

C'è una soglia di età anagrafica al di sopra della quale un paziente non dovrebbe essere candidato alla terapia cellulare CAR-T?

Le ragioni del si

Michele Spina Aviano

CONVEGNO EDUCAZIONALE GITMO

HOT QUESTIONS IN TRASPLANTATION AND CELLULAR THERAPIES

Disclosures of Michele Spina

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Gilead					x	x	
Abbvie						x	
Servier					x	x	
Novartis						x	
Istituto Gentili						х	
Incyte						х	
BeiGene						x	

Non-Hodgkin Lymphoma Subtypes: 2004-2011 Age-Specific Incidence Rates, UK (Estimates Based on HMRN data)

Please include the citation provided in our Frequently Asked Questions when reproducing this chart: http://info.cancerresearchuk.org/cancerstats/faqs/#How **Prepared by Cancer Research UK**

Changes in the Survival of Older Patients With Hematologic Malignancies in the Early 21st Century

Dianne Pulte, MD^{1,2}; Lina Jansen, PhD¹; Felipe A. Castro, PhD¹; and Hermann Brenner, MD, MPH^{1,3,4}

Cancer, July 2016

TABLE 1. Five-Year Relative Survival of Patients With Hematological Malignancies by Time Period and Age Group

		5-	y Relative Surviva	Difference Between 1007 2000		
Malignancy	Age, y	1997-2000	2001-2004	2005-2008	2009-2012	Difference Between 1997-2000 and 2009-2012, %
NHL	50-59	63.7 (0.8)	72.9 (0.7) ^a	76.6 (0.6) ^a	78.1 (0.6) ^a	- +14.4
	65-69	50.8 (0.9)	66.2 (1.0) ^a	71.4 (1.0) ^a	73.0 (0.9) ^b	+22.2
	70-74	45.8 (0.9)	58.5 (1.0) ^a	66.5 (1.0) ^a	68.6 (1.0) ^b	+22.8
	75-79	35.8 (0.9)	55.7 (1.1) ^a	61.1 (1.1) ^a	62.7 (1.1) ^b	+26.9
	80-84	27.2 (0.9)	45.6 (1.4) ^a	53.9 (1.3) ^a	55.1 (1.3) ^b	+27.9
	≥85	13.3 (0.8)	31.1 (1.7) ^a	46.6 (1.9) ^a	44.8 (1.6)	+ + 31.5

^a $P \leq .01$ versus the preceding period.

 ${}^{\rm b}P \leq .05$ versus the preceding period.

The age-related disparity in survival has actually been decreasing

Integrated approach to assess therapeutic options in older patients

Thieblemont C. and Coiffier B., JCO May 2007, 25(14): 1916-1923

The relevance of a geriatric assessment for elderly patients with a haematological malignancy – A systematic review

Hamaker ME et al, LEUKEMIA RESEARCH, 2014

- 18 publications from 15 studies
- # GA impairments: associated with a shorter OS in a relevant proportion of studies
- # In a multivariate analysis , when geriatric parameters were included, age and PS lost their predictive value for mortality in most studies

- **@ GA can detect multiple health issues,** even in patients with good PS and implements non-oncologic interventions in over 70% of patients
- @ Impairments in geriatric domains:
 - appear to be associated with toxicity
 - should be integrated in individualised treatment algorithms

Frailty by treatment issues Myelosuppression \rightarrow Infection \rightarrow Fatigue Intestinal mucositis \rightarrow Low food uptake \rightarrow Weight loss Neurotoxicity \rightarrow Polyneuropathy \rightarrow Weakness and falls

Frailty by cancer issues Anaemia \rightarrow Weakness Immunosuppression \rightarrow Infection \rightarrow Fatigue Tumour pain \rightarrow Pain-related posture \rightarrow Sarcopenia

Frailty by chronic multimorbidity and polypharmacy Congestive heart failure → Low cardiopulmonary reserve Osteoarthritis→ Immobility → Sarcopenia → Weakness Diabetic neuropathy → Impaired proprioception → Fall risk Drug-drug interaction→ Intestinal side-effect → Weight loss

Frailty by senescence of cells and organs or inflammaging Cardiopulmonary \rightarrow Decline of VO₂ max Muscles \rightarrow Sarcopenia \rightarrow Loss of strength and power Metabolism \rightarrow Lower energy uptake \rightarrow Undernutrition

