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Predicting effects of noncoding variants with deep
learning-based sequence model

Jian Zhou & Olga G Troyanskaya

Nature Methods 12, 931-934 (2015) | Cite this article
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Abstract

Identifying functional effects of noncoding variants is a major challenge in human genetics.

To predict the noncoding-variant effects de novo from sequence, we developed a deep
learning-based algorithmic framework, DeepSEA (http://deepsea.princeton.edu/), that

directly learns a regulatory sequence code from large-scale chromatin-profiling data,
enabling prediction of chromatin effects of sequence alterations with single-nucleotide
sensitivity. We further used this capability to improve prioritization of functional variants

including expression quantitative trait loci (eQTLs) and disease-associated variants.
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Predicting the sequence specificities of DNA- and RNA-
binding proteins by deep learning

Babak Alipanahi, Andrew Delong, Matthew T Weirauch & Brendan J Frey
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Abstract

Knowing the sequence specificities of DNA- and RNA-binding proteins is essential for
developing models of the regulatory processes in biological systems and for identifying
causal disease variants. Here we show that sequence specificities can be ascertained from
experimental data with 'deep learning' techniques, which offer a scalable, flexible and unified
computational approach for pattern discovery. Using a diverse array of experimental data
and evaluation metrics, we find that deep learning outperforms other state-of-the-art
methods, even when training on in vitro data and testing on in vivo data. We call this approach
DeepBind and have built a stand-alone software tool that is fully automatic and handles
millions of sequences per experiment. Specificities determined by DeepBind are readily
visualized as a weighted ensemble of position weight matrices or as a 'mutation map' that
indicates how variations affect binding within a specific sequence.
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DeepC: predicting 3D genome folding using megabase-
scale transfer learning
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Abstract

Predicting the impact of noncoding genetic variation requires interpreting it in the context of
three-dimensional genome architecture. We have developed deepC, a transfer-learning-
based deep neural network that accurately predicts genome folding from megabase-scale
DNA sequence. DeepC predicts domain boundaries at high resolution, learns the sequence
determinants of genome folding and predicts the impact of both large-scale structural and

single base-pair variations.
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Investigating RNA editing in deep transcriptome
datasets with REDItools and REDIportal

Claudio Lo Giudice®', Marco Antonio Tangaro', Graziano Pesole"** and Ernesto Picardi®"*>*
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enabling prediction of chromatin e — Be W 3 s RNA editing is a widespread post-transcriptional mechanism able to modify transcripts through insertions/deletions or
gp NS e el » C d base substitutions. It is prominent in mammals, in which millions of adenosines are deaminated to inosines by members of
sensitivity. We further used thisc | pre-mRNA GENCODE orre.spor.1 ence the ADAR family of enzymes. A-to-l RNA editing has a plethora of biological functions, but its detection in large-scale
sequences GTEX kfarh@illumina.com transcriptome datasets is still an unsolved computational task. To this aim, we developed REDItools, the first software
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In Brief

A deep neural network precisely models
MRNA splicing from a genomic sequence
and accurately predicts noncoding
cryptic splice mutations in patients with
rare genetic diseases.

package devoted to the RNA editing profiling in RNA-sequencing (RNAseq) data. It has been successfully used in human
transcriptomes, proving the tissue and cell type specificity of RNA editing as well as its pervasive nature. Outcomes from
large-scale REDItools analyses on human RNAseq data have been collected in our specialized REDIportal database,
containing more than 4.5 million events. Here we describe in detail two bioinformatic procedures based on our
computational resources, REDItools and REDIportal. In the first procedure, we outline a workflow to detect RNA editing in
the human cell line NA12878, for which transcriptome and whole genome data are available. In the second procedure, we
show how to identify dysregulated editing at specific recoding sites in post-mortem brain samples of Huntington disease
donors. On a 64-bit computer running Linux with >32 GB of random-access memory (RAM), both procedures should take
~76 h, using 4 to 24 cores. Our protocols have been designed to investigate RNA editing in different organisms with
available transcriptomic and/or genomic reads. Scripts to complete both procedures and a docker image are available at
https://github.com/BioinfoUNIBA/REDItools.
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Techniques

= Supervised - clinical outcomes are known and already defined (e.g., clinical
response, progression, death)

= Tree-based vs. Neural Network based algorithms

Decision Tree Random Forest
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Images top-left from “The Guide to Decision Tree-based Algorithms in Machine Learning”, https://omdena.com/blog/decision-tree-based-algorithms
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Images top-right from Radakovich et al., Machine Learning in hematology malignancies, 7he Lancet Hematology, 2020
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Typical Machine-Learning pipeline

