L'ottimizzazione diagnostica del DLBCL

Stefano A. Pileri

MONDO LINFOM! UN'INCREDIBILE DINAMICITÀ

4 OTTOBRE 2023 Unahotels Decò

Predominantly nodal

Diffuse large B-cell lymphoma, NOS Germinal center B-cell subtype Activated B-cell subtype

Large B-cell lymphoma with 11q aberration* T cell/histiocyte-rich large B-cell lymphoma

Extranodal

Primary diffuse large B-cell lymphoma of the central nervous system Primary diffuse large B-cell lymphoma of the testis* Primary cutaneous diffuse large B-cell lymphoma, leg type Intravascular large B-cell lymphoma *HHV-8 and Epstein-Barr virus–negative primary effusion-based lymphoma** Primary mediastinal large B-cell lymphoma Mediastinal gray-zone lymphoma*

Epstein-Barr virus related

Epstein-Barr virus-positive diffuse large B-cell lymphoma, NOS Diffuse large B-cell lymphoma associated with chronic inflammation Fibrin-associated diffuse large B-cell lymphoma

Large cell lymphoma with terminal B-cell differentiation

ALK-positive large B-cell lymphoma Plasmablastic lymphoma HHV-8–positive diffuse large B-cell lymphoma, NOS Primary effusion lymphoma

High grade B-cell lymphomas[¶]

High-grade B-cell lymphoma, with MYC and BCL2 rearrangements* High-grade B-cell lymphoma with MYC and BCL6 rearrangements* DLBCL, NOS = 80% of DBCLs, 40% of NHLs. Morphology not contributory

International Consensus Classification, Blood, 2022

Cell of Origin (COO)

Rosenwald A et al. NEJM, 346:1937-47, 2002. Wright G et al. PNAS, 100:9991-6, 2003.

0.4

0.2

0.0

0

2

Targeted Digital Gene expression profiling

LYMPHOID NEOPLASIA

BRD4 inhibition sensitizes diffuse large B-cell lymphoma cells to ferroptosis

Anja Schmitt,¹ Melanie Grimm,² Nina Kreienkamp,¹ Hannah Junge,¹ Jan Labisch,¹ Laurentz Schuhknecht,³ Caroline Schönfeld,² Elsa Görsch,⁴ Alessia Tibello,⁵ Kerstin Menck,¹ Annalen Bleckmann,¹ Claudia Lengerke,⁴ Frank Rosenbauer,⁵ Michael Grau,¹ Mattia Zampieri,³ Klaus Schulze-Osthoff,^{2,6,7} Pavel Klener,^{8,9} Alexandra Dolnikova,⁸ Georg Lenz,¹ and Stephan Hailfinger¹

¹Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany; ²Department of Molecular Medicine, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; ³Department of Biomedicine, University of Basel, Basel, Switzerland; ⁴Department for Internal Medicine, Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany; ⁵Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany; ⁶German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung) and German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany; ⁷Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany; ⁸Institute of Pathological Physiology, First Faculty of Medicine; and ⁹First Department of Medicine, Hematology, University General Hospital and First Faculty of Medicine, Charles University Prague, Prague, Czech Republic

KEY POINTS

- BRD4 protects DLBCL cells from ferroptosis by positively regulating the expression of FSP1.
- BET inhibitors increase the susceptibility of GCB-DLBCL cells to ferroptosis and thus promote the toxicity of DMF both in vitro and in vivo.

Diffuse large B-cell lymphoma (DLBCL), the most common form of non-Hodgkin lymphoma, is characterized by an aggressive clinical course. In approximately one-third of patients with DLBCL, first-line multiagent immunochemotherapy fails to produce a durable response. Molecular heterogeneity and apoptosis resistance pose major therapeutic challenges in DLBCL treatment. To circumvent apoptosis resistance, the induction of ferroptosis might represent a promising strategy for lymphoma therapy. In this study, a compound library, targeting epigenetic modulators, was screened to identify ferroptosis-sensitizing drugs. Strikingly, bromodomain and extra-terminal domain (BET) inhibitors sensitized cells of the germinal center B-cell-like (GCB) subtype of DLBCL to ferroptosis inducers, such as dimethyl fumarate or RSL3, synergized in the killing of DLBCL cells in vitro and in vivo. On the molecular level, the BET protein BRD4 was found to be an essential regulator of

ferroptosis suppressor protein 1 expression and thus to protect GCB-DLBCL cells from ferroptosis. Collectively, we identified and characterized BRD4 as an important player in ferroptosis suppression in GCB-DLBCL and provide a rationale for the combination of BET inhibitors with ferroptosis-inducing agents as a novel therapeutic approach for DLBCL treatment.