Figure 1: Components of frailty in older patients with haematological malignancies Several examples of pathways to frailty are provided below each of the four scenarios. *Leukemia & Lymphoma*, April 2015; 56(4): 921–926 © 2014 Informa UK, Ltd. ISSN: 1042-8194 print / 1029-2403 online DOI: 10.3109/10428194.2014.953142

ORIGINAL ARTICLE: CLINICAL

Comprehensive geriatric assessment is an essential tool to support treatment decisions in elderly patients with diffuse large B-cell lymphoma: a prospective multicenter evaluation in 173 patients by the Lymphoma Italian Foundation (FIL)

Alessandra Tucci¹, Maurizio Martelli², Luigi Rigacci³, Paola Riccomagno⁴, Maria Giuseppina Cabras⁵, Flavia Salvi⁶, Caterina Stelitano⁷, Alberto Fabbri⁸, Sergio Storti⁹, Stefano Fogazzi¹, Salvatrice Mancuso¹⁰, Maura Brugiatelli¹¹, Angelo Fama², Paolo Paesano², Benedetta Puccini³, Chiara Bottelli¹, Daniela Dalceggio¹, Francesco Bertagna¹², Giuseppe Rossi¹ & Michele Spina¹³; for the Italian Lymphoma Foundation (FIL)

A	· · ·				
CGA category	All	Fit	Unfit	Frail	<i>p</i> -Value
No. of evaluable patients (%)	173	79 (46%)	28 (16%)	66 (38%)	
M/F	91/82	52/27	13/15	26/40	
Median age	77	74	79	81	< 0.0001
Ann Arbor stage III-IV (%) [†]	57	57	58	58	NS
B symptoms (%) [*]	32	25	24	37	NS
IPI risk class intermediate-high/high (%)§	43	41	44	54	NS

Table II. Characteristics of patients classified according to CGA*.

Variables	Univariate HR (95% CI)	<i>p</i> -Value	Multivariate HR (95% CI)	<i>p</i> -Value
$\overline{\text{Age} < 80 \text{ vs.}} \ge 80 \text{ years}$	2.67 (1.61-4.44)	0.0002		
Stage I-II vs. III-IV	1.59 (0.92-2.74)	0.09		
IPI (intermediate-low/low vs. intermediate-high/high)	3.72 (1.80-7.68)	0.0003	4.60 (1.35-15.64)	0.008
CGA	5.61 (2.95-10.64)	0.0001	3.69 (1.09-12.51)	0.03
$ADL (\leq 5 \text{ vs. } 6)$	0.3 (0.17-0.51)	0.0001		
$IADL (\leq 6 vs. \geq 7)$	0.24 (0.14-0.41)	0.0001		
CIRS-G grade 2 (<5 vs. ≥ 5)	2.89 (1.04-8.03)	0.04		
CIRS-G grade $3-4$ (0 vs. ≥ 1)	2.14(1.22 - 3.73)	0.007		
Curative vs. palliative treatment approach	0.27 (0.16-0.46)	0.0001		
Treatment dose ($< 70\%$ vs. $\ge 70\%$)	0.38 (0.17-0.86)	0.02		

Table IV. Overall survival time according to patient and treatment characteristics (univariate and multivariate Cox regression analysis).

Figure 1. Actuarial overall survival curves of elderly patients with DLBCL classified as "fit," "unfit" and "frail" according to CGA, independent of treatment received.

Tucci A et al. Leuk Lymph 2015

- -

ELDERLY PROJECT

STUDI CLINICI

ARCHIVIO PAZIENTI

Un progetto della Fondazione Italiana Linfomi per eseguire la valutazione geriatrica multidimensionale dei pazienti anziani con linfoma diffuso a grandi cellule B. Maggiori informazioni sono disponibili consultando la brochure.

