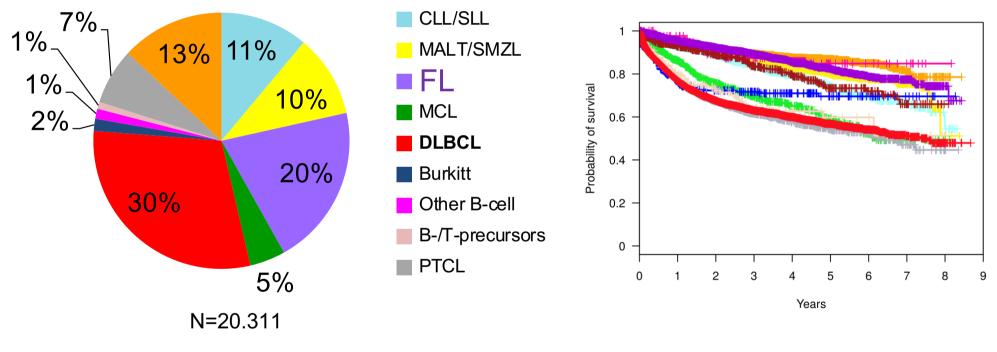
Follicular Lymphomas Workshop

Bologna Royal Hotel Carlton May 7, 2024

President: Pier Luigi Zinzani

Front line therapy – How I approach

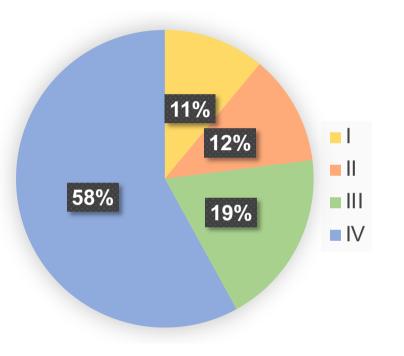

Newly diagnosed early-stage patients

Armando López-Guillermo, Barcelona, Spain

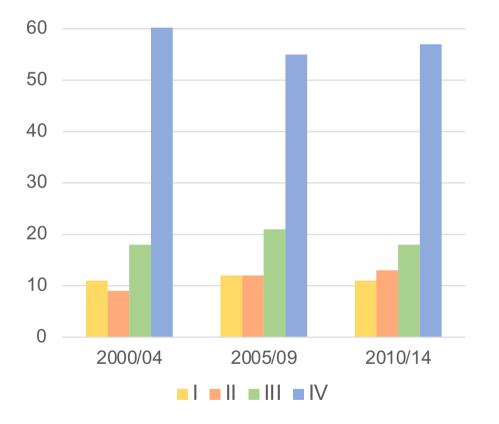
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Roche	х		х			х	
Gilead/Kite	x		x			x	x
BMS/Celgene	х					х	
Janssen						х	
Incyte						x	
Abbvie						х	

Histologic distribution of lymphomas

GELTAMO 2014/21


Bastos-Oreiro M, Ann Hematol 2020;99:799-808 (updated July 2022)

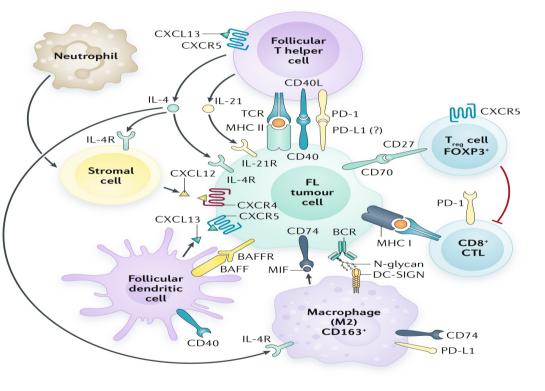
Early stage follicular lymphoma (FL)


- "Limited", "localized" or "early" stage occurs in ~10-15% of FL
- Overall, the outcome of these patients is particularly good (10-yr OS 90%)
- No standard definition of early stage
 - In general: stages I or II adjacent sites, in absence of symptoms and bulky disease (7-10cm?)
- Few specific studies on prognosis or treatment

Cheson BD, J Clin Oncol 2014;32:3059-67

Ann Arbor stage distribution in follicular lymphoma

GELTAMO registry 2000/14 N=2150 (excluding 43 missing)



Bastos-Oreiro M, Ann Hematol 2020; Muntañola A, Br J Haematol 2023; Unpublished update

Features in biology of follicular lymphoma (FL)

