

SESSIONE I

10.50-11.20

Ottimizzazione del percorso diagnostico e terapeutico Moderatore: P.L. Zinzani, Bologna Ottimizzazione Diagnostica S.A. Pileri, Bologna TO JOB

Disclosures

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
BeiGene					+		
Kyova Kirin					+		
Stemline					+		
Roche					+		
Takeda					+		
Diatech						+	
Lilly					+		

Guideline Article - Expert opinion Open Access

Unmet Clinical Needs and Management Recommendations for Blastic Plasmacytoid Dendritic Cell Neoplasm: A Consensus-based Position Paper From an Ad Hoc International Expert Panel

Livio Pagano^{1,2}, Pier Luigi Zinzani^{3,4}, Stefano Pileri⁵, Pietro Quaglino⁶, Branko Cuglievan⁷, Emilio Berti^{8,9}, Naveen Pemmaraju¹⁰, Francesco Onida^{11,12}, Rein Willemze¹³, Alberto Orfao^{14,15}, Giovanni Barosi¹⁶

List of UCNs Proposed by the Panel

- 1. Optimization of subclassification: pediatric vs adult
- 2. Optimization of the prognostic stratification
- 3. Indication to allotransplant
- 4. Indication to autotransplant
- 5. Optimization of the staging pathway
- 6. Optimization of the diagnostic pathway
- 7. CNS prophylaxis
- 8. Multidisciplinary management coordination
- 9. Making the pediatric groups more aware of the disease
- 10. Optimization of subclassification: plasmacytoid vs AXL+ dendritic cell neoplasms.
- 11. Therapeutic recommendations for young (and fit) patients
- 12. Mechanism of drug resistance
- 13. Therapeutic recommendations for elderly or unfit patients

CNS = central nervous system; UCN = unmet clinical need.

International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data

Daniel A. Arber,¹ Attilio Orazi,² Robert P. Hasserjian,³ Michael J. Borowitz,⁴ Katherine R. Calvo,⁵ Hans-Michael Kvasnicka,⁶ Sa A. Wang,⁷ Adam Bagg,⁸ Tiziano Barbui,⁹ Susan Branford,¹⁰ Carlos E. Bueso-Ramos,⁷ Jorge E. Cortes,¹¹ Paola Dal Cin,¹² Courtney D. DiNardo,⁷ Hervé Dombret,¹³ Eric J. Duncavage,¹⁴ Benjamin L. Ebert,¹⁵ Elihu H. Estey,¹⁶ Fabio Facchetti,¹⁷ Kathryn Foucar,¹⁸ Naseema Gangat,¹⁹ Umberto Gianelli,²⁰ Lucy A. Godley,¹ Nicola Gökbuget,²¹ Jason Gotlib,²² Eva Hellström-Lindberg,²³ Gabriela S. Hobbs,³ Ronald Hoffman,²⁴ Elias J. Jabbour,⁷ Jean-Jacques Kiladjian,¹³ Richard A. Larson,¹ Michelle M. Le Beau,¹ Mignon L.-C. Loh,²⁵ Bob Löwenberg,²⁶ Elizabeth Macintyre,²⁷ Luca Malcovati,²⁸ Charles G. Mullighan,²⁹ Charlotte Niemeyer,³⁰ Olatoyosi M. Odenike,¹ Seishi Ogawa,³¹ Alberto Orfao,³² Elli Papaemmanuil,³³ Francesco Passamonti,²⁸ Kimmo Porkka,³⁴ Ching-Hon Pui,²⁹ Jerald P. Radich,³⁵ Andreas Reiter,³⁶ Maria Rozman,³⁷ Martina Rudelius,³⁸ Michael R. Savona,³⁹ Charles A. Schiffer,⁴⁰ Annette Schmitt-Graeff,⁴¹ Akiko Shimamura,^{15,42} Jorge Sierra,⁴³ Wendy A. Stock,¹ Richard M. Stone,¹⁵ Martin S. Tallman,⁴⁴ Jürgen Thiele,⁴⁵ Hwei-Fang Tien,⁴⁶ Alexandar Tzankov,⁴⁷ Alessandro M. Vannucchi,⁴⁸ Paresh Vyas,⁴⁹ Andrew H. Wei,⁵⁰ Olga K. Weinberg,⁵¹ Agnieszka Wierzbowska,⁵² Mario Cazzola,²⁸ Hartmut Döhner,⁵³ and Ayalew Tefferi¹⁹

Check for updates

REVIEW ARTICLE OPEN

The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/ Dendritic Neoplasms

Joseph D. Khoury ¹², Eric Solary ²², Oussama Abla³, Yassmine Akkari ⁶, Rita Alaggio⁵, Jane F. Apperley ⁶, Rafael Bejar ⁷, Emilio Berti⁸, Lambert Busque ⁹, John K. C. Chan¹⁰, Weina Chen ¹¹, Xueyan Chen¹², Wee-Joo Chng¹³, John K. Choi ¹⁴, Isabel Colmenero ¹⁵, Sarah E. Coupland ¹⁶, Nicholas C. P. Cross ¹⁷, Daphne De Jong¹⁸, M. Tarek Elghetany¹⁹, Emiko Takahashi ²⁰, Jean-Francois Emile ²¹, Judith Ferry²², Linda Fogelstrand²³, Michaela Fontenay²⁴, Ulrich Germing²⁵, Sumeet Gujral²⁶, Torsten Haferlach ²⁷, Claire Harrison²⁸, Jennelle C. Hodge²⁹, Shimin Hu ¹, Joop H. Jansen³⁰, Rashmi Kanagal-Shamanna ¹, Hagop M. Kantarjian ³¹, Christian P. Kratz ³², Xiao-Qiu Li³³, Megan S. Lim³⁴, Keith Loeb³⁵, Sanam Loghavi ¹⁰, Andrea Marcogliese¹⁹, Soheil Meshinchi³⁶, Phillip Michaels³⁷, Kikkeri N. Naresh ³⁵, Yasodha Natkunam ³⁸, Reza Nejati³⁹, German Ott⁴⁰, Eric Padron ⁶¹, Keyur P. Patel¹, Nikhil Patkar ⁴², Jennifer Picarsic⁴³, Uwe Platzbecker ⁶⁴, Irene Roberts⁴⁵, Anna Schuh ⁶⁴, William Sewell⁴⁷, Reiner Siebert⁴⁸, Prashant Tembhare ⁶⁴², Jeffrey Tyner ⁶⁴⁹, Srdan Verstovsek ³¹, Wei Wang ¹, Brent Wood⁵⁰, Wenbin Xiao ⁵¹, Cecilia Yeung ³⁵ and Andreas Hochhaus ^{52²⁴}

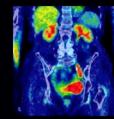
Plasmacytoid dendritic cell neoplasms: recognition of clonal proliferations detected in association with myeloid neoplasms and refinement/update of the diagnostic criteria for blastic plasmacytoid dendritic cell neoplasm

Mature plasmacytoid dendritic cell proliferation (MPDCP) associated with myeloid neoplasm reflects recent data showing that these represent clonal proliferation of pDCs with low grade morphology identified in the context of a defined myeloid neoplasm. Clonal MPDCP cells accumulate in the bone marrow of patients with myeloproliferative CMML harbouring activating RAS pathway mutations [84]. Patients with AML can have clonally expanded pDCs (pDC-AML), which share the same mutational landscape as CD34⁺ blasts, and frequently arise in association with *RUNX1* mutations [85, 86]. It is unknown whether the pathogenetic mechanisms leading to MPDCP in association with MDS or MDS/ MPN and with AML are the same. The framework for diagnosing blastic plasmacytoid dendritic cell neoplasm remains largely the same, with emphasis on immunophenotypic diagnostic criteria. (Table 15)

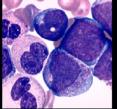
Table 15. Immunophenotypic diagnostic criteria of blasticplasmacytoid dendritic cell neoplasm.

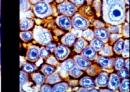
Expected positive expression:
CD123*
TCF4*
TCL1*
CD303 *
CD304*
CD4
CD56
Expected negative markers:
Expected negative markers: CD3
CD3
CD3 CD14
CD3 CD14 CD19
CD3 CD14 CD19 CD34
CD3 CD14 CD19 CD34 Lysozyme

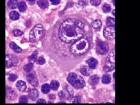
-Expression of CD123 and one other pDC marker(*) in addition to CD4 and/or CD56.

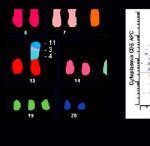

or,

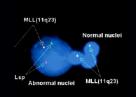
-Expression of any three pDC markers and absent expression of all expected negative markers.