Data gathering Choosing a model Training Evaluation and Final model development
and preprocessing hyperparameter tuning and deployment
Data are gathered and —»  Atype of model (eg, — Dataare splitinto training —¥®{ Model performance is —» The final model is
preprocessed to ensure neural network or other and test cohorts (often evaluated using the test packaged appropriately
suitability for machine machine learning model) 80% training vs 20% test, dataset or an external for end users (eg, in
learning. is chosen on the basis of or 70% vs 30%); the dataset using metrics like online web applications or
Input variables are shown the data to be used and model is shown training AUROC or accuracy; model embedding in electronic
in orange; outputs or the desired task data and then is refined hyperparameters can be health records)
results to be predicted are on the basis of how it tuned to optimise
shown in blue predicts the outcome of performance

test data

Image from Radakovich et al., Machine Learning in hematology malignancies, 7he Lancet Hematology, 2020
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Typical Machine-Learning pipeline
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Data gathering

and preprocessing

Data are gathered and
preprocessed to ensure
suitability for machine
learning.

Input variables are shown
In orange; outputs or
results to be predicted are
shown in blue

Choosing a model

A type of model (eg,
neural network or other
machine learning model)
is chosen on the basis of
the data to be used and
the desired task

-
=

Training

Data are split into training
and test cohorts (often
80% training vs 20% test,
or 70% vs 30%); the
model is shown training
data and then is refined
on the basis of how it
predicts the outcome of
test data
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Evaluation and
hyperparameter tuning

Model performance is
evaluated using the test
dataset or an external
dataset using metrics like
AUROC or accuracy; model
hyperparameters can be
tuned to optimise
performance

Final model development
and deployment

The final model is
packaged appropriately
for end users (eg, in
online web applications or
embedding in electronic
health records)

Image from Radakovich et al., Machine Learning in hematology malignancies, 7he Lancet Hematology, 2020
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Metric evaluation
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Abbreviations. ROC: Receiver Operating Characteristic; AUC: Area under curve

Image on the left from “Glass box, Machine Learning and Medicine”, https://glassboxmedicine.com/
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Image on the right from Radakovich et al., Machine Learning in hematology malignancies, 7he Lancet Hematology, 2020

Abbreviations. ROC: Receiver Operating Characteristic; AUC: Area under curve; TN=True Negative; TP=True Positive; FP= False Positive; FN= False Negative
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Machine Learning in Hematology

= Translational Medicine. Biomarker discovery, Drug-targeted prioritization,
Drug discovery, Prediction of chemical toxicity, Genetic variant annotation,
Prognostication

= Clinical Practice. Disease Diagnosis, Interpretation of patients’ genomics,
Treatment selection, Automated surgery, Patient Monitoring, Patient risk
stratification for primary prevention

P. Becker, Machine Learning in Hematology, 60" ASH Annual Meeting, 7-10 Dec 2019, Orlando, USA
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Machine Learning in Hematology

= Translational Medicine. Biomarker discovery, Drug-targeted prioritization,
Drug discovery, Prediction of chemical toxicity, Genetic variant annotation,
Prognostication

= Clinical Practice. Disease Diagnosis, Interpretation of patients’ genomics,
Treatment selection, Automated surgery, Patient Monitoring, Patient risk
stratification for primary prevention

= At the 2021 ASH meeting, 74 abstracts included within either title or

methods the keywords "Machine-Learning”, "Deep-Learning”, and "“Artificial
Intelligence”, respectively. Of these, 9 were on lymphoma projects

= At the 2022 ASH meeting, 31 abstracts and a dedicated congress section

P. Becker, Machine Learning in Hematology, 60" ASH Annual Meeting, 7-10 Dec 2019, Orlando, USA
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Hematology Disease Topics & Pathways:

Lymphomas, Non-Hodgkin Lymphoma, Clinically Relevant, Diseases, Lymphoid Malignancies, Technology and
Procedures, Machine Learning

Sunday, December 12, 2021: 12:00 PM
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Abbreviations. AUC: Area under curve; AAStage: Ann Arbor Stage; LDH: Lactate Dehydrogenase; EN: Extranodal involvement; PS: WHO Performance Status; MTV: Metabolic Tumor Volume; SUV:

standardized uptake value; Dmax,,: maximum distance between the largest lesion and any other lesions; DSUVpeak,,: the maximum difference in SUV ., between two lesions; Dvol,,: maximum
difference in volume between two lesions
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€ Best clinical model. AUC = 69%