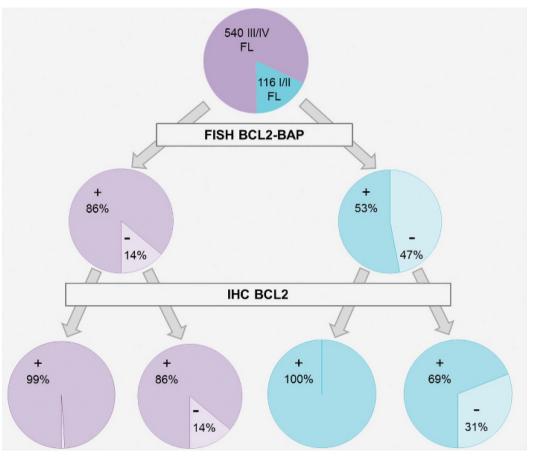
Table 1 Genetic alte	rations affecting at least 1	0% of cases of FL	
Gene	Alterations (effect)	Frequency in FL (%)	Effect or function
Proliferation			
KMT2D	Mutation (↓)	80-90	Histone modification; tumour suppressor
lgHV,lgLV	Mutation (†)	75-90	N-glycosylation of IgV region of BCR; BCR signalling
RB1	Deletion (↓)	12	Impairment of cell cycle control
CDK4	Copy number gain (†)	29	Impairment of cell cycle control
BCL6	Translocation (†)	6-15	Transcription factor; tumour progression
	Mutation (†)	47	
H1-2, H1-4	Mutation (↓)	44	Chromatin remodelling
MEF2B	Mutation (↓)	13-15	Transcription factor; transcriptional activator
EP300	Mutation (↓)	10-20	Histone modification
SESN1	Epigenetic silencing (↓)	~20	Promotion of mTOR activity
RRAGC ATPOV 182, ATPGAP1	Mutation (†)	17	mTORC1 survival signal
EZH2	Mutation (†)	7-30	Histone modification
ARID1A	Mutation (↓)	15	Chromatin remodelling
GNA13	Mutation (↓)	~10	B cell growth and lymphoma cell dissemination
SGK1	Mutation (↓)	~10	Deregulation of FOXO transcription factors and NF-ĸB
FOXO1	Mutation (†)	~10	Transcription factor; survival and proliferation
CARD11	Mutation (†)	10	Increased BCR signalling
STAT6	Mutation (†)	10	Activation of JAK-STAT signalling
Survival			
BCL2	Translocation (†)	80-90	Suppression of apoptosis
	Mutation (†)	50	
TNFAIP3	Mutation (↓)	2-26	Loss of tumour suppressor
Immune evasion			
EPHA7	Deletion (↓)	70	Tumour suppressor
	Epigenetic silencing (↓)		
TNFRSF14	Mutation (↓)	18-50	Tumour suppressor; increased BCR signalling
CREBBP	Mutation (↓)	33-70	Histone modification; tumour suppressor

†, gain of function; J. loss of function; BCR, B cell receptor; FL, follicular lymphoma; FOXO, Forkhead box O; JAK, Janus kinase; mTOR, mechanis rapamycin; mTORC1, mechanistic target of rapamycin complex 1; NF-κB, nuclear factor-κB; STAT, signal transducer and activator of transcriptic

FL tumor microenvironment

Carbone A, et al. Nat Rev Dis Primers 2019;5:83

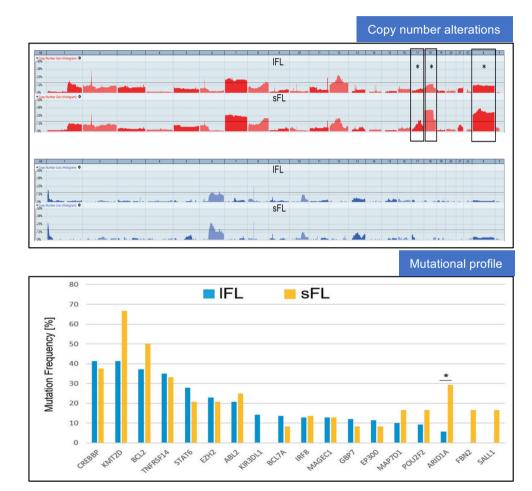
Early-stage follicular lymphoma (FL)


- Differences between early and advanced-stage FL are only due to the degree of dissemination?
- Evidences of distinct biological features in early-stage FL?
 - Copy number alterations (CNA), including t(14;18)
 - Mutational landscape
 - Gene expression profiling