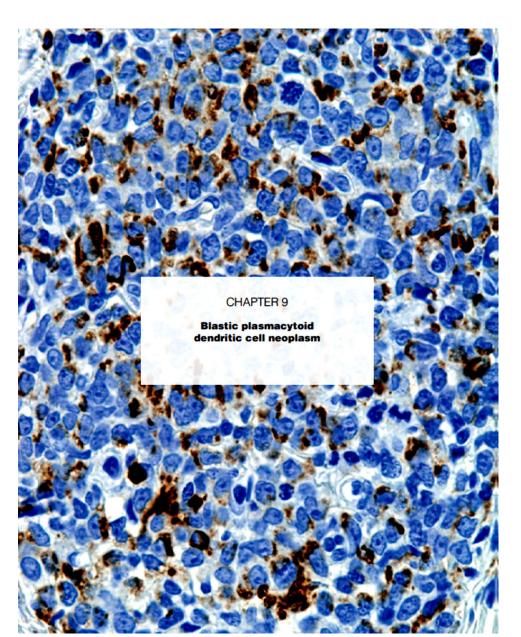

WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues


Steven H. Swerdlow, Elias Campo, Nancy L. Harris, Elaine S. Jaffe, Stefano A. Pileri, Harald Stein, Jürgen Thiele, Daniel A. Arber, Robert P. Hasserjian, Michelle M. Le Beau, Attilio Orazi, Reiner Siebert




blasts


F

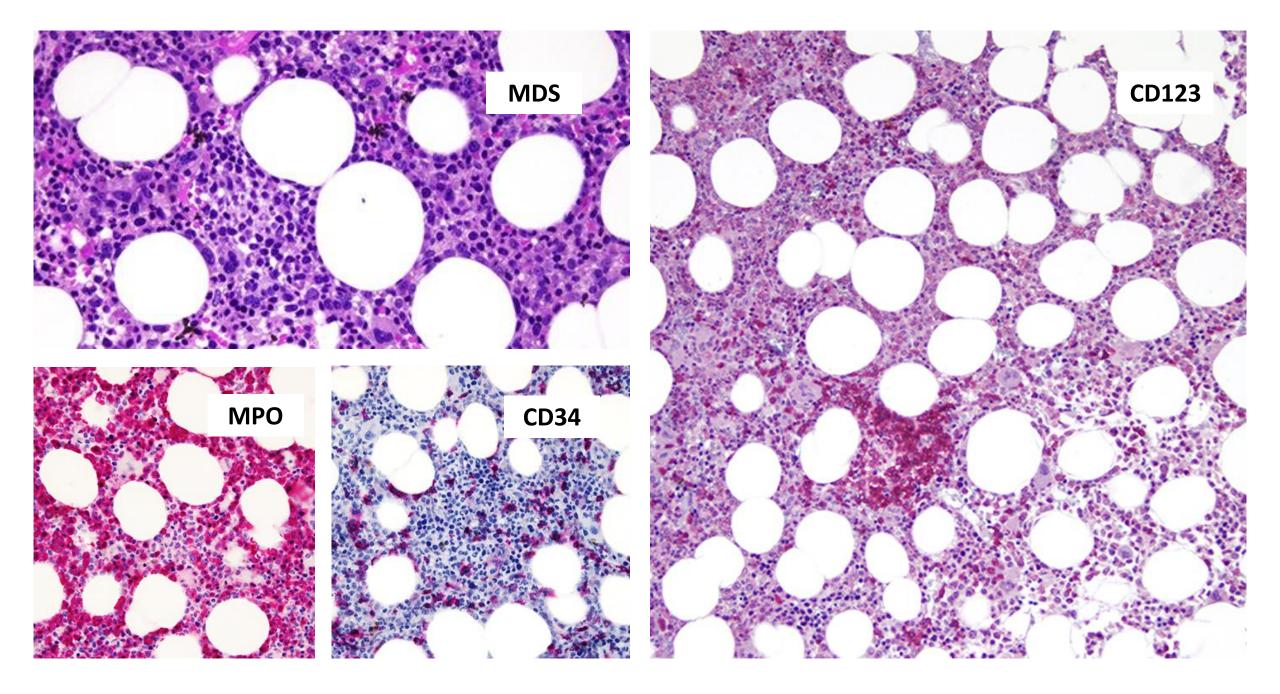

eMPO FITC

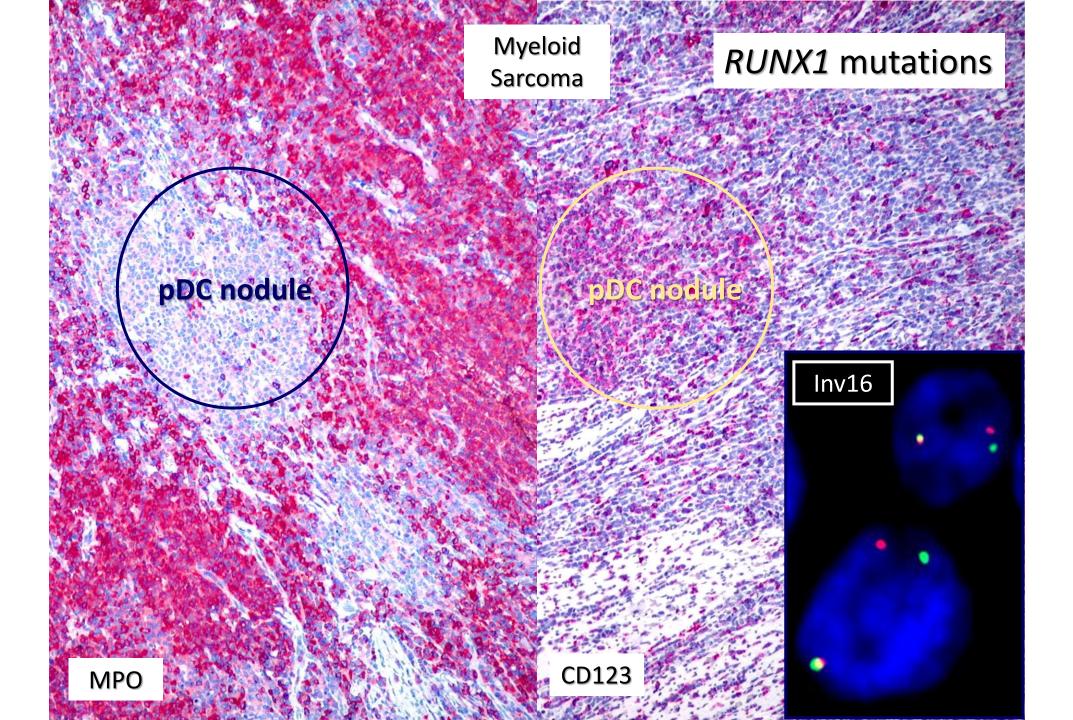
WHO

5th Edition of the WHO Classification

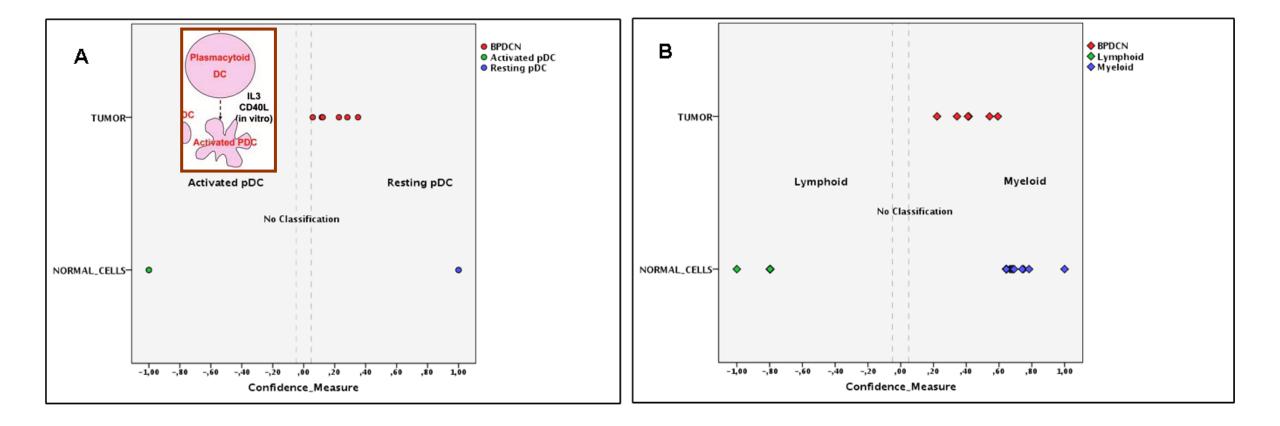
Plasmacytoid dendritic cell neoplasms: recognition of clonal proliferations detected in association with myeloid neoplasms and refinement/update of the diagnostic criteria for blastic plasmacytoid dendritic cell neoplasm

Mature plasmacytoid dendritic cell proliferation (MPDCP) associated with myeloid neoplasm reflects recent data showing that these represent clonal proliferation of pDCs with low grade morphology identified in the context of a defined myeloid neoplasm. Clonal MPDCP cells accumulate in the bone marrow of patients with myeloproliferative CMML harbouring activating RAS pathway mutations [84]. Patients with AML can have clonally expanded pDCs (pDC-AML), which share the same mutational landscape as CD34⁺ blasts, and frequently arise in association with *RUNX1* mutations [85, 86]. It is unknown whether the pathogenetic mechanisms leading to MPDCP in association with MDS or MDS/ MPN and with AML are the same. The framework for diagnosing blastic plasmacytoid dendritic cell neoplasm remains largely the same, with emphasis on immunophenotypic diagnostic criteria. (Table 15)


Table 15. Immunophenotypic diagnostic criteria of blasticplasmacytoid dendritic cell neoplasm.


Expected positive expression:
CD123*
TCF4*
TCL1*
CD303 *
CD304*
CD4
CD56
Expected negative markers:
CD3
-
CD3
CD3 CD14
CD3 CD14 CD19
CD3 CD14 CD19 CD34
CD3 CD14 CD19 CD34 Lysozyme

-Expression of CD123 and one other pDC marker(*) in addition to CD4 and/or CD56.