¢ AAStage + LDH + ENinv e 4
¢ Best clinical + MYC model. AUC = 71% S -
¢ MYC + PS + LDH + ENinv <
¢ Best radiomics model. AUC = 77% f: a3
¢ MTV + Dmaxy, + DSUVpeak,, + Dvol # S 7
~—  Combined
¢ Combined model. AUC = 77% S it e
4 MYC + — Clinical
LDH + PS + © 5 T I T l I
MTV + Dmaxpyx + DSUVpeakpatient + DVOlpatient 00 02 04 06 08 10
1 - Specificity

Abbreviations. AUC: Area under curve; AAStage: Ann Arbor Stage; LDH: Lactate Dehydrogenase; EN: Extranodal involvement; PS: WHO Performance Status; MTV: Metabolic Tumor Volume; SUV:
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ORIGINAL ARTICLE

8E_-FDG PET baseline radiomics features improve the prediction
of treatment outcome in diffuse large B-cell ymphoma

Jakoba J. Eertink!® - Tim van de Brug®® - Sanne E. Wiegers'©® - Gerben J. C. Zwezerijnen®® .
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Otto S. Hoekstra®>® - Ronald Boellaard>® . Josée M. Zijlstra' ©

Table 1 Description of prediction models included in this study

Models Included features

Model 1: IPI IPI

Model 2: clinical model Ann Arbor stage, age, WHO performance status, extranodal involvement, LDH, and bulky disease
Model 3: MTV MTV

Model 4: limited radiomics model MTYV, SUV .6 SUV peais SUV ean, TLG, number of lesions, Dmax ,ien, Dmaxy, ., Spread,,gen

Spread, ., and Sphericity

Model 5: all radiomics features (largest and 485 features for the largest and hottest lesion
hottest lesion)

Model 6: combined model Features model 2 and model 4

standardized uptake value; Dmax,,: maximum distance between the largest lesion and any other lesions; DSUVpeak,,: the maximum difference in SUV ., between two lesions; Dvol,,: maximum

difference in volume between two lesions
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®
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_ o F-FDG PET baseline radiomics features improve the prediction
2 of treatment outcome in diffuse large B-cell ymphoma
-
S S
S Combined Jakoba J. Eertink!® - Tim van de Brug®® - Sanne E. Wiegers'©® - Gerben J. C. Zwezerijnen®® .
Radiomics Elisabeth A. G. Pfaehler*® . Pieternella J. Lugtenburg®® . Bronno van der Holt® - Henrica C. W. de Vet?® .
Otto S. Hoekstra®>® . Ronald Boellaard*® - Josée M. Zijlstra' ©
CC\)! — Clinical
IPI
Table 1 Description of prediction models included in this study
MTV
g — ’ Models Included features
o!o 0!2 0!4 0!6 0!8 1!0 Model 1: IP1 I
o Model 2: clinical model Ann Arbor stage, age, WHO performance status, extranodal involvement, LDH, and bulky disease
1 - Specificity Model 3: MTV MTV
Model 4: limited radiomics model MTYV, SUV s SUV e SUV e, TLG, number of lesions, Dmax ,,ien, Dmaxy ., Spread ey
Model AUC (95%CI)  CV-AUC (95%CI) Log-likelihood ratio ~ Specificity ~ Sensitivity NPV PPV Spread,,;, and Sphericity
IPI (model 1) 0.68 (0.61-0.75) 0.68 (0.51-0.80)  —126.11 0.79 0.40 086 0.9 Model 5: all. radiomics features (largest and 485 features for the largest and hottest lesion
Clinical model (model 2) 0.73 (0.66-0.80)  0.71 (0.56-0.86)  —123.52 0.87 0.38 0.87 0.38 hottest lesion)
MTYV (model 3) 0.66 (0.58-0.74)  0.66 (0.50-0.81)  —129.96 0.84 0.27 0.84 027 Model 6: combined model Features model 2 and model 4
Limited radiomics model (model 4)  0.76 (0.69-0.82)  0.75 (0.59-0.88)  —117.61 0.88 0.44 0.88  0.44
Combined model (model 6) 0.79 (0.73-0.86)  0.77 (0.61-0.90)  —113.4 0.88 0.44 0.88  0.44