MYC **BCL2** BCL6 IRF4 **11q EBER** ISH

FISH

HHV8

Virchows Archiv (2023) 483:281-298 https://doi.org/10.1007/s00428-023-03590-x

REVIEW AND PERSPECTIVES

Emerging entities: high-grade/large B-cell lymphoma with 11q aberration, large B-cell lymphoma with *IRF4* rearrangement, and new molecular subgroups in large B-cell lymphomas. A report of the 2022 EA4HP/SH lymphoma workshop

Leticia Quintanilia-Martinez^{1,2} · Camille Laurent³ · Lorinda Soma⁴ · Siok-Bian Ng^{5,6} · Fina Climent⁷ · Sarah L. Ondrejka⁸ · Alberto Zamo⁹ · Andrew Wotherspoon¹⁰ · Laurence de Leval¹¹ · Stefan Dirnhofer¹² · Lorenzo Leoncini¹³

Virchows Archiv (2023) 483:299-316 https://doi.org/10.1007/s00428-023-03599-2

REVIEW AND PERSPECTIVES

Cavity-based lymphomas: challenges and novel concepts. A report of the 2022 EA4HP/SH lymphoma workshop

Arianna Di Napoli¹^(D) · Lori Soma² · Leticia Quintanilia-Martinez³^(D) · Laurence de Leval⁴ · Lorenzo Leoncini⁵ · Alberto Zamò⁶^(D) · Siok-Bian Ng⁷^(D) · Sarah L. Ondrejka⁸^(D) · Fina Climent⁹^(D) · Andrew Wotherspoon¹⁰ · Stefan Dirnhofer¹¹

MYC protein expression scoring and its impact on the prognosis of aggressive B-cell lymphoma patients

by Maria R. Ambrosio, Stefano Lazzi, Giuseppe Lo Bello, Raffaella Santi, Leonardo Del Porro, Maria M. de Santi, Raffaella Guazzo, Lucia Mundo, Luigi Rigacci, Sofia Kovalchuck, Noel Onyango, Alberto Fabbri, Emanuele Cencini, Pier Luigi Zinzani, Francesco Zaja, Francesco Angrilli, Caterina Stelitano, Maria G. Cabras, Giuseppe Spataro, Roshanak Bob, Thomas Menter, Massimo Granai, Gabriele Cevenini, Kikkeri N. Naresh, Harald Stein, Elena Sabattini, and Lorenzo Leoncini

Haematologica 2018 [Epub ahead of print]

Using Gene Expression Profiling to Move Beyond *MYC/BCL2* Rearrangements in High-Grade Lymphoma

Wing C. Chan, MD¹

Ca

tion

Double-Hit Gene Expression Signature Defines a Distinct Subgroup of Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma Daisuke Ennishi, PhD¹; Aixiang Jiang, MSc^{1,2}; Merrill Boyle, BSc¹; Brett Collinge, BSc¹; Bruno M. Grande, BSc²; Susana Ben-Ne

Daisuke Ennishi, PhD¹; Aixiang Jiang, MSc^{1,2}; Merrill Boyle, BSc¹; Brett Collinge, BSc¹; Bruno M. Grande, BSc²; Susana Ben-Neriah, MSc¹; Christopher Rushton, BSc²; Jeffrey Tang, BSc²; Nicole Thomas, BSc²; Graham W. Slack, MD¹; Pedro Farinha, PhD¹; Katsuyoshi Takata, MD¹; Tomoko Miyata-Takata, MD¹; Jeffrey Craig, PhD¹; Anja Mottok, PhD³; Barbara Meissner, PhD¹; Saeed Saberi, PhD⁴; Ali Bashashati, PhD⁴; Diego Villa, MD¹; Kerry J. Savage, MD¹; Laurie H. Sehn, MD¹; Robert Kridel, PhD⁵; Andrew J. Mungall, PhD⁶; Marco A. Marra, PhD⁶; Sohrab P. Shah, PhD⁴; Christian Steidl, MD¹; Joseph M. Connors, MD¹; Randy D. Gascoyne, MD¹; Ryan D. Morin, PhD²; and David W. Scott, PhD¹

Molecular High-Grade B-Cell Lymphoma: Defining a Poor-Risk Group That Requires Different Approaches to Therapy