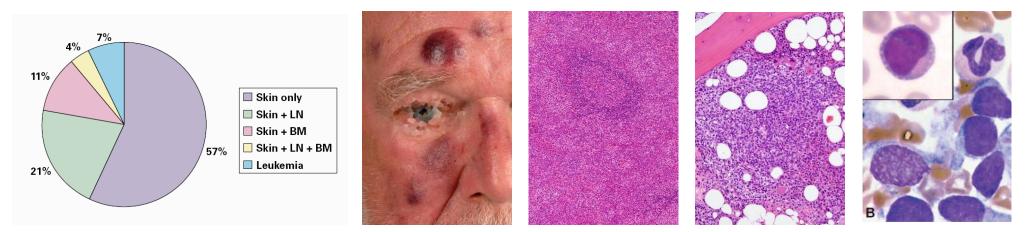

or,

-Expression of any three pDC markers and absent expression of all expected negative markers.

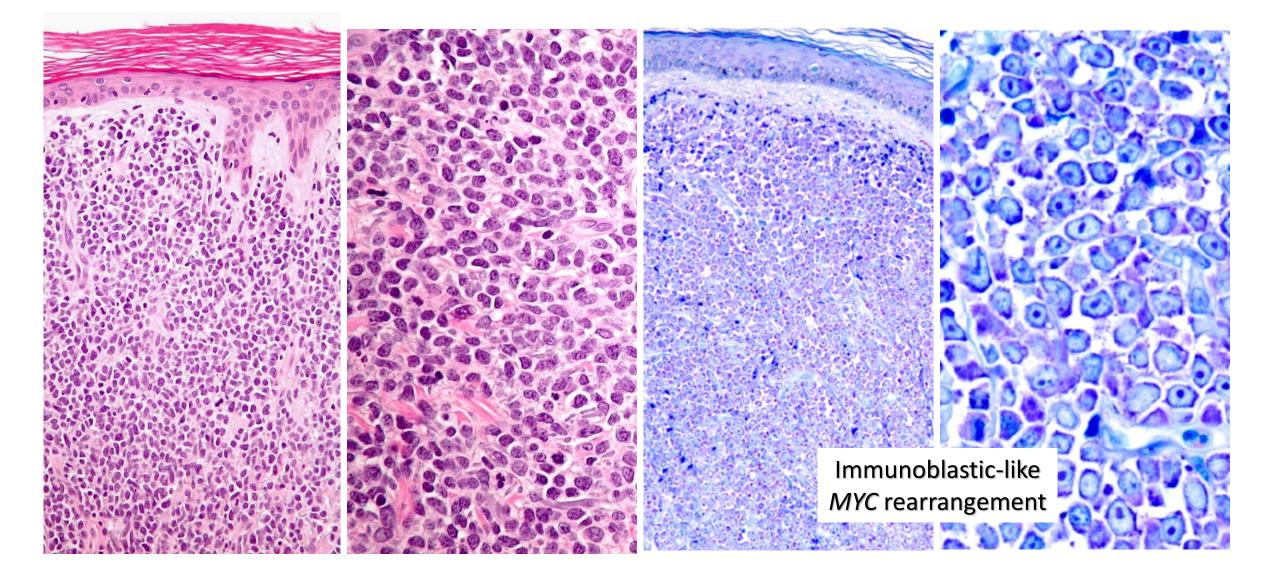
Sapienza MR,, Pileri SA, Leukemia 2014; 28; 1606-1616

Blastic Plasmacytoid Dendritic Cell Neoplasm: State of the Art and Prospects

Cancers 2019, 11, 595;


Maria Rosaria Sapienza ^{1,+}, Alessandro Pileri ^{2,+}, Enrico Derenzini ^{3,+}, Federica Melle ¹, Giovanna Motta ¹, Stefano Fiori ¹, Angelica Calleri ¹, Nicola Pimpinelli ⁴, Valentina Tabanelli ¹, and Stefano Pileri ^{1,*}

Blastic plasmacytoid dendritic cell neoplasms: results of an international survey on 398 adult patients


blood advances 13 October 2020 · VOLUME 4, NUMBER 19

Kamel Laribi,¹ Alix Baugier de Materre,² Mohamad Sobh,³ Lorenzo Cerroni,⁴ Caterina Giovanna Valentini,⁵ Tomohiro Aoki,⁶ Ritsuro Suzuki,⁷ Kengo Takeuchi,⁸ Arthur E. Frankel,⁹ Carlo Cota,¹⁰ David Ghez,¹¹ Ronan Le Calloch,¹² Livio Pagano,⁵ and Tony Petrella¹³

- Orphan tumour [prevalence (0.44% of all hematological malignancies) and therapeutic problems].
- Mean/median age: 57.5 66 yrs.
- Rare in childhood (better response to ALL therapies?).
- M/F: 3.5/1.
- Presentation: skin (57%); skin and lymph nodes (21%); skin and BM (11%); skin, lymph nodes and BM (4%); leukaemic (7%).
- CNS involvement: 30 60%.

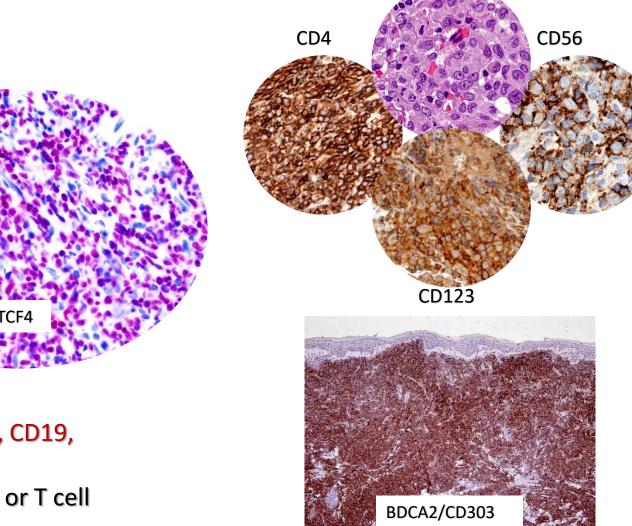
Morphology: ambiguous (leukaemia/lymphoma)

Phenotype: distinctive profile by marker combination on routine sections

TCF4+ (*) CD123+ (*) CD303+/-CD56+ TCL1A+ CD4+ CD43+

CD45RA+

MYC+ (IB-like cases)

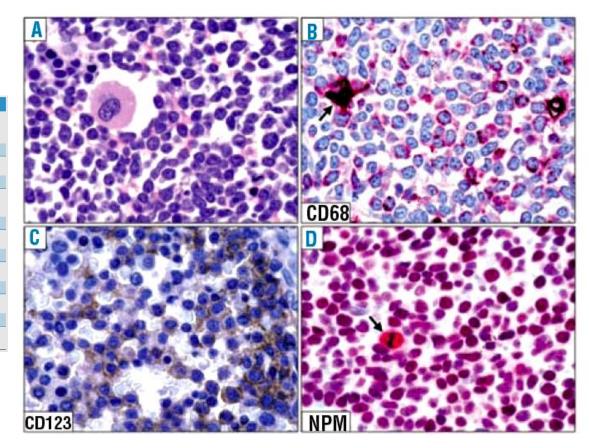

CD68+/- (dot-like)

BCL2 (*)

Regular negativity for CD3, CD13, CD16, CD19, CD20, LAT, Lysozyme, MPO, and NPM1

Possible aberrant expression of some B or T cell markers

(*Druggable)


Cytoplasmic nucleophosmin is not detected in blastic plasmacytoid dendritic cell neoplasm

Fabio Facchetti,¹ Stefano A. Pileri,² Claudio Agostinelli,² Maria Paola Martelli,³ Marco Paulli,⁴ Adriano Venditti,⁵ Massimo F Martelli,³ and Brunangelo Falini³

*FF and SAP contributed equally to this work. haematologica | 2008; 94(2)

285

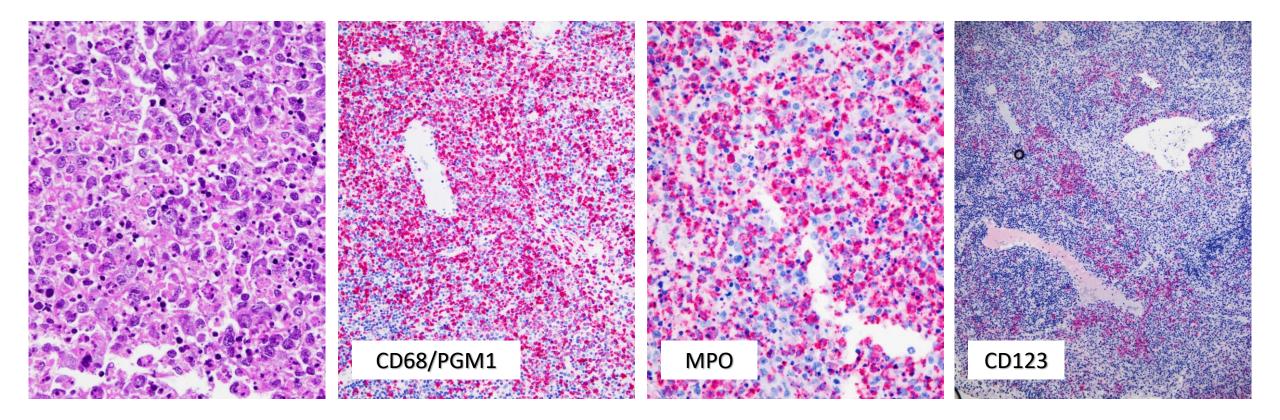
Case	Age/Sex	Sites	CD4	CD56	CD123	TCL1	CLA	CD34	NPM
1	73/F*	Skin, Ln, Bm	+	+	+	+	+	-	Nuclear
2	63/M*	Skin, Bm	+	+	+	+	+	-	Nuclear
3	60/M*	Skin	+	+	+	+	+	- /	Nuclear
4	60/M*	Skin	+	+	+	+	+	-	Nuclear
5	63/M	Skin, Bm, Ln	-	+	+	na	+	-	Nuclear
6	71/M	Skin, Bm	+	+	+	na	ad	-	Nuclear
7	67/M	Skin	+	+	+	na	+	- /	Nuclear
8	61/M	Bm	-	±	na	+	+	-	Nuclear
9	70/F	Skin	±	+	+	-	±	na	Nuclear
10	81/M	Skin	—	+	+	+	±	na	Nuclear
11	60/M	Bm	—	+	ad	+	±	_	Nuclear
12	39/M	Bm	na	+	ad	±	+	-	Nuclear
13	48/M	Skin	+	+	+	na	na	na	Nuclear