Abbreviations. AUC: Area under curve; AAStage: Ann Arbor Stage; LDH: Lactate Dehydrogenase; EN: Extranodal involvement; PS: WHO Performance Status; MTV: Metabolic Tumor Volume; SUV:

standardized uptake value; Dmax,,: maximum distance between the largest lesion and any other lesions; DSUVpeak,,: the maximum difference in SUV ., between two lesions; Dvol,,: maximum
difference in volume between two lesions
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© Proposed New Dynamic Prognostic Index

C . . ORIGINAL ARTICLE
=
= for Diffuse Large B-Cell Lymphoma: International
5. | |
= Metabolic Prognostic Index 8E_-FDG PET baseline radiomics features improve the prediction
;g N. George Mikhaeel, MD'; Martijn W. Heymans, PhD?; Jakoba J. Eertink, PhD?; Henrica C.W. de Vet, PhD?; Ronald Boellaard, PhD* Of treatment outcome in diffuse large B_Ce" lymphoma
- Ulrich Duhrsen, MD®; Luca Ceriani, MD®7; Christine Schmitz, MD®; Sanne E. Wiegers, PhD3; Andreas Huttmann, MD>;
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W

Elisabeth A. G. Pfaehler*® . Pieternella J. Lugtenburg®® - Bronno van der Holt® - Henrica C. W. de Vet?® .
Otto S. Hoekstra®>® - Ronald Boellaard>® . Josée M. Zijlstra' ®

Baseline PET radiomics outperform the IPI risk score for prediction of outcome in
diffuse large B-cell lymphoma

Tracking no: BLD-2022-018558R1
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TM E TAM: Tumor Associated Macrophage,
CD28, CTL, TCR : CD4/8 T-cell,
Fibroblast,

TGF-B Treg: regulatory T-Cell,

TAM
TGF-8 ekl MDSC: Myeloid Derived Suppressor Cell,
gk % ; N fibroblast Dendritic Cells,

NKcell o ~——
e ~ IL-10 NK cell: natural killer cells,

dendritic cell tumor cells

Adipocytes,

Pericytes,

Artery endothelial cells,
Mast cells,

Neutrophils,
Eosinophils,
Monocytes,

Follicular helper T-cells,
Gamma-delta T-cells,
Plasma cells,

Memory B cells,

Naive B cells

endothelium

From Park et al, Biomaterial Research, 2018
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ODbjectives

Study of both clinical and TME
variables to combine a novel clinical
prognostic index able to define
patients’ risk

Translational applicability for potential
drug discovery
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ODbjectives

@ 2)
CZ) Step 1. Clinical variables collection: GSE117556 dataset including 928 DLBCL patients was used as training set.
= Nine clinical features were considered (gender, age at diagnosis, LDH>ULN, ECOGps, AAStage, extra-nodal

g é involvements, Rev IPl, and COOQO, treatment arm).
Qa
g Step 2. Biological variables collection: percentages of 24 TME cytotypes as derived by CIBERSORT were
o dichotomized in two groups by maximally selected rank statistics according to PFS and OS in the training set.
(S 2y

ot

Study of both clinical and TME
variables to combine a novel clinical
prognostic index able to define
patients’ risk

B
=/

Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox
proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both
PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables
for PFS, whereas Rev-IPl and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the
expression of NR1HS3.

Translational applicability for potential
drug discovery

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3,

FEATURE SELECTION AND
DATA-MODELING ON TRAINING-SET

\ ] NR1H3 and ACTAZ2 dichotomized by maximally selected rank statistics according to PFS and OS in the training
! =,
% Step 9. Application of CIBERSORT algorithm and correlation analysis to GSE98588 dataset used as validation
= cohort.
5
= Step 10. NR1H3 and ACTAZ2 expression values from the validation cohort were dichotomized according to the cutoff
> derived from training set and recursive tree-based model analysis applied including Rev-IPI as clinical variable.
N g

Milano, 14-15 aprile 2023

Zaccaria GM, Vegliante MC et al., Hemasphere, 2023
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(= 2)
. . % Step 1. Clinical variables collection: GSE117556 dataset including 928 DLBCL patients was used as training set.
= Nine clinical features were considered (gender, age at diagnosis, LDH>ULN, ECOGps, AAStage, extra-nodal
I p e I I l e g?{ involvements, Rev IPIl, and COO, treatment arm).
0Oa
% Step 2. Biological variables collection: percentages of 24 TME cytotypes as derived by CIBERSORT were
o dichotomized in two groups by maximally selected rank statistics according to PFS and OS in the training set.
" =
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Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox
proportional hazards tests (Table S1).