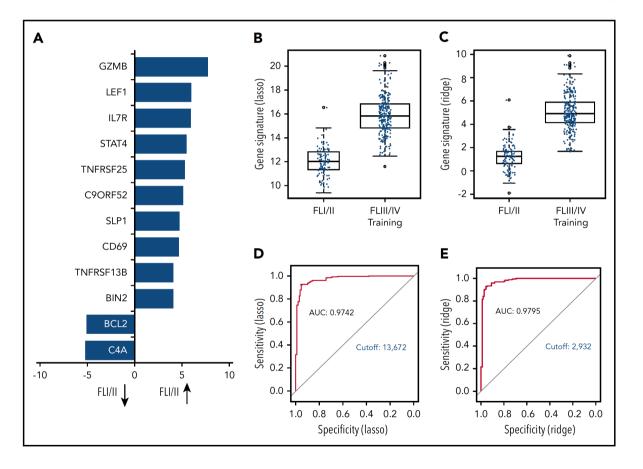
Leich E, Leukemia 2016;30:854-60; Kalmbach S, Leukemia 2023;37:2058-65; Staiger AM, Blood 2020;135:181-90

Assessment of *BCL2*-breakpoint/t(14;18) status and BCL2 expresión in early- and advanced-stage FL

German Low Grade Lymphomas Study Group


- Nodal FLs
- FISH (break-apart probe) and immunohistochemistry

Leich E, Leukemia 2016;30:854-60


Molecular profiling of localized and systemic FL

- Nodal FL
- 147 localized FL (IFL) and 122 advanded stages FL (sFL)
- Assessment of:
 - Somatic CNA
 - Whole exome sequencing (WES)
- Significant differences
 - 18q21 gains (14% vs. 36%)
 - ARID1A mutations (6% vs. 29%)

Kalmbach S, Leukemia 2023;37:2058-65

Localized- and advanced –stage FLs differ in their gene expression profiles (GEP)

Of note:

- 3% of early-stage show advanced-type GEP: ↓ PFS
- 7% of advanced-stage show early-type GEP: ↑ PFS

Staiger AM, Blood 2020;135:181-90

A real patient from our clinics ...

- 62-year-old gentleman, with no relevant past medical history
- July 2005: small node in left inguinal area (~1.5 cm) Observation with very slow growth
- August 2006: Hematology clinics
 - Asymptomatic
 - Physical exam: in left inguinal area 3 lymph nodes of 2.5/1/1cm
 - Blood cell counts and biochemistry: N
- Biopsy: grade 2 FL
- Staging

Follicular lymphoma: ESMO guidelines

Recommendations

- Initial staging should be carried out according to the Ann Arbor classification system.
- Initial work-up should include a BM aspirate and biopsy and a CT scan of the neck, thorax and abdomen.
- A <u>PET-CT scan</u> is recommended for routine staging [IV, C] and is mandatory to confirm localised stage I/II disease before ISRT.
- A complete blood count, routine blood chemistry including Ig levels, LDH, B2M and uric acid as well as screening tests for HIV, HBV and HCV are required.
- FLIPI 1/2 and PRIMA prognostic index risk factors can be used for prognostic purposes.

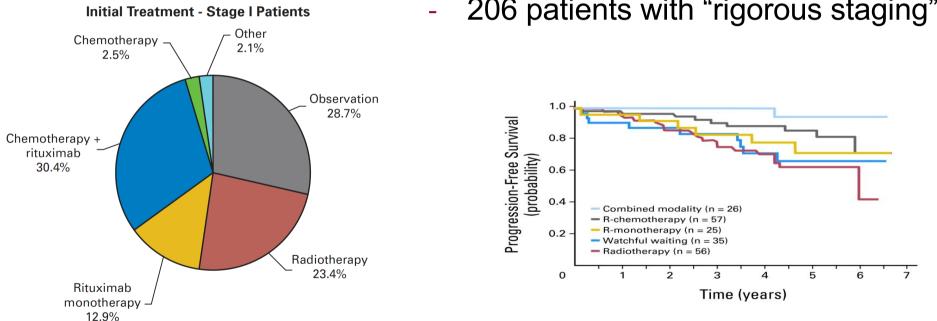
Dreyling M, Ann Oncol 2021;32:298-308

A real patient from our clinics ...

- Biopsy: grade 2 FL
- Staging was performed
 - PET/CT: no other lymph node or extranodal involvement
 - Bone marrow biopsy: N

Diagnosis: grade 2 FL, stage I-"A" Which approach is the best in this case?