A Druggable TCF4- and BRD4-Dependent Transcriptional Network Sustains Malignancy in Blastic Plasmacytoid Dendritic Cell Neoplasm

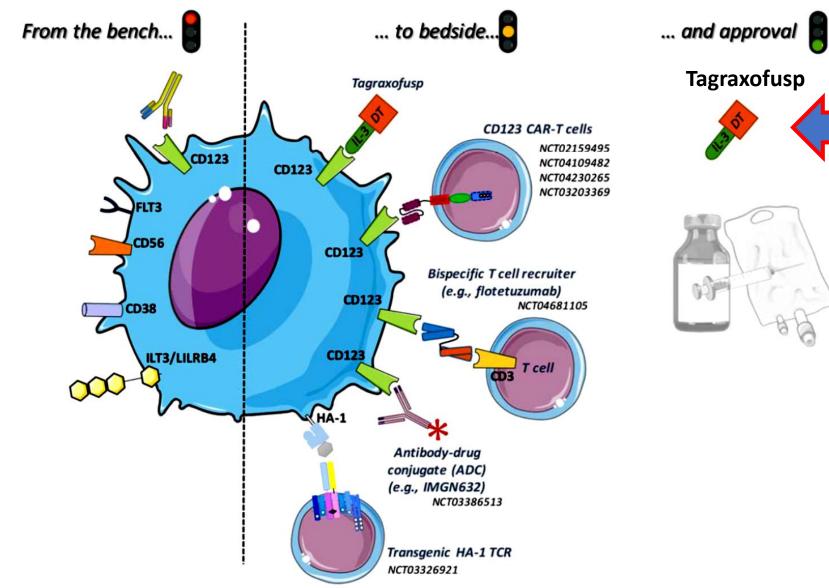
Michele Ceribelli,^{1,7} Zhiying Esther Hou,² Priscilla N. Kelly,¹ Da Wei Huang,¹ George Wright,³ Karthik Ganapathi,^{4,11} Moses O. Evbuomwan,⁴ Stefania Pittaluga,⁴ Arthur L. Shaffer,¹ Guido Marcucci,⁵ Stephen J. Forman,⁵ Wenming Xiao,⁶ Rajarshi Guha,⁷ Xiaohu Zhang,⁷ Marc Ferrer,⁷ Laurence Chaperot,^{8,9} Joel Plumas,^{8,9} Elaine S. Jaffe,⁴ Craig J. Thomas,⁷ Boris Reizis,^{2,10,*} and Louis M. Staudt^{1,12,*}

Review

CD123 as a Therapeutic Target in the Treatment of Hematological Malignancies

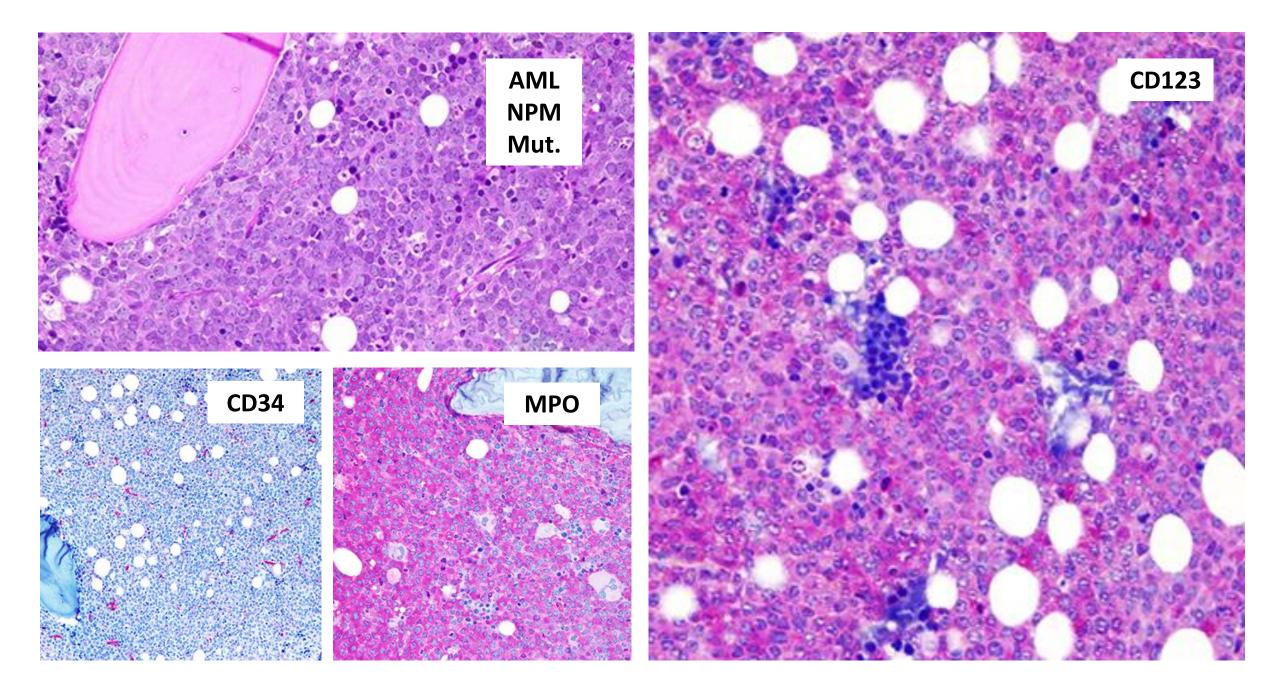

Ugo Testa *^(D), Elvira Pelosi and Germana Castelli

Cancers 2019, 11, 1358


CD123

- Interleukin 3 receptor α -chain (IL3R α).
- Membrane receptor that heterodimerizes with the β common (βc) subunit to constitute the functional IL3 receptor (IL3R).
- IL3R is the IL3 specific member of the beta βc family of receptors, which also includes IL5R and granulocyte monocyte colony stimulating factor (GM CSF) receptor.
- It functions in regulating growth, proliferation, survival and differentiation of hematopoietic cells, along with immunity and inflammatory response.

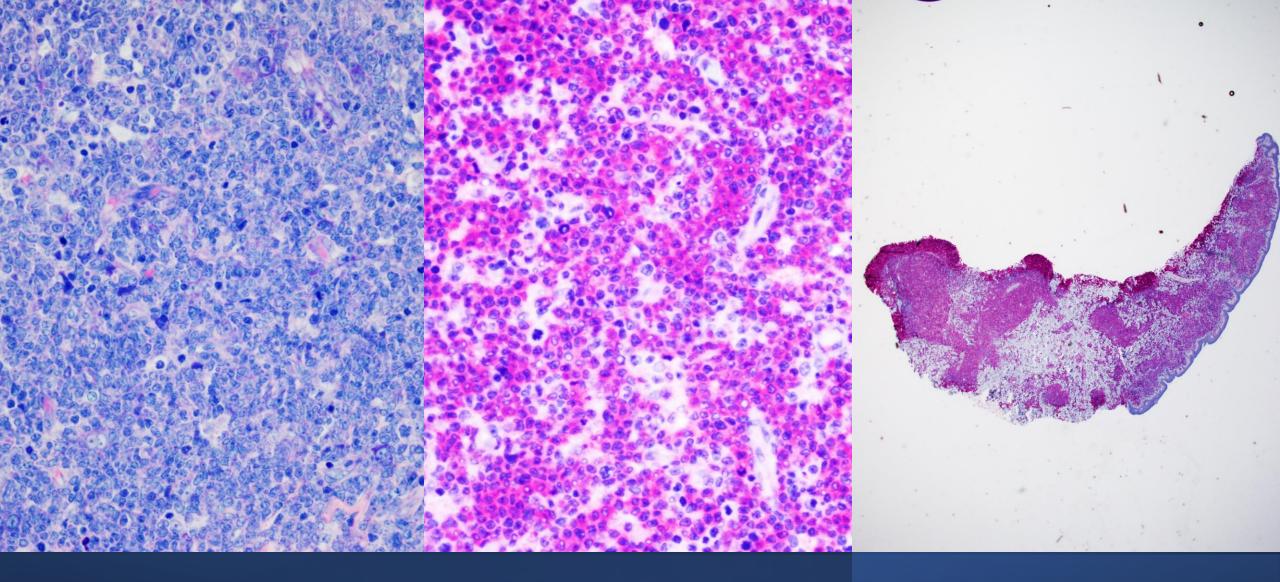
Strongest level of CD123 staining is on plasmacytoid dendritic cells



Kikuchi's lymphadenitis

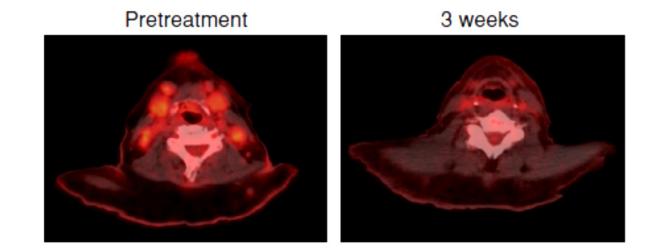
Tagraxofusp

Drugs	Indication	Phase	Status	Identifiers NCT00397579	
Tagraxofusp (human IL-3 conjugated to a truncated diphteria toxin)	AML or MDS	I/II	Completed		
Tagraxofusp	BPDCN, AMLK I/II		Active, not recruiting	NCT02113982	
Tagraxofusp	Relapsed/Refractory Multiple Myeloma	I/II	Ongoing	NCT02661022	
Tagraxofusp	MDR-positive AML in remission	I/II	Ongoing	NCT02270463	
Tagraxofusp	High-risk myeloproliferative neoplasms	I/II	Ongoing	NCTo2268253	
Tagraxofusp	AML or high-risk MDS	I/II	Ongoing	NCT03113643	

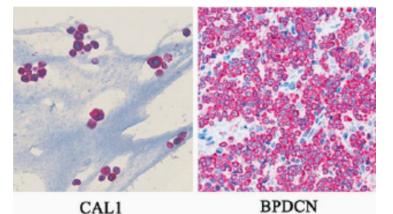

The NEW ENGLAND JOURNAL of MEDICINE

N Engl J Med 2019;380:1628-37.