- **1. General Data**
- 2. Disease Status
- 3. Activity of Daily Living (ADL)

+ ADD PATIENT

- 4. Instrumental Activity of Daily Living (IADL)
- 5. CIRS-G

Simplified Geriatric Assessment in Older Patien With Diffuse Large B-Cell Lymphoma: The Prospective Elderly Project of the Fondazione Italiana Linfomi

Francesco Merli, MD¹; Stefano Luminari, MD^{1,2}; Alessandra Tucci, MD³; Annalisa Arcari, MD⁴; Luigi Rigacci, MD⁵; Eliza Hawkes, MD⁶; Carlos S. Chiattone, MD^{7,8}; Federica Cavallo, MD⁹; Giuseppina Cabras, MD¹⁰; Isabel Alvarez, MD¹; Alberto Fabbri, MD¹¹; Alessandro Re, MD³; Benedetta Puccini, MD⁵; Allison Barraclough, MD¹²; Marcia Torresan Delamain, MD¹³; Simone Ferrero, MD⁹; Sara Veronica Usai, MD¹⁰; Angela Ferrari, MD¹; Emanuele Cencini, MD¹¹; Elsa Pennese, MD¹⁴; Vittorio Ruggero Zilioli, MD¹⁵; Dario Marino, MD¹⁶; Monica Balzarotti, MD¹⁷; Maria Christina Cox, MD¹⁸; Manuela Zanni, MD¹⁹; Alice Di Rocco, MD²⁰; Arben Lleshi, MD²¹; Barbara Botto, MD²²; Stefan Hohaus, MD²³; Michele Merli, MD²⁴; Roberto Sartori, MD²⁵; Guido Gini, MD²⁶; Luca Nassi, MD²⁷: Gerardo Musuraca, MD²⁸: Monica Tani, MD²⁹: Chiara Bottelli, MD³: Sofia Kovalchuk, MD⁵: Francesca Re, MD³⁰: Leonardo Flenghi, MD³¹; Annalia Molinari, MD³²; Giuseppe Tarantini, MD³³; Emanuela Chimienti, MD²¹; Luigi Marcheselli, MS³⁴; Caterina Mammi, PhD³⁵; and Michele Spina, MD²¹

Check for updates

Elderly Project: Clinical Characteristics and sCGA

Enrollment period: Dec 2013 – Dec 2017

- 37 Italian centres
- 1353 patients (1207 eligible)

54 - 67

		N. (%)
Fitness Status by sCGA	FIT	520 (43%)
	UNFIT	300 (25%)
	FRAIL	387 (32%)
	Total	1207 (100%)

0 1 - 9

The emergence of chimeric antigen receptor (CAR) T-cell therapy has changed the treatment landscape for diffuse large B-cell lymphoma (DLBCL); however, real-world experience reporting outcomes among older patients treated with CAR T-cell therapy is limited.

ORIGINAL ARTICLE

OPEN ACCESS Check for updates

Evaluation of the safety and efficacy of humanized anti-CD19 chimeric antigen receptor T-cell therapy in older patients with relapsed/refractory diffuse large B-cell lymphoma based on the comprehensive geriatric assessment system

Huan Zhang^a, Man Liu^b, Qing Li^a, Cuicui Lyu^a, Yan-Yu Jiang^a, Juan-Xia Meng^a, Jing-Yi Li^a and Qi Deng^a

^aDepartment of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China; ^bDepartment of Surgery Plastic, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China

Table 1. Grouping criteria for comprehensive geriatric assessment system.

CGA category	Fit	Unfit	Frail
Age (years)	\geq 65 to <80	≥80	<u>≥</u> 80
ADL (score)	6	5	<u><</u> 4
IADL (score)	8	6–7	<u><</u> 5
CIRS-G	No comorbidity score 3–4 and <5 comorbidities score 2	No comorbidity score 3–4 and 5–8 comorbidities score 2	≥1 comorbidity score 3–4 or >8 comorbidities score 2

CGA: comprehensive geriatric assessment; ADL: activity of daily living; IADL: instrumental activity of daily living; CIRS-G: Cumulative Illness Rating Score for Geriatrics.