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both
PFS and OS as outcomes.

Pipeline

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables
for PFS, whereas Rev-IPl and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the
expression of NRT1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3,
NR1H3 and ACTAZ2 dichotomized by maximally selected rank statistics according to PFS and OS in the training

FEATURE SELECTION AND
ATA-MODELING ON TRAINING-SET

S
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Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox
proportional hazards tests (Table S1).

Pipeline

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both
PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables
for PFS, whereas Rev-IPl and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the
expression of NRT1H3.

FEATURE SELECTION AND
ATA-MODELING ON TRAINING-SET

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3,
NR1H3 and ACTAZ2 dichotomized by maximally selected rank statistics according to PFS and OS in the training

S
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— [ - \ Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox
P - I - (ud proportional hazards tests (Table S1).
1
I p e I n e % (—2 Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both
L= PFS and OS as outcomes.
oF:
CcOX COX ~ - Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables
Log-rank OS |proportional [Log-rank PFS [proportional 8 % for PFS, whereas Rev-IPl and macrophages M1 were selected for OS.
hazards OS hazards PFS u_lJ o
P-value  |P-value P-value P-value Nz Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.
$  [Gender 0.6800 0.6300 0.6320 10.6860 I&J a
§ e e P e (07550 E 2 Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the
£ [LDH>ULN 0.0001 <0.0001 0.0001 <0.0001 ﬁ O : f NR1H3
> s expression o :
= |[ECOGps 0.0001 <0.0001 0.0002 |0.0002 It &
2 |AAStage 0.0048 0.0054 0.0018 0.0019 5 Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3,
O  [Fxtranodalinvolvements | oo 0.0896 0.0100 lo.0106 \ O J|NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training
Rev-IPI 0.0001 <0.0001 0.0001 <0.0001
COO 0.0360 0.0416 0.0610 0.0681
Treatment arm 0.6200 0.6180 0.3700 10.3750
w  [Tumor Cells, GCB 0.0001 <0.0001 0.0063 0.0070
£ fTumor Cells, ABC 0.0001 0.0001 0.0050 0.0052
@  [Naive B-cells 0.0044 0.0049 0.0009 0.0010
T |Memory B-cells 0.0001 <0.0001 <0.0001 <0.0001
S [Plasmacells 0.0260 0.0266 0.1600 0.1570
= |CD8 T-cells 0.0340 0.0347 0.0360 0.0370
@  [CD4 T-cells 0.0074 0.0079 0.0150 0.0156
§ Gamma-delta T-cells 0.0480 |0.0498 0.2700 |0.2670
§  [Follicular helper T-cells 0.0011 0.0017 0.0240 0.0247
=  |[Regulatory T-cells 0.0890 0.0901 0.0360 0.0362
S [NKcells resting 0.4600 0.4560 0.1100 0.1100
% |NK cells activated 0.0110 |0.01 19 0.0200 |0.0209
@  [Monocytes 0.0180 0.0185 0.0310 0.0320
IMacrophages M1 0.0001 <0.0001 0.0001 0.0001
|Macrophages M2 0.3800 0.3820 0.3000 |0.3060
IDendritic cells NA NA NA INA
[Eosinophils NA NA INA INA
INeutrophils 0.0052 0.0056 0.0014 0.0015
IMast cells 0.1500 0.1540 0.0290 0.0298
IMyofibroblasts 0.0003 0.0004 0.0003 0.0004
Iéz:'lr;phatlc endothelial NA NA NA NA
Artery endothelial cells  0.0001 0.0001 0.0053 0.0056
Adipocytes 0.0380 0.0392 0.0026 0.0003
|Pericytes 0.0610 0.0644 0.0300 0.0314