ORIGINAL ARTICLE


Tagraxofusp in Blastic Plasmacytoid Dendritic-Cell Neoplasm

Naveen Pemmaraju, M.D., Andrew A. Lane, M.D., Ph.D., Kendra L. Sweet, M.D., Anthony S. Stein, M.D., Sumithira Vasu, M.D., William Blum, M.D., David A. Rizzieri, M.D., Eunice S. Wang, M.D., Madeleine Duvic, M.D., J. Mark Sloan, M.D., Sharon Spence, M.S., Shay Shemesh, M.S., Christopher L. Brooks, Ph.D., John Balser, Ph.D., Ivan Bergstein, M.D., Jeffrey E. Lancet, M.D., Hagop M. Kantarjian, M.D., and Marina Konopleva, M.D., Ph.D.


CD123 - BPDCN

Blastic Plasmacytoid Dendritic Cell Neoplasm Is Dependent on BCL2 and Sensitive to Venetoclax

Joan Montero 1, Jason Stephansky 1, Tianyu Cai 2, Gabriel K. Griffin 3, Lucia Cabal-Hierro 1, Katsuhiro Togami 1, Leah J. Hogdal 1, Ilene Galinsky 1, Elizabeth A. Morgan 3, Jon C. Aster 3, Matthew S. Davids 1, Nicole R. LeBoeuf 4, Richard M. Stone 1, Marina Konopleva 2, Naveen Pemmaraju 2, Anthony Letai 1, and Andrew A. Lane

Cancer Discov; 7(2); 156–64, 2017.

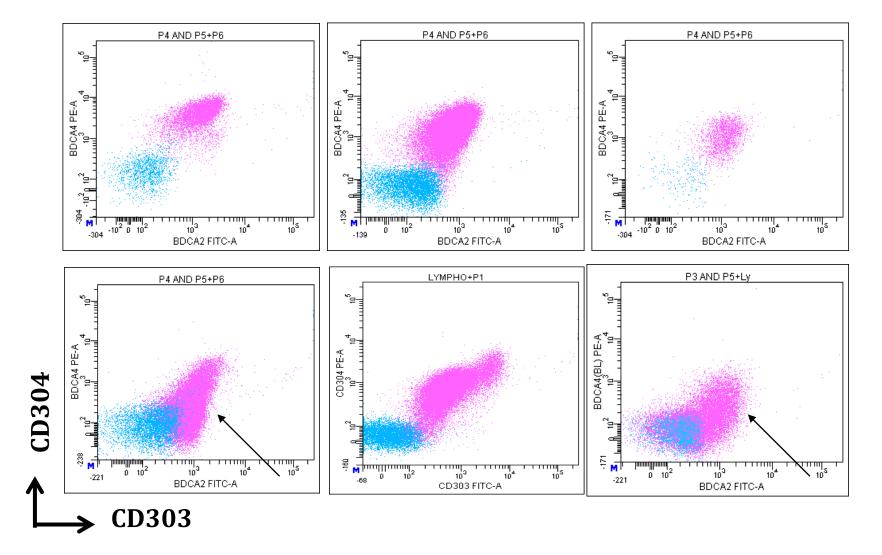
Diagnostic evaluation for the management of CD123-expressing blood cancers

> Professor Francine Garnache-Ottou Inserm UMR1098- UBFC-EFS B/FC Besançon, France

> > Thanks to Her courtesy

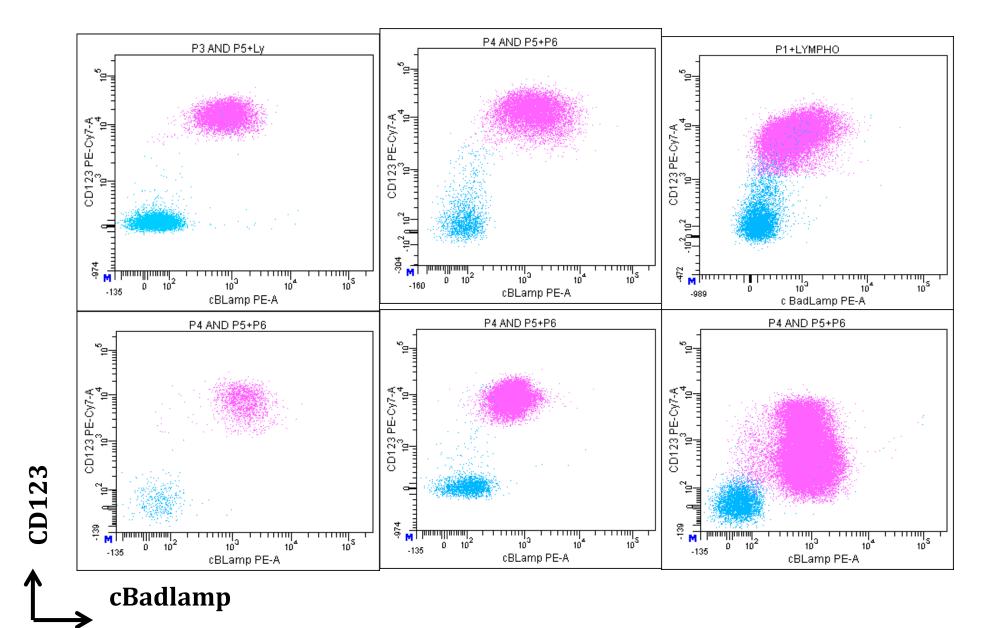
BPDCN immunophenotype

CD123⁺⁺ HLA-DR^{+strong} CD4^{+/-} CD56^{+/-}


cCD3⁻ CD19⁻ MP0⁻ CD64⁻ CD14⁻

⊗ cCD3+Low

CD303⁺ (77%) CD304⁺ (93%) TCL1⁺⁺ (93%) CBadLamp⁺ (100%) nTCF4⁺ (100%)


HLA-DR, human leukocyte antigen-DR isotype; MPO, myeloperoxidase; TCF, transcription factor; TCL, T-Cell leukemia/lymphoma

CD303+: 77% (46/60 cases) CD304+: 93% (56/60 cases)

cBadLamp⁺: 100% (56/56)

brain and dendritic cell-associated lysosome-associated membrane protein

Garnache-Ottou et al developed a scoring system for the diagnosis of BPDCN by applying a large series of markers to 20 BPDCN cases and 113 acute lymphoid leukemia (ALL) and AML cases. They identified that the expression of CD4 (CD56±) and lack of CD11c, cCD3, cCD79a, and MPO scored 1 point; CD123 high and BDCA4/CD303+ scored 1 point each, and the expression of BDCA2/CD303 scored 2 points.¹² Accordingly, the diagnosis of BPDCN was trustworthy when the total score was >2 points, which is applicable for typical or atypical BPDCN immunophenotype.

Garnache-Ottou F, Vidal C, Biichlé S, et al. How should we diagnose and treat blastic plasmacytoid dendritic cell neoplasm patients? *Blood Adv*. 2019;3:4238–4251.

Recommendations and proposals

The final diagnosis of BPDCN should be made either by tumor skin biopsy immunohistochemistry or by BM cell flow cytometry.

The close collaboration of the clinician with the pathologist is essential in the diagnostic process. A description of the macroscopic characteristics of cutaneous lesions should always be followed by a detailed description of the morphologic and molecular features of the tumor.

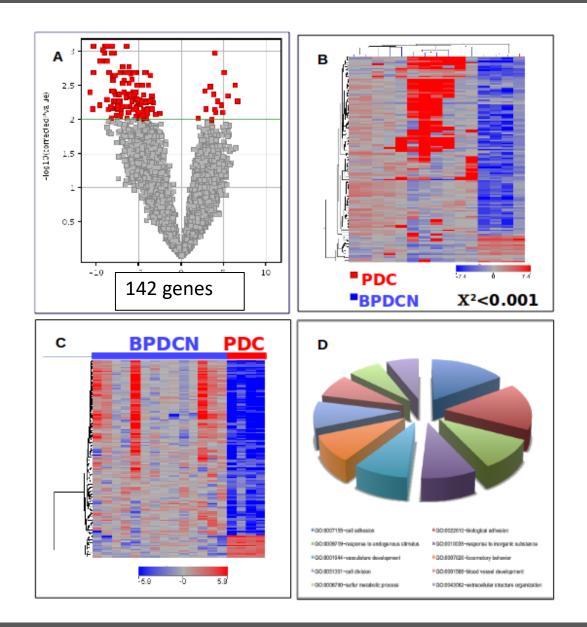
Whenever possible, the immunohistochemical description should be integrated with the FACS analysis data, since there is not always total equivalence between the phenotypic profile on tissue sections and peripheral blood.

