0001                            |
|                    | Plasmacells                    | 0.0260          | 0.0266                            | 0.1600          | 0.1570                             |
|                    | CD8 T-cells                    | 0.0340          | 0.0347                            | 0.0360          | 0.0370                             |
| oles               | CD4 T-cells                    | 0.0074          | 0.0079                            | 0.0150          | 0.0156                             |
| iak                | Gamma-delta T-cells            | 0.0480          | 0.0498                            | 0.2700          | 0.2670                             |
| var                | Follicular helper T-cells      | 0.0011          | 0.0017                            | 0.0240          | 0.0247                             |
| al                 | Regulatory T-cells             | 0.0890          | 0.0901                            | 0.0360          | 0.0362                             |
| gic                | NK cells resting               | 0.4600          | 0.4560                            | 0.1100          | 0.1100                             |
| olo                | NK cells activated             | 0.0110          | 0.0119                            | 0.0200          | 0.0209                             |
| Bi                 | Monocytes                      | 0.0180          | 0.0185                            | 0.0310          | 0.0320                             |
|                    | Macrophages M1                 | 0.0001          | <0.0001                           | 0.0001          | 0.0001                             |
|                    | Macrophages M2                 | 0.3800          | 0.3820                            | 0.3000          | 0.3060                             |
|                    | Dendritic cells                | NA              | NA                                | NA              | NA                                 |
|                    | Eosinophils                    | NA              | NA                                | NA              | NA                                 |
|                    | Neutrophils                    | 0.0052          | 0.0056                            | 0.0014          | 0.0015                             |
|                    | Mast cells                     | 0.1500          | 0.1540                            | 0.0290          | 0.0298                             |
|                    | Myofibroblasts                 | 0.0003          | 0.0004                            | 0.0003          | 0.0004                             |
|                    | Lymphatic endothelial<br>cells | NA              | NA                                | NA              | NA                                 |
|                    | Artery endothelial cells       | 0.0001          | 0.0001                            | 0.0053          | 0.0056                             |
|                    | Adipocytes                     | 0.0380          | 0.0392                            | 0.0026          | 0.0003                             |
|                    | Pericytes                      | 0.0610          | 0.0644                            | 0.0300          | 0.0314                             |

Abbreviations. TME: tumor microenvironment; PFS: progression free survival; OS: overall survival; LDH>/≤ULN: lactate dehydrogenase >/□ upper level of normal, ECOGps: eastern cooperative oncology group performance status; AAstage: Ann Arbor Stage; Rev-IPI: Revised International Prognostic Index; COO: Cell of Origin; GCB: Germinal Center B-like; ABC: Activated B-center like; NA: not available.

### Milano, 14-15 aprile 2023

## The young side of LYMPHOMA

FEATURE SELECTION AND DATA-MODELING ON TRAINING-SET

Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables for PFS, whereas Rev-IPI and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the expression of NR1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3, NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training