Abbreviations. TME: tumor microenvironment; PFS: progression free survival; OS: overall
survival; LDH>/<ULN: lactate dehydrogenase >/0 upper level of normal, ECOGps: eastern
cooperative oncology group performance status; AAstage: Ann Arbor Stage; Rev-IPI:
Revised International Prognostic Index; COQO: Cell of Origin; GCB: Germinal Center B-like;
ABC: Activated B-center like; NA: not available.
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— [ - \ Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox
P - I - (ud proportional hazards tests (Table S1).
1
I p e I n e % (—2 Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both
L= PFS and OS as outcomes.
oF:
CcOX COX ~ - Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables
Log-rank OS |proportional [Log-rank PFS [proportional 8 % for PFS, whereas Rev-IPl and macrophages M1 were selected for OS.
hazards OS hazards PFS .
w
P-value  |P-value P-value P-value ? 2 Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.
$  [Gender 0.6800 0.6300 0.6320 10.6860 ICJKJ a
S Age e P e 07550 E - Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the
£ [LDH>ULN 0.0001 <0.0001 0.0001 <0.0001 ﬁ ®) : f NR1H3
> s expression o :
= |[ECOGps 0.0001 <0.0001 0.0002 |o.0002 It &
2 |AAStage 0.0048 0.0054 0.0018 0.0019 5 Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3,
O  [Fxtranodalinvolvements | oo 0.0896 0.0100 lo.0106 \ O J|NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training
Rev-IPI 0.0001 <0.0001 0.0001 <0.0001 —
COO 0.0360 0.0416 0.0610 0.0681
Treatment arm 0.6200 0.6180 0.3700 10.3750
w  [Tumor Cells, GCB 0.0001 <0.0001 0.0063 0.0070
£ [Tumor Cells, ABC 0.0001 0.0001 0.0050 0.0052
@  [Naive B-cells 0.0044 0.0049 0.0009 0.0010
T |Memory B-cells 0.0001 <0.0001 <0.0001 <0.0001
S [Plasmacells 0.0260 0.0266 0.1600 0.1570
= |CD8 T-cells 0.0340 0.0347 0.0360 0.0370
@  [CD4 T-cells 0.0074 0.0079 0.0150 0.0156
§ Gamma-delta T-cells 0.0480 |0.0498 0.2700 |0.2670
§  [Follicular helper T-cells 0.0011 0.0017 0.0240 0.0247
=  |[Regulatory T-cells 0.0890 0.0901 0.0360 0.0362
S [NKcells resting 0.4600 0.4560 0.1100 0.1100
2 |NKcells activated 0.0110 0.0119 0.0200 0.0209
@  [Monocytes 0.0180 0.0185 0.0310 0.0320
IMacrophages M1 0.0001 <0.0001 0.0001 0.0001 —
|Macrophages M2 0.3800 0.3820 0.3000 |0.3060
IDendritic cells NA NA NA INA
[Eosinophils NA NA INA INA
INeutrophils 0.0052 0.0056 0.0014 0.0015
IMast cells 0.1500 0.1540 0.0290 0.0298
Myofibroblasts 0.0003  [0.0004 0.0003 l0.0004 —
Iéz:'lr;phatlc endothelial NA NA NA NA
Artery endothelial cells  0.0001 0.0001 0.0053 0.0056
Adipocytes 0.0380 0.0392 0.0026 0.0003
|Pericytes 0.0610 0.0644 0.0300 0.0314

Abbreviations. TME: tumor microenvironment; PFS: progression free survival; OS: overall
survival; LDH>/<ULN: lactate dehydrogenase >/0 upper level of normal, ECOGps: eastern
cooperative oncology group performance status; AAstage: Ann Arbor Stage; Rev-IPI:
Revised International Prognostic Index; COQO: Cell of Origin; GCB: Germinal Center B-like;
ABC: Activated B-center like; NA: not available.
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— [ - \ Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox
P - I - (ud proportional hazards tests (Table S1).
1
I p e I n e % (—2 Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both
L= PFS and OS as outcomes.
55
coX coX ~ - Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables
Log-rank OS [proportional [Log-rank PFS |proportional 8 % for PFS, whereas Rev-IPl and macrophages M1 were selected for OS.
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= |CD8 T-cells 0.0340 0.0347 0.0360 0.0370 S 0951
@  [CD4 T-cells 0.0074 0.0079 0.0150 0.0156 5
S |Gamma-delta T-cells  0.0480 l0.0498 0.2700 l0.2670 10 i, 0.00{ Prvalue = 0.0001 _ _
§  [Follicular helper T-cells 0.0011 0.0017 0.0240 0.0247 I 0 20 40 60
=  |[Regulatory T-cells 0.0890 0.0901 0.0360 0.0362 M Number at risk
S [NKcells resting 0.4600 l0.4560 0.1100 0.1100 > " T m———— M1 high 741 527 169 9
2 INKcells activated 0.0110 0.0119 0.0200 10.0209 3 R W low 187 108 28 _
@  [Monocytes 0.0180 0.0185 0.0310 0.0320 8 e 0 20 40 60
IMacrophages M1 0.0001 <0.0001 0.0001 0.0001 — a Time (months)
|Macrophages M2 0.3800 0.3820 0.3000 |0.3060 8 D
Dendritic cells NA NA NA NA 0.25- 1.001 = . .
IEosinophiIs NA NA INA iNA p < 0.0001 - Egz—:ﬁ::&ggf ~ T —— Myofibroblast high
INeutrophils 0.0052 0.0056 0.0014 0.0015 Rev_IPI=Very Good S 075
IMast cells 0.1500 l0.1540 0.0290 l0.0298 000 | | | S£ Myofibrobast low
Myofibroblasts 0.0003  [0.0004 0.0003 l0.0004 — ° " Time (months) ® 5§ 050
. . [e)
Iéz:'lr;phatlc endothelial NA NA NA NA ? s 0.25 |
Artery endothelial cells  0.0001 0.0001 0.0053 0.0056 e 0.0 Palue=000028
Adipocytes 0.0380 0.0392 0.0026 0.0003 T - - -
[Pericytes 00610  |0.0644 0.0300 l0.0314 J - 2 40 o0
Abbreviations. TME: tumor microenvironment; PFS: progression free survival; OS: overall Myofib high 62;” erate 436 108
survival; LDH>/<ULN: lactate dehydrogenase >/0 upper level of normal, ECOGps: eastern Myofib low {263 199 69
cooperative oncology group performance status; AAstage: Ann Arbor Stage; Rev-IPI: 5 20 70 50