Chulin Sha, PhD¹; Sharon Barrans, PhD²; Francesco Cucco, PhD³; Michael A. Bentley, DPhil¹; Matthew A. Care, PhD¹; Thomas Cummin, MD⁴; Hannah Kennedy, PhD³; Joe S. Thompson, MPhil³; Rahman Uddin, MSc¹; Lisa Worrillow, PhD²; Rebecca Chalkley, MPhil²; Moniek van Hoppe, MSc²; Sophia Ahmed, PhD¹; Tom Maishman, PhD⁴; Josh Caddy, BSc⁴; Anna Schuh, MD⁵; Christoph Mamot, MD⁶; Catherine Burton, MD²; Reuben Tooze, PhD¹; Andrew Davies, PhD⁴; Ming-Qing Du, PhD³; Peter W.M. Johnson, MD⁴; and David R. Westhead, DPhil¹

A 3-gene signature based on MYC, BCL-2 and NFKBIA improves risk stratification in diffuse large B-cell lymphoma

by Enrico Derenzini, Saveria Mazzara, Federica Melle, Giovanna Motta, Marco Fabbri, Riccardo Bruna, Claudio Agostinelli, Alessandra Cesano, Chiara Antonia Corsini, Ning Chen, Simona Righi, Elena Sabattini, Annalisa Chiappella, Angelica Calleri, Stefano Fiori, Valentina Tabanelli, Antonello Cabras, Giancarlo Pruneri, Umberto Vitolo, Alessandro Massimo Gianni, Alessandro Rambaldi, Paolo Corradini, Pier Luigi Zinzani, Corrado Tarella, and Stefano Pileri

Haematologica 2020 [Epub ahead of print]

Targeted Digital Gene Expression Profiling

RefSeq NCBI	Gene	Length NCBI	Protein aa
NM_002467.4	MYC	2379	454
NM_000633.2	BCL2	6492	239
NM_012452.2	TNFRSF13B	1377	293
NM_014240.2	LIMD1	6284	676
NM_001195286.1	IRF4	5329	451
NM_194071.3	CREB3L2	7471	520
NM_006875.3	PIM2	2234	311
NM_001302826.1	CYB5R	1713	276
NM_003929.2	RAB7L1	3324	203
NM_174908.3	CCDC50	8421	306
NM_015361.3	R3HDM1	4722	1099
NM_017706.4	WDR55	2580	383
NM_020701.3	ISY1	3778	285
NM_014607.3	UBXN4	4018	508
NM_030961.2	TRIM56	4723	755
NM_000902.3	MME	5643	750
NM_001284275.1	SERPINA9	1661	435
NM_024701.3	ASB13	2736	278
NM_018717.4	MAML3	7086	1138
NM_002221.3	ІТРКВ	6162	946
NM_001080416.3	MYBL1	5192	752
NM_004230.3	S1PR2	3589	353
NM_020529.2	NFKBIA	1579	371
NM_139276.2	STAT3	4978	770
NM_000314.6	PTEN	8718	403
NM 006218.2	РКІЗСА	3724	1068

26-gene-panel for COO & key-genes Haematologica, 2020

In both trials, only patients staged III-IV were enrolled, all treated with R-CHOP or R-CHOP-like therapies followed or not by Auto-SCT.

The mean age was 52 yr.s (18 – 65)

All the cases were studied by immunohistochemistry, targeted GEP and FISH (*BCL2*, *MYC* and *BCL6*).

COO according to Hans' classifier

Sha's

Real-life

R-CHOP

SHA COHORT n = 469

Longitudinal expression profiling identifies a poor risk subset of patients with ABC-type diffuse large B-cell lymphoma

Submitted 18 March 2022; accepted 25 July 2022; prepublished online on *Blood Advances* First Edition 10 August 2022; final version published online 6 March 2023.

Findlay Bewicke-Copley,¹ Koorosh Korfi,¹ Shamzah Araf,¹ Brendan Hodkinson,² Emil Kumar,¹ Thomas Cummin,³ Margaret Ashton-Key,⁴ Sharon Barrans,⁵ Suzan van Hoppe,⁵ Cathy Burton,⁵ Mohamed Elshiekh,⁶ Simon Rule,⁷ Nicola Crosbie,⁸ Andrew Clear,⁹ Maria Calaminici,⁹ Hendrik Runge,¹⁰ Robert K. Hills,¹¹ David W. Scott,¹² Lisa M. Rimsza,¹³ Geetha Menon,¹⁴ Chulin Sha,¹⁵ John R. Davies,¹⁵ Ai Nagano,¹ Andrew Davies,³ Daniel Painter,¹⁶ Alexandra Smith,¹⁶ John Gribben,⁹ Kikkeri N. Naresh,⁶ David R. Westhead,¹⁵ Jessica Okosun,⁹ Andrew Steele,¹⁷ Daniel J. Hodson,¹⁰ Sriram Balasubramanian,¹⁷ Peter Johnson,³ Jun Wang,^{1,*} and Jude Fitzgibbon^{1,*}