CGA category	FIT	Unfit/frail	<i>p</i> value
Median age (range), years	68 (65-80)	76 (73-86)	.013
Man	9 (52.9%)	7 (50.0%)	.532
ECOG > 1	1 (0.6%)	5 (35.7%)	<.001
Karnofsky $<$ 90	1 (0.6%)	5 (35.7%)	<.001
ADL			<.001
6	17 (100.0%)	10 (71.4%)	
5	0 (0.0%)	3 (21.4%)	
\leq 4	0 (0.0%)	1 (7.14%)	
IADL			<.001
8	17 (100.0%)	9 (64.3%)	
6–7	0 (0.0%)	4 (28.6%)	
≤ 6	0 (0.0%)	1 (7.14%)	
CIRS-G			.006
No comorbidity score 3–4	17 (100.0%)	12 (85.7%)	
\geq 1 comorbidity score 3–4	0 (0.0%)	2 (14.3%)	
$<$ 5 comorbidities score \leq 2	17 (100.0%)	0 (0.0%)	
\geq 5 comorbidities score \leq 2	0 (0.0%)	14 (100.0%)	
LDH, pre-lymphodepletion			.071
>upper limit of normal	14 (82.4%)	12 (85.7%)	
 upper limit of normal 	3 (17.6%)	2 (14.3%)	
Tumor cross-sectional area (mm ²)			.542
≥4000	8 (47.1%)	9 (64.3%)	
<4000	9 (52.9%)	5 (35.7%)	
Double/triple-hit			.638
Yes	7 (41.2%)	6 (42.9%)	
No	10 (58.8%)	8 (57.1%)	
Disease stage			.735
I/II	3 (17.6%)	2 (14.3%)	
III/IV	14 (82.4%)	12 (85.7%)	
IPI			.953
0–2	8 (47.1%)	6 (42.9%)	
3–5	9 (52.9%)	8 (57.1%)	
Extranodal disease	. ,	. ,	.631
Yes	5 (29.4%)	3 (21.4%)	
No	12 (70.6%)	11 (78.6%)	
Number of prior therapies		(.753
1–4	3 (17.6%)	4 (28.6%)	
>5	14 (83.4%)	10 (71.4%)	
Refractory category	(,		.052
Refractory to second-line or later therapy	17 (100.0%)	11 (64.7%)	
Best response as progressive disease to last previous therapy	9 (52.9%)	8 (57.1%)	
Relapse after autologous stem-cell transplantation	3 (17.6%)	0 (0.0%)	

Table 2. Baseline characteristics of the patients (n = 31).

CGA: comprehensive geriatric assessment; double/triple-hit MYC rearrangement plus rearrangement of BCL2/BCL6 by fish; IPI: International Prognostic Index; tumor cross-sectional area: sum of the product of the perpendicular diameters of up to six target measurable nodes and extranodal sites.

	Number	ORR	CR	PR
Overall	31	24 (77.4%)	16 (51.6%)	8 (25.6%)
Fit	17	15 (88.2%)	10 (58.8%)	5 (29.4%)
Unfit/frail	14	9 (64.3%)	6 (42.9%)	3 (21.4%)
χ^2		2.542	1.927	1.136
p		.003	.012	.181

 Table 3. Clinical responses in CGA subgroup.

ORR: objective response rate; CR: complete response; PR: part response

	Fit group	Unfit/frail group	2	
	(n = 17)	(<i>n</i> = 14)	χ^2	р
CRS			7.513	.023
Grade 0	12 (70.6%)	3 (21.4%)		
Grade 1–2	4 (23.5%)	8 (57.1%)		
Grade \geq 3	1 (5.9%)	3 (21.4%)		
Hematological			8.123	.017
Grade 0	11 (64.7%)	2 (14.3%)		
Grade 1–2	2 (11.8%)	5 (35.7%)		
Grade \geq 3	4 (23.5%)	7 (50.0%)		
Cardiovascular events			4.803	.022
Grade 0	15 (88.2%)	8 (57.1%)		
Grade 1–2	2 (14.3%)	2 (14.3%)		
Grade \geq 3	0 (0.0%)	4 (28.6%)		
Increased aminotransferase			5.656	.016
Grade 0	13 (76.5%)	6 (42.9%)		
Grade 1–2	3 (17.6%)	6 (42.9%)		
Grade \geq 3	0 (0.0%)	3 (21.4%)		
Increased creatinine			3.958	.026
Grade 0	14 (82.4%)	9 (64.3%)		
Grade 1–2	3 (17.6%)	4 (28.6%)		
Grade \geq 3	0 (0.0%)	1 (7.1%)		

 Table 5. CGA subgroup analysis of adverse events, n (%).

Figure 3. The expansion of anti-CD19 CAR T-cells. (A) The proportions of anti-CD19 CAR T-cells changed within 60 days after infusion in the fit group (n = 17). (B) The proportions of anti-CD19 CAR T-cells changed within 60 days after infusion in the unfit/frail group (n = 14). (C) The peak proportion of anti-CD19 CAR T-cells in the fit group was significantly higher than that in the unfit/frail group (24.59%±9.39% vs. 15.21%±5.30%; p=.003). (D) The proportion of anti-CD19 CAR T-cells in patients with an ORR was higher in the fit group than in the unfit/frail group (29.12%±8.41%% vs. 18.78%±2.57%; p=.019).