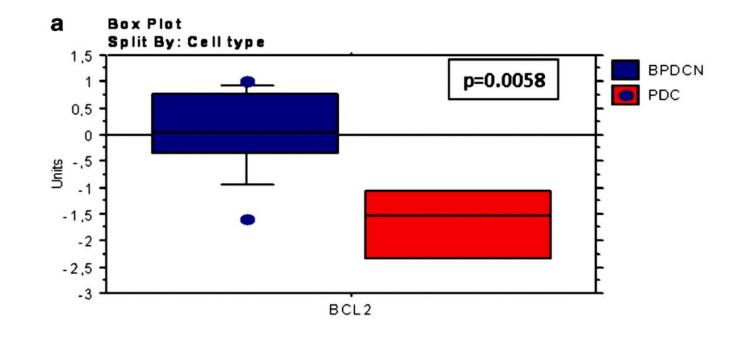
The results of the case series do not allow to trace of a diagnostic immune-histochemical algorithm based on the presence/ absence of key markers.

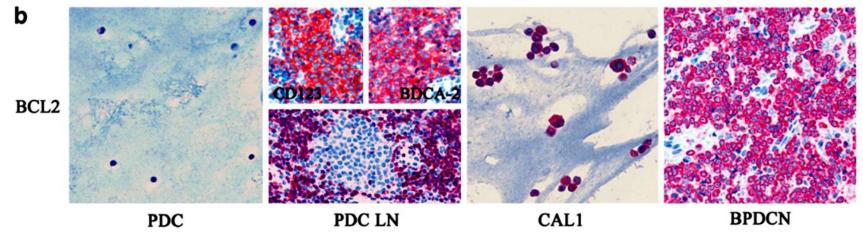
The panel of biomarkers listed by WHO diagnostic criteria should be initially used with additional biomarkers that are useful for excluding differential diagnosis in the case of non-standard results including peripheral T/NK-cell lymphomas, myeloid sarcoma, and cutaneous involvement by AML.

For this endeavor, the search for CD303 and TCF4 is worthy because of their high specificity.

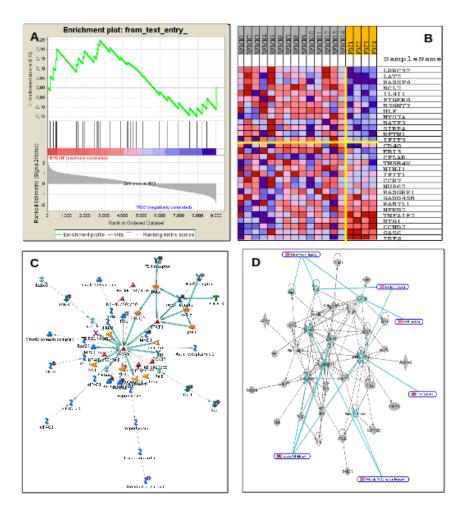
Molecular analysis of the malignant cells is not necessary for the diagnosis.

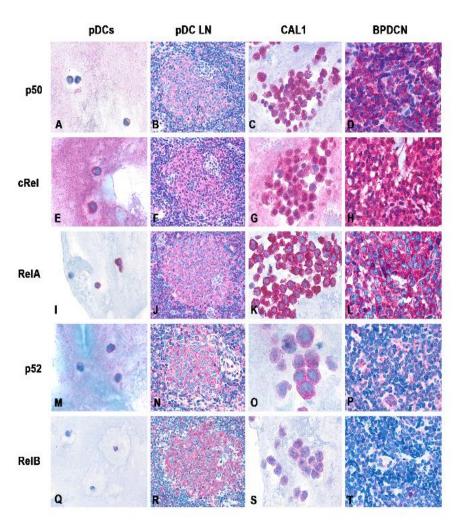


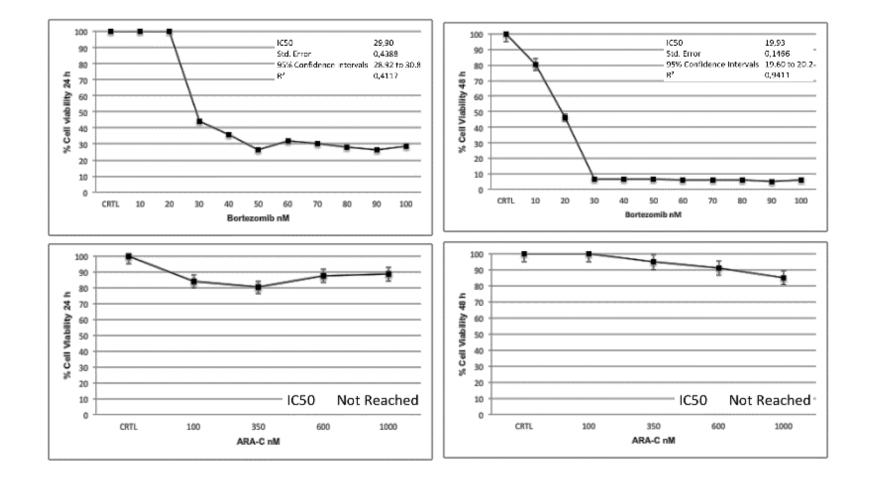

Leukemia. 2014 August ; 28(8): 1606–1616. doi:10.1038/leu.2014.64.

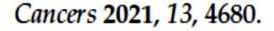

Molecular profiling of blastic plasmacytoid dendritic cell neoplasm reveals a unique pattern and suggests selective sensitivity to NF-kB pathway inhibition

MR Sapienza¹, F Fuligni¹, C Agostinelli¹, C Tripodo², S Righi¹, MA Laginestra¹, A Pileri Jr³, M Mancini¹, M Rossi¹, F Ricci⁴, A Gazzola¹, F Melle¹, C Mannu¹, F Ulbar¹, M Arpinati¹, M Paulli⁵, T Maeda⁶, D Gibellini⁷, L Pagano⁸, N Pimpinelli³, M Santucci⁹, L Cerroni¹⁰, CM Croce¹¹, F Facchetti¹², PP Piccaluga^{1,13}, SA Pileri^{1,13}, and for the AIRC 5xMille consortium 'Genetics-driven targeted management of lymphoid malignancies' and the Italian Registry on Blastic Plasmacytoid Dendritic Cell Neoplasm¹⁴

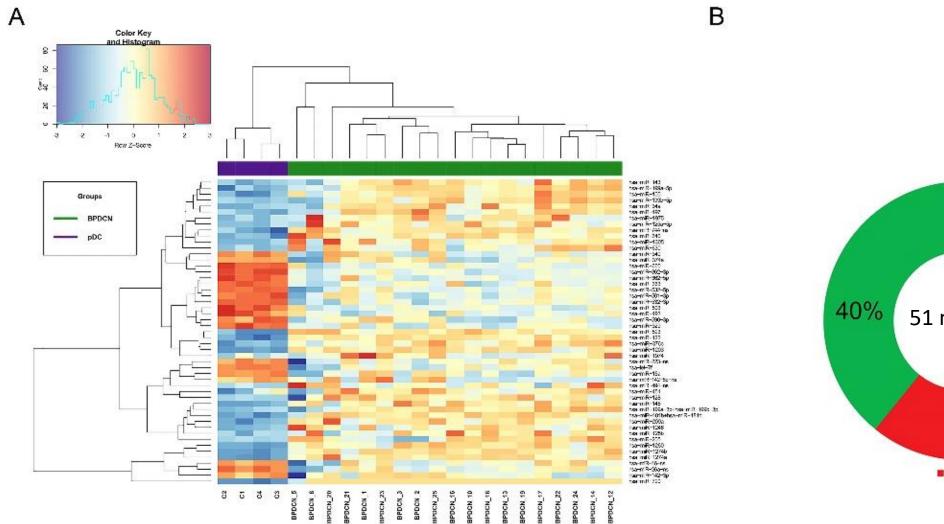


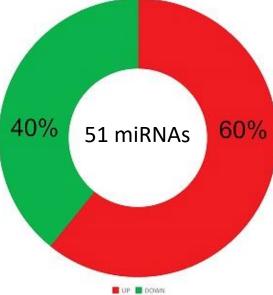

Constitutive expression of BCL2

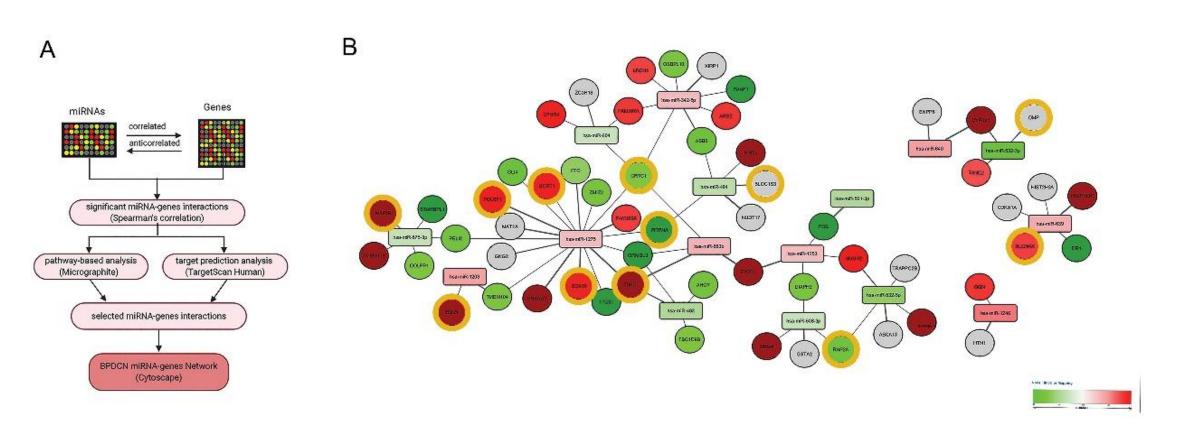



NF-kB pathway (GSEA, Metacore, Ingenuity, IHC)