Revised International Prognostic Index; COQO: Cell of Origin; GCB: Germinal Center B-like;

ABC: Activated B-center like; NA: not available. Time (months)
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Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox
-
P = I = - proportional hazards tests (Table S1).
I p e I I l e % CZD Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both
L = PFS and OS as outcomes.
oK
- - Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables
8 CZ) for PFS, whereas Rev-IPl and macrophages M1 were selected for OS.
-
w o
3 zZ Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.
—
o w
E 8 Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the
= expression of NRTH3.
L <
LE Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3,
\ O J|NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training
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Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox
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P I - proportional hazards tests (Table S1).
I p e I I l e % CZD Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both
L= PFS and OS as outcomes.
52
- - Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables
8 CZ) for PFS, whereas Rev-IPl and macrophages M1 were selected for OS.
-
w o
3 zZ Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.
—
o W
E 8 Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the
= expression of NRTH3.
L <
C D LE Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3,
Trainingl Training \ O J|NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training
Set Set
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| [
n=482 n=443 n=446
| [ |
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| I
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| | [
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1.0 j ‘
0.8
o 0.6 (7))
& 4 2
0.2
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Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox
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P = I = - proportional hazards tests (Table S1).
I p e I I l e % CZD Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both
L = PFS and OS as outcomes.
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= expression of NRTH3.
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LE Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3,
\ O J|NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training

Milano, 14-15 aprile 2023

Zaccaria GM, Vegliante MC et al., Hemasphere, 2023



The young side of LYMPHOMA gli under 40 a confronto

Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox
-
P = I = - proportional hazards tests (Table S1).
I p e I I l e % CZD Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both
L = PFS and OS as outcomes.
oK
- - Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables
A 8 CZ) for PFS, whereas Rev-IPl and macrophages M1 were selected for OS.
-
w o
Pericytes - 3 zZ Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.
—
Adipocytes o L
F_) ' E 8 Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the
Artery endothelial cells - ﬁ s eXpreSSion Of NR1H3
mphatic endothelial cells LI.<'
Hmenae endehelaied LE Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3,
Myofibroblasts 4 \ O J|NR1H3 and ACTA2 dichotomized by maximally selected rank statistics according to PFS and OS in the training
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Step 3. Univariate feature selection of variables from steps 1-2 based on both PFS and OS using log-rank and Cox
proportional hazards tests (Table S1).

gli under 40 a confronto

FEATURE SELECTION AND
ATA-MODELING ON TRAINING-SET

L

Step 4. The twelve significant variables from step 3 were eligible for recursive tree-based model analysis using both
PFS and OS as outcomes.

Step 5. Analysis from step 4 selected Rev-IPI, myofibroblasts and macrophages M1 as the most relevant variables
for PFS, whereas Rev-IPl and macrophages M1 were selected for OS.

Step 6. Correlation analysis between ACTA2 and NR1H3 and each proportion of TME cytotypes, respectively.

Step 7. Myofibroblasts levels were surrogated with the expression of ACTA2, whereas macrophages M1 with the
expression of NRT1H3.