|                    |                                | Log-rank OS     | COX<br>proportional<br>hazards OS | Log-rank PFS    | COX<br>proportional<br>hazards PFS |
|--------------------|--------------------------------|-----------------|-----------------------------------|-----------------|------------------------------------|
|                    | 1                              | <i>P</i> -value | <i>P</i> -value                   | <i>P</i> -value | <i>P</i> -value                    |
| Clinical variables | Gender                         | 0.6800          | 0.6300                            | 0.6320          | 0.6860                             |
|                    | Age                            | 0.0092          | 0.0010                            | 0.7600          | 0.7550                             |
|                    | LDH>ULN                        | 0.0001          | <0.0001                           | 0.0001          | <0.0001                            |
|                    | ECOGps                         | 0.0001          | <0.0001                           | 0.0002          | 0.0002                             |
|                    | AAStage                        | 0.0048          | 0.0054                            | 0.0018          | 0.0019                             |
|                    | Extranodal involvements        | 0.0880          | 0.0896                            | 0.0100          | 0.0106                             |
|                    | Rev-IPI                        | 0.0001          | <0.0001                           | 0.0001          | <0.0001                            |
|                    | 000                            | 0.0360          | 0.0416                            | 0.0610          | 0.0681                             |
|                    | Treatment arm                  | 0.6200          | 0.6180                            | 0.3700          | 0.3750                             |
| Ш                  | Tumor Cells, GCB               | 0.0001          | <0.0001                           | 0.0063          | 0.0070                             |
| Z<br>⊢             | Tumor Cells, ABC               | 0.0001          | 0.0001                            | 0.0050          | 0.0052                             |
| ng                 | Naïve B-cells                  | 0.0044          | 0.0049                            | 0.0009          | 0.0010                             |
| s, includi         | Memory B-cells                 | 0.0001          | <0.0001                           | <0.0001         | <0.0001                            |
|                    | Plasmacells                    | 0.0260          | 0.0266                            | 0.1600          | 0.1570                             |
|                    | CD8 T-cells                    | 0.0340          | 0.0347                            | 0.0360          | 0.0370                             |
| oles               | CD4 T-cells                    | 0.0074          | 0.0079                            | 0.0150          | 0.0156                             |
| iak                | Gamma-delta T-cells            | 0.0480          | 0.0498                            | 0.2700          | 0.2670                             |
| var                | Follicular helper T-cells      | 0.0011          | 0.0017                            | 0.0240          | 0.0247                             |
| al                 | Regulatory T-cells             | 0.0890          | 0.0901                            | 0.0360          | 0.0362                             |
| gic                | NK cells resting               | 0.4600          | 0.4560                            | 0.1100          | 0.1100                             |
| olo                | NK cells activated             | 0.0110          | 0.0119                            | 0.0200          | 0.0209                             |
| Bi                 | Monocytes                      | 0.0180          | 0.0185                            | 0.0310          | 0.0320                             |
|                    | Macrophages M1                 | 0.0001          | <0.0001                           | 0.0001          | 0.0001                             |
|                    | Macrophages M2                 | 0.3800          | 0.3820                            | 0.3000          | 0.3060                             |
|                    | Dendritic cells                | NA              | NA                                | NA              | NA                                 |
|                    | Eosinophils                    | NA              | NA                                | NA              | NA                                 |
|                    | Neutrophils                    | 0.0052          | 0.0056                            | 0.0014          | 0.0015                             |
|                    | Mast cells                     | 0.1500          | 0.1540                            | 0.0290          | 0.0298                             |
|                    | Myofibroblasts                 | 0.0003          | 0.0004                            | 0.0003          | 0.0004                             |
|                    | Lymphatic endothelial<br>cells | NA              | NA                                | NA              | NA                                 |
|                    | Artery endothelial cells       | 0.0001          | 0.0001                            | 0.0053          | 0.0056                             |
|                    | Adipocytes                     | 0.0380          | 0.0392                            | 0.0026          | 0.0003                             |
|                    | Pericytes                      | 0.0610          | 0.0644                            | 0.0300          | 0.0314                             |

Abbreviations. TME: tumor microenvironment; PFS: progression free survival; OS: overall survival; LDH>/≤ULN: lactate dehydrogenase >/□ upper level of normal, ECOGps: eastern cooperative oncology group performance status; AAstage: Ann Arbor Stage; Rev-IPI: Revised International Prognostic Index; COO: Cell of Origin; GCB: Germinal Center B-like; ABC: Activated B-center like; NA: not available.

### Milano, 14-15 aprile 2023

## The young side of LYMPHOMA

FEATURE SELECTION AND DATA-MODELING ON TRAINING-SET

Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables for PFS, whereas Rev-IPI and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the expression of NR1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3, NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training







Milano, 14-15 aprile 2023

## The young side of LYMPHOMA

FEATURE SELECTION AND DATA-MODELING ON TRAINING-SET

Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables for PFS, whereas Rev-IPI and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the expression of NR1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3, NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training





## The young side of LYMPHOMA

-SET FEATURE SELECTION AND DATA-MODELING ON TRAINING Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables for PFS, whereas Rev-IPI and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the expression of NR1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3, NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training

Milano, 14-15 aprile 2023



## The young side of LYMPHOMA

FEATURE SELECTION AND DATA-MODELING ON TRAINING-SET

Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables for PFS, whereas Rev-IPI and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the expression of NR1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3, NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training

### Milano, 14-15 aprile 2023



## Pipeline

Α



0.5

0.0

-0.5

-1.0

-SET FEATURE SELECTION AND DATA-MODELING ON TRAINING- Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables for PFS, whereas Rev-IPI and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the expression of NR1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3, NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training

### Milano, 14-15 aprile 2023



## Pipeline



-SET FEATURE SELECTION AND DATA-MODELING ON TRAINING- Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables for PFS, whereas Rev-IPI and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the expression of NR1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3, NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training

### Milano, 14-15 aprile 2023



## Pipeline





-SET FEATURE SELECTION AND DATA-MODELING ON TRAINING Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables for PFS, whereas Rev-IPI and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the expression of NR1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3, NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training



### Milano, 14-15 aprile 2023





## The young side of LYMPHOMA

| Z |
|---|
| 0 |
| E |
| A |
|   |
| Ļ |
| A |
| - |

Step 9. Application of CIBERSORT algorithm and correlation analysis to GSE98588 dataset used as validation cohort.