Microenvironment (ME)

ACCEPTED MANUSCRIPT

Dissection of DLBCL Microenvironment Provides a Gene Expression-Based Predictor of Survival Applicable to Formalin-Fixed Paraffin-Embedded Tissue

S Ciavarella, M C Vegliante, M Fabbri, S De Summa, F Melle, G Motta, V De Iuliis, G Opinto, A Enjuanes, S Rega, A Gulino, C Agostinelli, A Scattone, S Tommasi, A Mangia, F Mele, G Simone, A F Zito, G Ingravallo, U Vitolo, A Chiappella, C Tarella, A M Gianni, A Rambaldi, P L Zinzani, B Casadei, E Derenzini, G Loseto, A Pileri, V Tabanelli, S Fiori, A Rivas-Delgado, A López-Guillermo, T Venesio, A Sapino, E Campo, C Tripodo, A Guarini, S A Pileri ⊠

Annals of Oncology, mdy450, https://doi.org/10.1093/annonc/mdy450 Published: 11 October 2018

CIBERSORT analysis and selection of prognostic genes

A customized signature including 1,028 genes was generated to distinguish 17 cell types of both stromal and immune origin.

	ACTA2	Actin, alpha 2, smooth muscle
	AEBP1	AE binding protein 1
	BGN	Biglycan
	COL1A1	Collagen type I alpha 1
	COL1A2	Collagen type I alpha 2
	COL3A1	Collagen type III alpha 1
	COL4A1	Collagen type IV alpha 1
	COL5A2	Collagen type V alpha 2
	COL6A3	Collagen type VI alpha 3
	CTHRC1	Collagen triple helix repeat containing 1
	CTSK	Cathepsin K
	EGR1	Early growth response 1
	FN1	Fibronectin 1
	FSTL1	Follistatin like 1
	GPNMB	Glycoprotein nmb
	LAMB1	Laminin subunit beta 1
	LUM	Lumican
	MFAP2	Microfibrillar associated protein 2
	MMP2	Matrix metallopeptidase 2
	MRC2	Mannose receptor, C type 2
	MXRA5	Matrix-Remodelling Associated 5
	PCOLCE	Procollagen C-endopeptidase enhancer
	PLOD2	Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2
	POSTN	Periostin, osteoblast specific factor
	SPARC	Secreted protein acidic and cysteine rich
	SULF1	Sulfatase 1
	TGFBI	Transforming growth factor beta induced
	ALCAM	Activated leukocyte cell adhesion molecule
	AMICA1	Adhesion molecule, interacts with CXADR antigen 1
	CD300LF	CD300 molecule-like family member F
	COL4A2	Collagen, type IV, alpha 2
	IGSF6	Immunoglobulin superfamily, member 6
	MDFIC	MyoD Family Inhibitor Domain Containing
	P2RY14	Purinergic receptor P2Y, G-protein coupled, 14
	SLC29A3	Solute carrier family 29 (nucleoside transporters), member 3
	SLC2A3	Solute carrier family 2 (facilitated glucose transporter),
	CTSZ	Cathepsin Z
	HS3ST3A1	Heparan Sulfate-Glucosamine 3-Sulfotransferase 3A1
	PMPCB	Peptidase, Mitochondrial Processing Beta Subunit
	RAB27A	RAB27A, Member RAS Oncogene Family
	SMAD1	SMAD Family Member 1

MFrelated

genes

DC-

related

genes

CD4⁺ T cell-

related

genes

Time (months)

By *in situ* immunostaining we analyzed the expression of ECM proteins encoded by four of the fronting genes of the MF signature, namely Fibronectin, Collagen-I, Laminin, and Collagen-IV. However, the expression variability of these proteins does not support the use of immunohistochemistry as a reliable assay to provide insight on the prognostic gene expression patterns of DLBCL microenvironment determinants.

PanCancer Immune Profiling Panel (PCIP)

- A multiplexed gene expression approach to profiling cancer immunology
 - Quantify infiltrating immune cells in a tumor microenvironment
 - Assess immunological activity and response to therapeutic intervention
 - Identify tumor-specific antigens

Discovery set: 12 THRBCLs vs. 10 DLBCLs, NOS

Key Points

- The interferon-driven inflammatory response and the PD-1 signaling were the most relevant modulators of the THRLBCL immune response.
- THRLBCL cases may be enriched in TCF1⁺ T cells, a subset of progenitor exhausted T cells associated with good response to immunotherapy.