In conclusion, despite the limitations of a small sample size and short follow-up time, our results demonstrate positive efficacy and controlled side effects of humanized anti-CD19 CAR T-cell therapy in elderly patients. Elderly patients should not be excluded from receiving CAR T-cell therapy. The CGA system is used to stratify elderly patients with R/R DLBCL under CAR T-cell therapy to effectively predict their treatment response, adverse reactions, and long-term survival. In the future, we look forward to more prospective randomized controlled studies that will guide treatment through CGA stratification, and this will help develop a combination of CGA scales suitable for elderly R/R DLBCL patients and standardize them to help more effectively stratify patients and guide treatment.

Current Oncology Reports (2022) 24:1189–1199 https://doi.org/10.1007/s11912-022-01272-6

GERIATRIC ONCOLOGY (L BALDUCCI, SECTION EDITOR)

CAR T-Cell Therapy in the Older Person: Indications and Risks

Geoffrey Shouse¹ · Alexey V. Danilov^{1,2} · Andy Artz¹

Accepted: 25 February 2022 / Published online: 14 April 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 **Table 2** Outcomes in older adults from clinical trial and real-world evidence for approved CART products comparing patients \geq 65 years to < 65 years of age. *Axi-Cel* axicabtagene ciloleucel, *Tisa-Cel* tisagenlecleucel, *Liso-Cel* lisocabtagene maraulecel, *Brexu-Cel* brexucabtageneautoleucel, *Ide-Cel* idecabtagenevicleucel, *DLBCL* diffuse large B cell lymphoma, *MCL* mantle cell lymphoma, *MM* multiple myeloma, *B-ALL* B-cell acute lymphoblastic leukemia, *ORR* objective response rate, *CR* complete response, *G* grade, *CRS* cytokine release syndrome, *NTX* neurotoxicity, *Infxn* infection, *NR* not reported, *n* number of patients

Product	Disease	Reference	Number of patients	% Patients age≥65 years	ORR ≥ 65 vs < 65 years $n(\%)$	$CR \ge 65$ vs < 65 years $n(\%)$	$G \ge 3 CRS \ge 65$ vs < 65 years n (%)	$G \ge 3 \text{ NTX} \ge 65$ vs < 65 years $n(\%)$	$G \ge 3$ Infxn ≥ 65 vs < 65 years n(%)
Axi-Cel	DLBCL	(6)	108	25%	22 (92%) vs 62 (81%)	18 (75%) vs 41 (53%)	2 (7%) vs 10 (12%)	12 (44%) vs 23 (28%)	5 (19%) vs 25 (31%)
Tisa-Cel	DLBCL	(7)	111	23%	13 (59%) vs 35 (49%)	NR	NR	NR	NR
Axi-Cel and Tisa- Cel	DLBCL	(26)	49	51%	NR	51% overall and not different among groups	2 (8%) vs 3 (12%)	6 (25%) vs 4 (16%)	10 (42%) vs 15 (60%)
Axi-Cel and Tisa- Cel	DLBCL	(25)	804	41%	NR	NR	(All grades) 197 (59%) vs 302 (64%)	(All grades) 142 (43%) vs 171 (36%)	(Sepsis) 11 (3%) vs 5 (1%)
Liso-Cel	DLBCL	(5)	269	42%	82 (76%) vs 104 (70%)	65 (60%) vs 71 (48%)	NR	NR	NR
Brexu-Cel	MCL	(10)	60	53%	30 (94%) vs 26 (93%)	NR	NR	NR	NR
Ide-Cel	MM	(8)	128	35%	45 (70%) vs 83 (90%)	NR	NR	NR	NR
Axi-Cel	Follicular	(11)	86	31%	NR	NR	NR	NR	NR
Brexu-Cel	B-ALL	(9)	65	15%	NR	8 (100%) vs 47 (71%)	NR	NR	NR

A validated composite comorbidity index predicts outcomes of CAR T-cell therapy in patients with diffuse large B cell lymphoma