Step 10. NR1H3 and ACTA2 expression values from the validation cohort were dichotomized according to the cutoff derived from training set and recursive tree-based model analysis applied including Rev-IPI as clinical variable.





Milano, 14-15 aprile 2023

### gli under 40 a confronto

## The young side of LYMPHOMA

VALIDATION

Step 9. Application of CIBERSORT algorithm and correlation analysis to GSE98588 dataset used as validation cohort.

Step 10. NR1H3 and ACTA2 expression values from the validation cohort were dichotomized according to the cutoff derived from training set and recursive tree-based model analysis applied including Rev-IPI as clinical variable.





## Explainable Artificial Intelligence - XAI

Milano, 14-15 aprile 2023

The young side of LYMPHOMA



## Explainable Artificial Intelligence - XAI

### ARTIFICIAL NEURAL NETWORK





PERSPECTIVE ttps://doi.org/10.1038/s42256-019-0048-x

nature machine intelligence

### Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead

Cynthia Rudin

Black box machine learning models are currently being used for high-stakes decision making throughout society, causing problems in healthcare, criminal justice and other domains. Some people hope that creating methods for explaining these black box models will alleviate some of the problems, but trying to explain black box models, rather than creating models that are interpretable in the first place, is likely to perpetuate bad practice and can potentially cause great harm to society. The way forward is to design models that are inherently interpretable. This Perspective clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in highstakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where interpretable models could potentially replace black box models in criminal justice, healthcare and computer vision.



## Explainable Artificial Intelligence - XAI

### ARTIFICIAL NEURAL NETWORK





### XAI TECHNIQUES



## Explainable Artificial Intelligence - XAI

### ARTIFICIAL NEURAL NETWORK



Milano, 14-15 aprile 2023

### XAI TECHNIQUES



### Innovative techniques of gene selection via XAI for prognostic purposes

## Conclusions

- Machine Learning can help in prognostication
- ML-based Applications in hematology are increasing
- Supervised and unsupervised ML must be carefully handled to solve a research problem with a robust pipeline
- Simple ML tools as decisional trees might be useful to answer to simple research problems as combination of clinical and TME determinants
- XAI (Explainable Artificial Intelligence) might be potential in boosting the achievement of novel findings

## The young side of LYMPHOMA



### Acknowledgements

Hematology Unit **IRCCS** Istituto Tumori 'Giovanni Paolo II' Dr. Attilio Guarini Dr. Sabino Ciavarella Dr. Maria Stella De Candia Dr. Vincenza De Fazio Dr. Paolo Ditonno Dr. Doriana Gramegna Dr. Angela Iacobazzi Dr. Filomena Emanuela Laddaga Dr. Giacomo Loseto Dr. Pierluigi Masciopinto Dr. Carla Minoia Dr. Crescenza Pasciolla Dr. Angela Maria Quinto Dr. Antonello Rana Dr. Bernardo Rossini Dr. Tetiana Skrypets Dr. Lorenzo Tonialini

### Laboratory Staff

- Dr. Antonella Bucci
- Dr. Paolo Mondelli
- Dr. Antonio Negri
- Dr. Susanna Anita Pappagallo
- Dr. Antonio Radesco
- Dr. Maria Carmela Vegliante
- Dr. Antonio Ventura
- Dr. Giacomo Volpe

Data-managers

- Dr. Felice Clemente
- Dr. Alessandro Passiatore
- Dr. Fabio Pavone

**Department of Pathology** Dr. Alfredo Zito Dr. Anna Scattone





Polytechnic University of Bari Prof. Vitoantonio Bevilacqua Prof. Stefano Mazzoleni Dr. Nicola Altini Dr. Antonio Brunetti Dr. Domenico Buongiorno Dr. Daniele Di Mascolo



company

University "Aldo Moro" of Bari Prof. Nicoletta del Buono Dr. Grazia Gargano Dr. Flavia Esposito Dr. Laura Selicato



**DIPARTIMENTO** DI MATEMATICA

MIDAS