In silico: 31 THRBCLs vs. 473 DLBCLs, NOS IHC: 15 THRBCLs vs. 26 DLBCLs, NOS

Spatial-omics for Every Spatial-scale

nanoString

AAAA

GeoMx DSP

RNA and Protein

Whole Transcriptome
High Throughput
Single Phenotype

) Unbiased Molecular Profile

Difference Between Samples Single-Cell Resolution C Entire Tissue Section High Multiplexing C Comprehensive C Cell Type Map Difference Between C Cell Type and Cell State

CosMx SMI

Next generation sequencing (NGS)

Table 2: Genomic subtypes of DLBCL

	Wright 2020 ³⁰	Chapuy 2018 ²⁹	Lacy 2020 ³¹	Hallmark drivers	C00	% of cases	Outcome 5 yr OS (%)	Putative related small cell lymphoma
	MCD	C5	MYD88	MYD88/CD79B	ABC	9-14-21	40-42	
	BN2	Cl	NOTCH2	tBCL6// NOTCH2	GCB/ABC Unclassified	16-19	48-67	MZL
	EZB-MYC-	C3	BCL2	EZH2 tBCL2	GCB	13-18	63-82	FL
	EZB- MYC+			EZH2/tMYC	GCB/DZ	6	48	
	A53	C2		TP53 Aneuploidy	All	7-21	63	
	ST2	C4	SOCS1/SGK1 TET/SGK1	SOCS1/TET/ SGK1	GCB	5-17	65-84	NLPBL
	N1			NOTCH1	ABC	2	27	CLL
	UNCLASS		UNCLASS		Unclass, GCB,ABC	27-37	66	

ABC: Activated B-cell type; GCB: Germinal center B-cell type; DZ: Dark zone signature; CLL: Chronic lymphocytic leukemia; FL: Follicular lymphoma, MZL: Marginal zone lymphoma; NLPBL: Nodular lymphocyte predominant B-cell lymphomat; t: Translocation

Article

Cancer Cell

A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications

Graphical Abstract

Authors

George W. Wright, Da Wei Huang, James D. Phelan, ..., Wyndham H. Wilson, David W. Scott, Louis M. Staudt

Correspondence Istaudt@mail.nih.gov

In Brief

Wright et al. identify seven genetic subtypes of diffuse large B cell lymphoma (DLBCL) with distinct outcomes and therapeutic vulnerabilities. The LymphGen probabilistic classification tool that can classify a DLBCL biopsy into the genetic subtypes is developed, which could be used for precision medicine trials.

American Society of Hematology 2021 L Street NW, Suite 900, Washington, DC 20036 Phone: 202-776-0544 | Fax 202-776-0545 editorial@hematology.org

DLBCL associated NOTCH2 mutations escape ubiquitin-dependent degradation and promote chemo-resistance

Tracking no: BLD-2022-018752R1

Nan Zhou (University of Pennsylvania, United States) Jaewoo Choi (University of Pennsylvania, United States) Grant Grothusen (University of Pennsylvania, United States) Bang-Jin Kim (University of Pennsylvania, United States) Diqiu Ren (University of Pennsylvania, United States) Zhendong Cao (University of Pennsylvania, United States) Qinglan Li (University of Pennsylvania, United States) Yiman Liu (University of Pennsylvania, United States) Arati Inamdar (University of Pennsylvania, United States) Thomas Beer (The Wistar Institute, United States) Hsin-Yao Tang (The Wistar Institute, United States) Eric Perkey (University of Pennsylvania, United States) Ivan Maillard (University of Pennsylvania, United States) Roberto Bonasio (University of Pennsylvania, United States) Junwei Shi (University of Pennsylvania, United States) Marco Ruella (University of Pennsylvania, United States) Liling Wan (University of Pennsylvania, United States) Luca Busino (University of Pennsylvania, United States)

Evolutionary crossroads: morphological heterogeneity reflects divergent intra-clonal evolution in a case of high-grade B-cell lymphoma

by Valentina Tabanelli, Federica Melle, Giovanna Motta, Saveria Mazzara, Marco Fabbri, Chiara Corsini, Elvira Gerbino, Angelica Calleri, Maria Rosaria Sapienza, Ignazio Abbene, Viviana Stufano, Massimo Barberis, and Stefano A. Pileri

Haematologica 2020 [Epub ahead of print]

DIFFUSE LARGE B-CELL LYMPHOMA GENOTYPING ON THE LIQUID BIOPSY