Geoffrey Shouse¹*, Andy Kaempf²*, Max J. Gordon³, Andy Artz¹, David Yashar¹, Audrey M. Sigmund⁴, Gordon Smilnak⁵, Steven Bair⁶, Agrima Mian⁷, Lindsey Fitzgerald⁸, Amneet Bajwa⁴, Samantha Jaglowski⁴, Neil Bailey⁹, Mazyar Shadman¹⁰, Krish Patel⁹, Deborah M. Stephens⁸, Manali Kamdar⁶, Brian Hill⁷, Jordan Gauthier¹⁰, Reem Karmali⁵, Loretta J. Nastoupil³*, Adam S. Kittai⁴* and Alexey V. Danilov¹*

Severe CIRS score (>2) in the respiratory, upper GI, renal and hepatic system "SEVERE 4" had the strongest impact on PFS and OS

B

Validation: OS adjusted Cox curves by "Severe4" (n=218)

Cellular Therapy

Comorbidities Predict Inferior Survival in Patients Receiving Chimeric Antigen Receptor T Cell Therapy for Diffuse Large B Cell Lymphoma: A Multicenter Analysis

Adam S. Kittai^{1,*}, Ying Huang¹, Max Gordon², Nathan Denlinger¹, Agrima Mian³, Lindsey Fitzgerald⁴, Jennifer Bishop², Sarah Nagle², Deborah M. Stephens⁴, Samantha Jaglowski¹, Brian Hill³, Alexey V. Danilov⁵

Check for updates

Figure 2. PFS and OS of patients with DLBCL treated with CAR-T therapy by CIRS \geq 7.

Figure 3. PFS and OS of patients with DLBCL treated with CAR-T therapy by CIRS-3+.

Figure 4. PFS and OS of patients with DLBCL treated with CAR-T therapy by either CIRS \geq 7 or CIRS-3+.

Cardiovascular events in patients treated with chimeric antigen receptor T-cell therapy for aggressive B-cell lymphoma

27/165 (16%)

Figure 1. Nature, recurrences, and timing of 30-day major adverse cardiovascular events (A) Cumulative occurrences of 30-day major adverse cardiovascular event (30-d MACE). (B) Nature and recurrences of 30-d MACE. *Events happened on the same day, counted as 1 atrial fibrillation (AF) event. The patients who presented clinical heart failure had a decrease in left ventricular ejection fraction. (C). Timing of 30-d MACE. Day 0 represents the day of chimeric antigen receptor T-cell therapy infusion. AF: atrial fibrillation; CMP: cardiomyopathy; HF: heart failure; CV: cardiovascular; CVA: cerebrovascular accident; MI: myocardial infarction; NSVT: non-sustained ventricular tachycardia; SVT: supraventricular tachycardia.

						sented at least one CE (N = 27)
Characteristics/ Outcomes	All patients (N= 165)	Patients who did not present 30-d MACE (N = 138)	Patients who presented at least one 30- d MACE (N = 27)	P	Arrhythmic event(s) only (N = 15)	At least one non- arrhythmic event (N = 12)
Cohort						
Age, median [range], y	60 [18-88]	59 [18-88]	69 [24-83]	0.001	68 [42 - 82]	70 [24-83]
Age >60 years	87 (53%)	66 (48%)	21 (78%)	0.004	13 (48%)	8 (30%)
Age <60 years	78 (47%)	72 (52%)	6 (22%)	0.004	2 (7%)	4 (15%)

Baseline echocardiographic	features*
-----------------------------------	-----------

Left ventricular ejection fraction, median [range]	58% [38-75]	58% [38 - 75]	53% [39 - 68]	0.131	58% [39-66]	50% [44 - 68]
Presence of diastolic dysfunction	49%	43%	82%	0.004	89%	75%

Figure 3. Evolution of left ventricular ejection fraction of patients who presented a drop of ejection fraction of at least 10% during day 0-30. LVEF: left ventricular ejection fraction. Day 0 represents the day of chimeric antigen receptor T-cell therapy infusion. The colored dashed lines indicate the day of death for the patient of the corresponding color.