Step 8. Application of recursive tree-based model analysis using the significant clinical variables from step 3,
NR1H3 and ACTAZ2 dichotomized by maximally selected rank statistics according to PFS and OS in the training

PFS

Training
Set
n=928
Rev-IPI
| |
p<0.001
Good/ Poor
Very good 00
n=482
ACTA2
[ p<0.001 |
High Low
[ [
n=423 n=59 n=446
020 4060 020 4060 020 4060

Time (months)

(ON]
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n=928
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[ p<0.001 I
Good/
Very good Foef
|
n=482
|
NR1H3
| p<0.001 |
High Low
| |
n=482 n=234 n=212
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Step 9. Application of CIBERSORT algorithm and correlation analysis to GSE98588 dataset used as validation
cohort.

Step 10. NR1H3 and ACTAZ2 expression values from the validation cohort were dichotomized according to the cutoff
derived from training set and recursive tree-based model analysis applied including Rev-IPI as clinical variable.

1.00
0.751
%) l
- 0.50
0.25{ @ IP1 Good/Very good & ACTA2 high
@ IP1 Good/Very good & ACTA2 low
0.001 @ IPIPoor
0 20 40 60 80 100 120
Number at risk
@] 48 35 33 22 9 2 1
@] 11 9 8 5 2 1 0
@1 39 23 19 9 7 0 0
0 20 40 60 80 100 120
Time (months)
1.00
0.751 :* '—Il
| | %%
83 0.501 |
0.25{ @ IPI Good/Very good & ACTA2 high
@ IPI Good/Very good & ACTA2 low
0.00] @ IPI Poor
0 20 40 60 80 100 120
Number at risk
@] 32 27 23 16 12 5 3
@1 27 25 23 17 12 4 1
@1 42 27 22 12 7 0 0
0 20 40 60 80 100 120

Time (months)
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- * N
% Step 9. Application of CIBERSORT algorithm and correlation analysis to GSE98588 dataset used as validation
= cohort.
5
2 Step 10. NR1H3 and ACTAZ2 expression values from the validation cohort were dichotomized according to the cutoff
> derived from training set and recursive tree-based model analysis applied including Rev-IPI as clinical variable.
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Explainable Artificial Intelligence - XAI

ARTIFICIAL NEURAL NETWORK

nature

Input Layer Hidden Layers Output Layer L .
4 PERSPECTIVE machine intelligence

/ \ https://doi.org/10.1038/s42256-019-0048-x

Stop explaining black box machine learning
models for high stakes decisions and use
interpretable models instead

Cynthia Rudin®

Black box machine learning models are currently being used for high-stakes decision making throughout society, causing prob-
lems in healthcare, criminal justice and other domains. Some people hope that creating methods for explaining these black box
models will alleviate some of the problems, but trying to explain black box models, rather than creating models that are inter-
pretable in the first place, is likely to perpetuate bad practice and can potentially cause great harm to society. The way forward
is to design models that are inherently interpretable. This Perspective clarifies the chasm between explaining black boxes and
using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-
stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where
interpretable models could potentially replace black box models in criminal justice, healthcare and computer vision.
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Explainable Artificial Intelligence - XAI

ARTIFICIAL NEURAL NETWORK XAl TECHNIQUES

Input Layer Hidden Layers Output Layer Output=04 Output7°-4

/ \" Age =65 — — Age =65
sex=F — Explanation = ReXSE

BP =180 — — BP =180
BMI=40 — B — BMI =40

Base rate = 0.1 BaTse rate = 0.1

LIME SHAP
Local Interpretable Model- SHapley Additive exPlanations
Agnostic Explanations
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Explainable Artificial Intelligence - XAI

ARTIFICIAL NEURAL NETWORK XAl TECHNIQUES

Input Layer Hidden Layers Output Layer Output=04 Output7°-4

/ \" Age =65 — — Age =65
sex=F — Explanation = ReXSE

BP =180 — — BP =180
BMI=40 — B — BMI =40

Base rate = 0.1 BaTse rate = 0.1

LIME SHAP
Local Interpretable Model- SHapley Additive exPlanations
Agnostic Explanations

Innovative technigues of gene selection via XAl
for prognostic purposes
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Conclusions

* Machine Learning can help in prognostication
» ML-based Applications in hematology are increasing

= Supervised and unsupervised ML must be carefully handled to solve a

research problem with a robust pipeline

» Simple ML tools as decisional trees might be useful to answer to simple

research problems as combination of clinical and TME determinants

= XAl (Explainable Artificial Intelligence) might be potential in boosting the

achievement of novel findings
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