Bortezomib and CAL-1 cell line

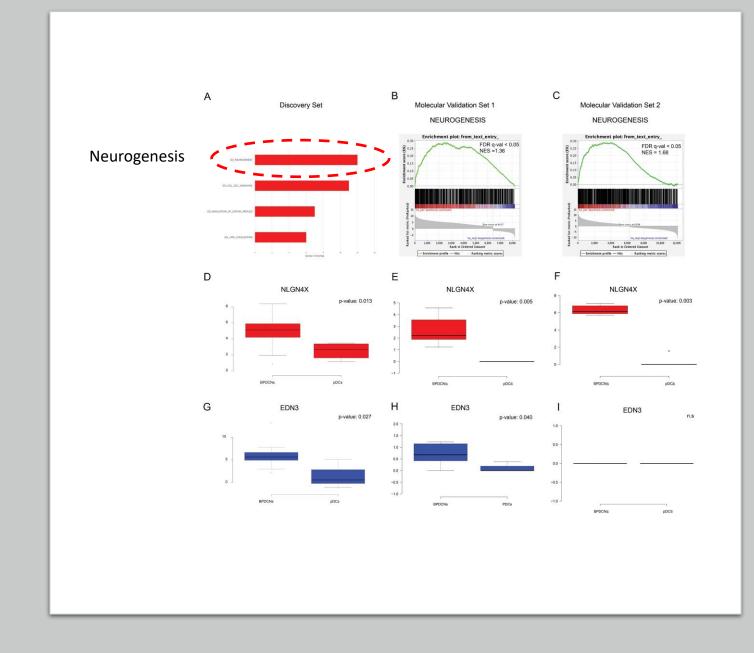


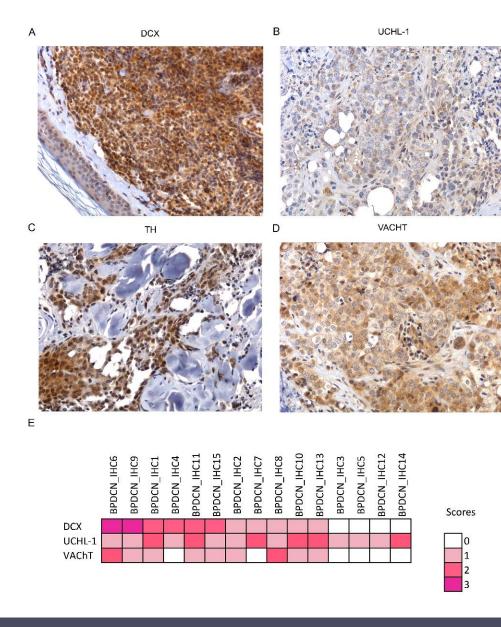



tResearch Article

Newly-discovered neural features expand the pathobiological knowledge of blastic plasmacytoid dendritic cell neoplasm

Maria Rosaria Sapienza ^{1*}, Giuseppe Benvenuto ^{2*}, Manuela Ferracin ³, Fabio Fuligni⁴, Claudio Tripodo⁵, Beatrice Belmonte⁵, Daniele Fanoni⁶, Saveria Mazzara¹, Federica Melle¹, Giovanna Motta¹, Valentina Tabanelli¹, Jessica Consiglio⁷, Vincenzo Mazzara¹, Marcello Del Corvo¹, Stefano Fiori¹, Alessandro Pileri³, Gaetano Ivan Dellino⁸, Lorenzo Cerroni⁹, Fabio Facchetti¹⁰, Emilio Berti ^{6,11}, Elena Sabattini¹², Marco Paulli¹³, Carlo Maria Croce⁷ and Stefano A. Pileri¹.



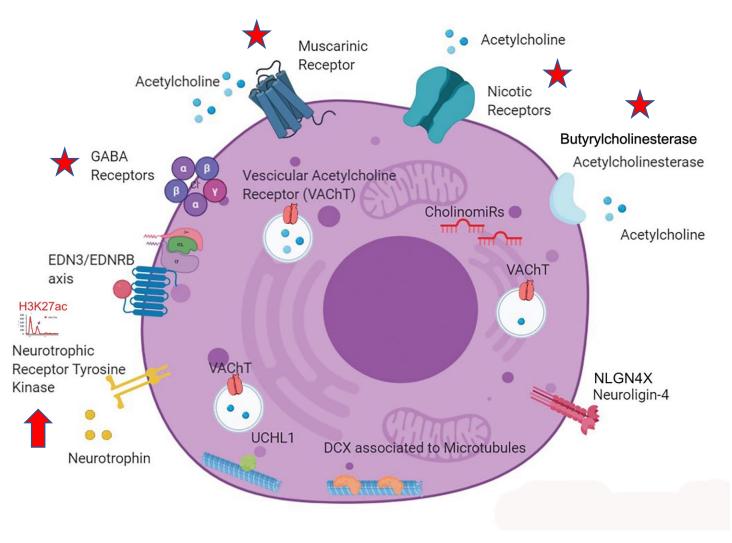


16 miRNAs and 57 genes

GSEA of the network genes revealed that the neurogenesis was the biological process most significantly influenced by miRNA dysregulation (A). Data confirmed in two RNA sequencing validation sets *in silico* (B,C). Among the network genes neural-related we focused on *EDN3* and *NLGN4X*, possibly involved in tumor dissemination.

These genes are known to play a relevant role as therapeutic targets and prognostic factors in cancer patients.

Based on our molecular results we interrogated tumor samples for the presence of two progenitor neural markers:


DCX (Doublecortin) and UCHL-1 (Ubiquitin C-terminal hydrolase 1)

We next asked whether tumor cells could transmit neural signals

The most relevant neurotransmitters of the peripheral nervous system are acetylcholine and catecholamines.

BPDCNs were positive for the vesicular acetylcholine transporter, VAChT, the rate limiting factor for acetylcholine storage and release and negative for the tyrosine hydroxylase enzyme, TH, essential for the catecholamine biosynthesis

The final output: a new BPDCN cell model neural-oriented

RNA and ChIP sequencing data were further investigated (RNAseq > overexpression of 35 neural-related genes; CHIP seq > role of acetylation in the neural signal induction)

The final output we gained was the picture of a BPDCN cell, neural-oriented and dense of neural factors, potentially allowing them to interact with nervous elements and acquire more mobility and aggressiveness

30-60% of BPDCNs show CNS involvement at the time of diagnosis or relapse

TET2 and TP53 mutations are frequently observed in blastic plasmacytoid dendritic cell neoplasm

Fabrice Jardin¹ Philippe Ruminy¹ Francoise Parmentier¹

Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm

J Menezes, F Acquadro, M Wiseman, G Gómez-López, R N Salgado, J G Talavera-Casañas, I Buño, J V Cervera, S Montes-Moreno, J M Hernández-Rivas, R Ayala, M J Calasanz, M J Larrayoz, L F Brichs, M Gonzalez-Vicent, D G Pisano, M A Piris, S Álvarez and J C Cigudosa

Leukemia. 2014; 28:823-9

Targeted ultra-deep sequencing reveals recurrent and mutually exclusive mutations of cancer genes in blastic plasmacytoid dendritic cell neoplasm

Albrecht Stenzinger^{1,*}, Volker Endris^{1,*}, Nicole Pfarr¹, Mindaugas Andrulis¹, Korinna Jöhrens², Frederick Klauschen², Udo Siebolts³, Thomas Wolf¹, Philipp-Sebastian Koch⁴, Miriam Schulz⁵, Wolfgang Hartschuh⁶, Sergij Goerdt⁴, Jochen K. Lennerz^{7,10}, Claudia Wickenhauser³, Wolfram Klapper⁸, Ioannis Anagnostopoulos^{2,**} and Wilko Weichert^{1,9,**}

Targeted sequencing

RESEARCH ARTICLE

WILEY

Whole-genome analysis uncovers recurrent *IKZF1* inactivation and aberrant cell adhesion in blastic plasmacytoid dendritic cell neoplasm

Armando N. Bastidas Torres¹ | Davy Cats² | Hailiang Mei² | Daniele Fanoni³ Jessica Gliozzo⁴ | Laura Corti⁴ | Marco Paulli⁵ | Maarten H. Vermeer¹ | Rein Willemze¹ | Emilio Berti⁴ | Cornelis P. Tensen¹