Outcomes of older patients in ZUMA-1, a pivotal study of axicabtagene ciloleucel in refractory large B-cell lymphoma

Sattva S. Neelapu,¹ Caron A. Jacobson,² Olalekan O. Oluwole,³ Javier Munoz,⁴ Abhinav Deol,⁵ David B. Miklos,⁶ Nancy L. Bartlett,^{7,8} Ira Braunschweig,⁹ Yizhou Jiang,¹⁰ Jenny J. Kim,¹⁰ Lianging Zheng,¹⁰ John M. Rossi,¹⁰ and Frederick L. Locke¹¹

Characteristic	≥65 y (n = 27)	<65 y (n = 81)
Grade ≥3 AEs*		
Any grade ≥3 AE, n (%)	27 (100)	79 (98)
Neutropenia†	20 (74)	66 (81)
Anemia	13 (48)	36 (44)
Thrombocytopenia‡	12 (44)	31 (38)
Decreased white blood cell count	9 (33)	22 (27)
Encephalopathy	8 (30)	17 (21)
Lymphocyte count	8 (30)	14 (17)
decreased		
Grade ≥3 infection		
Infection, n (%)	5 (19)	25 (31)
Grade ≥3 CRS§		
Any grade ≥3 CRS, n (%)	2 (7)	10 (12)
Pyrexia	3 (12)	9 (12)
Hypotension	2 (8)	8 (11)
Нурохіа	3 (12)	6 (7)
Grade ≥3 neurologic event§		
Any grade ≥3 neurologic event, n (%)	12 (44)	23 (28)
Encephalopathy	8 (30)	17 (21)
Confusional state	2 (7)	8 (10)
Aphasia	0	8 (10)
Agitation	3 (11)	2 (2)
Delirium	3 (11)	0

Table 1. Patient characteristics, efficacy, and safety

Conclusion: While CAR T-cell therapy in older patients is associated with favorable event-free survival comparable to outcomes in younger patients, CAR T-cell usage is low in older patients with DLBCL, which suggests an unmet need for more accessible, effective, and tolerable therapy.

Blood Visual Abstract

Chihara et al. DOI: 10.1182/blood.2023020197

American Society of Hematology

Helping hematologists conquer blood diseases worldwide

Table 2. Cox proportional hazards model for EFS and OS

		EFS						OS						
		Univariate			Multivariate			Univariate			Multivariate			
Characteristic	Categories	HR	95% Cl	P value	HR	95% CI	P value	HR	95% Cl	P value	HR	95% CI	P value	
Age groups	≥75 vs 65-69 y ≥75 vs 70-74 y	1.37 1.54	1.07-1.74 1.19-1.98	.011 .001	1.41 1.46	1.10-1.82 1.13-1.89	.007 .004	1.25 1.29	0.96-1.62 0.98-1.70	.105 .066	1.2 1.2	0.91-1.58 0.90-1.58	.188 .207	
Sex	Male vs female	0.99	0.81-1.22	.943	0.92	0.75-1.14	.449	1.06	0.85-1.33	.577	1	0.80-1.26	.973	
Urban/suburban residence	Rural vs urban	1.14	0.88-1.47	.317		-	-	1.22	0.93-1.60	.158		-	-	
Bridging therapy	Present vs absent	1.34	1.09-1.64	.005	1.27	1.03-1.56	.028	1.49	1.19-1.86	<.001	1.39	1.11-1.75	.005	
Charlson Comorbidity Index	≥5 vs 0-4	1.57	1.28-1.94	<.0001	1.56	1.26–1.92	<.0001	1.63	1.30-2.05	<.0001	1.58	1.26-1.99	<.0001	

Fig. 2. Features of young and old CAR T cells that determine therapy outcome. CAR T cells of responding patients have higher expression of co-stimulatory receptors and markers associated with a central memory T cell phenotype. Non-responding CAR T cells display higher levels of exhaustion and terminally differentiated markers. Created with BioRender.com. Fig. 3. Rejuvenation approaches for CAR T cells. Proposed methods for T cell rejuvenation include lifestyle changes (CR and exercise), pharmacological intervention (Rapamycin, Metformin, SASP and PLA2 inhibition) and gene editing approaches (ADA, CD28, hTERT, OSKM). Created with BioRender.com.

Fig. 4. Possible clinical approaches for differentiating and ameliorating aging phenotypes. These include improved geriatric assessment, biomarker analysis, age prediction with epigenetic clock and metabolic intervention for patients. Created with BioRender.com.

CONCLUSIONS

- Elderly patients (i.e. >75 yrs) are at increasing risk of toxicity
- CGA can be an useful tool to select patients
- Limited data are available regarding the long term efficacy of CAR-T cells in elderly patients in a RWE
- More data on immunological aspect of these patients are warranted
- A better selection of patients will lead to a better use of this treatmant in order to maximaze the outcome and minimaze the side effects and costs.