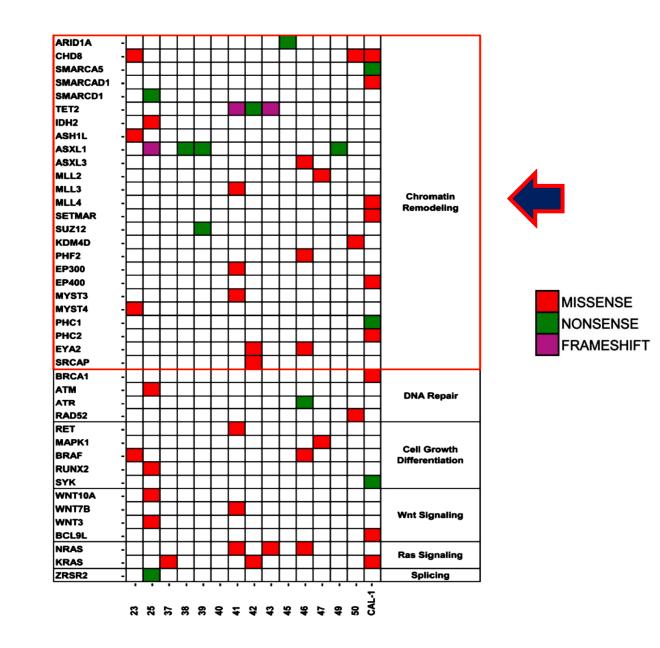
Transcriptomic and genomic heterogeneity in blastic plasmacytoid dendritic cell neoplasms: from ontogeny to oncogenesis

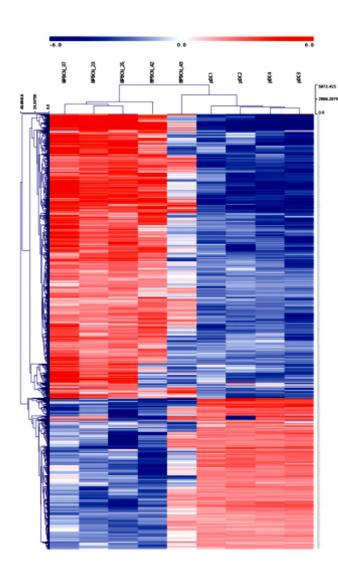
Florian Renosi,^{1,2} Anne Roggy,² Ambre Giguelay,^{3,4} Lou Soret,¹ Pierre-Julien Viailly,⁵ Meyling Cheok,⁶ Sabeha Biichle,¹ Fanny Angelot-Delettre,¹ Vahid Asnafi,⁷ Elizabeth Macintyre,⁷ Sandrine Geffroy,^{6,8} Mary Callanan,⁹ Tony Petrella,¹⁰ Eric Deconinck,^{1,11} Etienne Daguindau,^{1,11} Véronique Harrivel,¹² Sabrina Bouyer,¹³ Véronique Salaun,¹⁴ Pascale Saussoy,¹⁵ Jean Feuillard,¹⁶ Pascal Fuseau,¹⁷ Philippe Saas,¹ Olivier Adotévi,¹ Fabrice Jardin,⁴ Christophe Ferrand,^{1,2} Claude Preudhomme,^{6,8} Jacques Colinge,³ Christophe Roumier,^{6,8} and Francine Garnache-Ottou^{1,2}

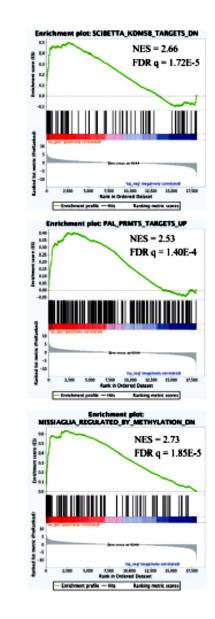
Cancers **2021**, *13*, 5888.

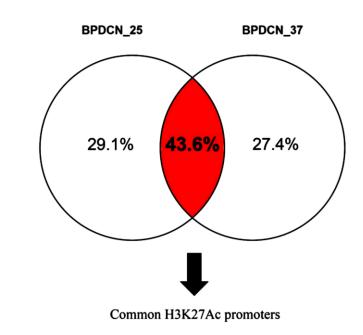
Article

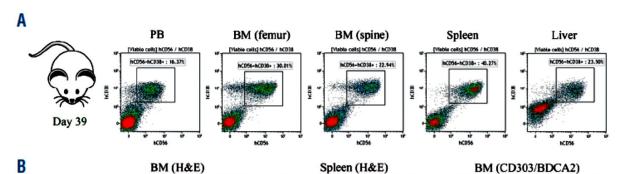
Integrated Clinical Genotype-Phenotype Characteristics of Blastic Plasmacytoid Dendritic Cell Neoplasm

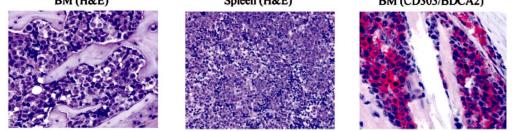

C. Cameron Yin ^{1,*}, Naveen Pemmaraju ², M. James You ¹, Shaoying Li ¹, Jie Xu ¹, Wei Wang ¹, Zhenya Tang ¹, Omar Alswailmi ¹, Kapil N. Bhalla ², Muzaffar H. Qazilbash ³, Marina Konopleva ² and Joseph D. Khoury ^{1,*}

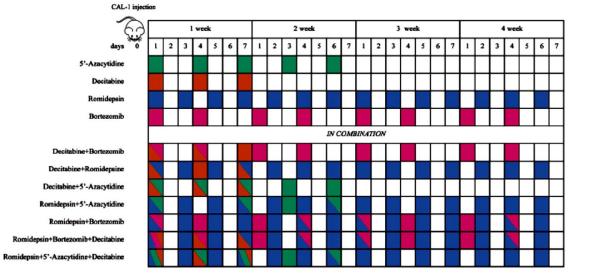

NA me	ethylation	1		Histone	modifi	ication		Signal transduction							Transcription factors				RNA splicing factors				Cohesin	Other	Other			
	DNMT3A		IDH2				KDM6A		NRAS		JA KZ	NF1	NOTCH1	SH283		IKZF1		TP53				SF3A1			HNRNPI	(#mutation	OS-M	Dead/
																											Ľ	6
																												9
																										E .		
																											2	
																												•
				_											_													
																											1	
																											í	
																											•	
																											Ē.	
																											in 👘	
																											•	
																											L	
																											i	
																											6	
																											Î.	
															1 4											#cases wi		

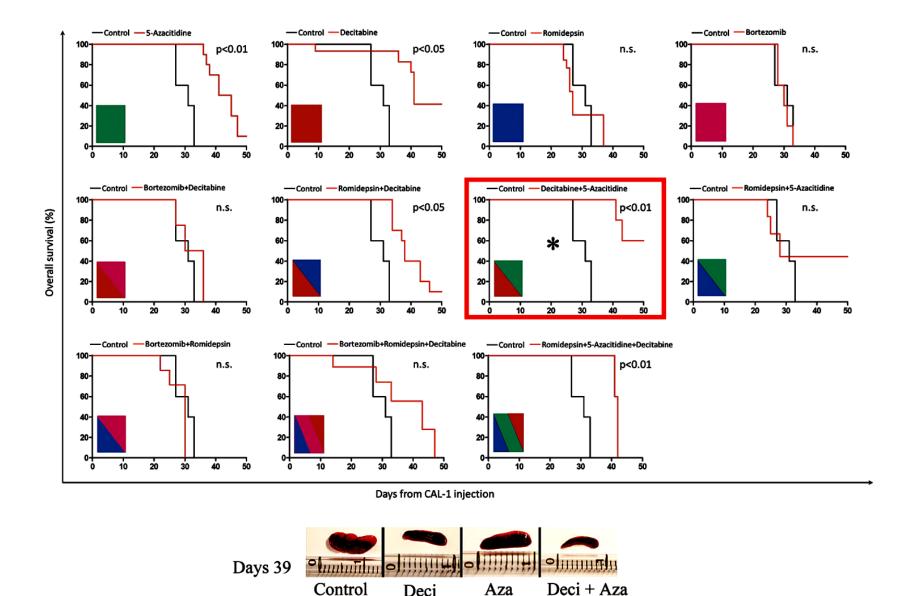

Blastic plasmacytoid dendritic cell neoplasm: genomics mark epigenetic dysregulation as a primary therapeutic target


Maria Rosaria Sapienza,^{1*} Francesco Abate,^{2,3*} Federica Melle,⁴ Stefania Orecchioni,⁵ Fabio Fuligni,⁶ Maryam Etebari,¹ Valentina Tabanelli,⁴ Maria Antonella Laginestra,¹ Alessandro Pileri,^{7,8} Giovanna Motta,⁴ Maura Rossi,¹ Claudio Agostinelli,¹ Elena Sabattini,¹ Nicola Pimpinelli,⁸ Mauro Truni,⁹ Brunangelo Falini,¹⁰ Lorenzo Cerroni,¹¹ Giovanna Talarico,⁵ Rossana Piccioni,¹² Stefano Amente,¹³ Valentina Indio,¹⁴ Giuseppe Tarantino,¹⁴ Francesco Brundu,² Marco Paulli,¹⁵ Emilio Berti,¹⁶ Fabio Facchetti,¹⁷ Gaetano Ivan Dellino,^{12,18} Francesco Bertolini,⁵ Claudio Tripodo,^{19*} Raul Rabadan^{2,3*} and Stefano A. Pileri^{4†}* Ferrata Storti Foundation


Haematologica 2019 Volume 104(4):729-737







C

Control

Deci

Aza

Tagraxofusp followed by combined azacitidine and venetoclax in blastic plasmacytoid dendritic cell neoplasm: A case report and literature review J Oncol Pharm Practice 2021, Vol. 27(4) 990–995 © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1078155220951850 journals.sagepub.com/home/opp

Yazan Samhouri¹, Sorana Ursu¹, Nina Dutton¹, Verma Tanvi² and Salman Fazal¹