Classic "dogmas" on initial treatment of early-stage FL


- Staging must be exhaustive, in order to rule out disseminated disease (so, PET/CT + BM assessment)
- The treatment intention is <u>curative</u>
- All patients may be treated irrespective of symptoms
- The gold-standard treatment is local radiotherapy

However, in real life ... many patients are treated differently, even with watchful waiting policy!¹⁻³

1) Pugh TJ, Cancer 2010;116:3843-51; 2) Friedberg JW, J Clin Oncol 2009;27:1202-9; 3) Friedberg JW, J Clin Oncol 2012;30:3368-75

Treatment of patients with stage I FL

(National LymphoCare Database)

206 patients with "rigorous staging"

471 patients with stage I FL

Friedberg JW, J Clin Oncol 2009;27:1202-9; Friedberg JW, J Clin Oncol 2012;30:3368-75

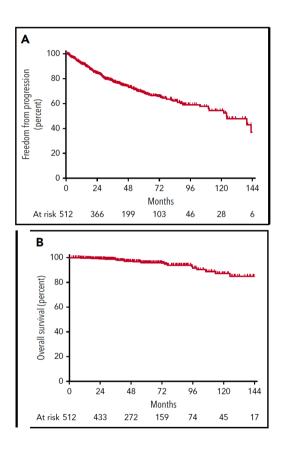
Initial treatment of early-stage FL

- Radiotherapy alone
 - Extension / dosing
- Radiotherapy plus
 - Immunochemotherapy
 - Rituximab

Radiotherapy alone in early-stage FL

Study	N	PET/CT Staging?	PFS	OS
MacManus et al, ⁹ 2018	75	Some patients	10 y: 41%	10 y: 86%
Manus & Hoppe, ⁸ 1996	177	No	10 y: 40% 20 y: 37%	10 y: 64% 20 y: 35%
Tobin et al, ¹¹ 2019	171	Yes	5 y: 68%	5 y: 93%
Ng et al, ¹² 2019	47	Yes	5 y: 78%	5 y: 97%
Brady et al, ¹³ 2019	512	Yes	5 y FFP: 69%	5 y: 96%
Friedberg et al, ¹⁴ 2012	206	Yes	Median: 72 mo	_
Guckenberger et al, ²³ 2012	86	No	10 y FFP: 58% 15 y FFP: 56%	10 y: 64% 15 y: 50%

Cohen JB & Kahl BS, Hematol Oncol Clin N Am 2020

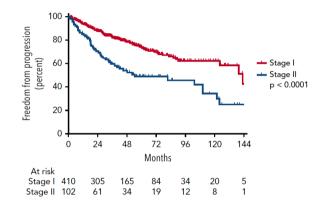

Regular Article

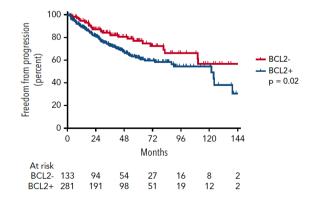
LYMPHOID NEOPLASIA

Definitive radiotherapy for localized follicular lymphoma staged by ¹⁸F-FDG PET-CT: a collaborative study by ILROG

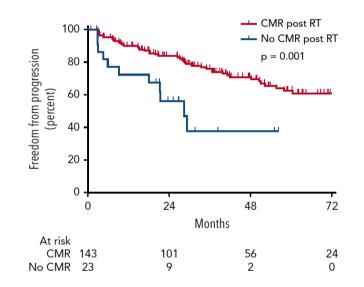
Jessica L. Brady,^{1,*} Michael S. Binkley,^{2,3,*} Carla Hajj,⁴ Monica Chelius,⁴ Karen Chau,⁴ Alex Balogh,⁵ Mario Levis,⁶ Andrea Riccardo Filippi,⁶ Michael Jones,⁷ Michael Mac Manus,^{8,9} Andrew Wirth,⁶ Masahiko Oguchi,¹⁰ Anders Krog Vistisen,¹¹ Therese Youssef Andraos,¹² Andrea K. Ng,^{13,14} Berthe M. P. Aleman,¹⁵ Seo Hee Choi,¹⁶ Youlia Kirova,¹⁷ Sara Hardy,¹⁸ Gabriele Reinartz,¹⁹ Hans T. Eich,¹⁹ Scott V. Bratman,^{2,3} Louis S. Constine,¹⁸ Chang-Ok Suh,¹⁶ Bouthaina Dabaja,¹² Tarec C. El-Galaly,¹¹ David C. Hodgson,⁷ Umberto Ricardi,⁴ Joachim Yahalom,⁴ Richard T. Hoppe,^{2,3} and N. George Mikhaeel¹

- Multicenter retrospective study of the ILROG
- Main inclusion criteria
 - Untreated grades 1-3A FL in stages I or II
 - Staging with PET/CT
- RT done <u>></u>24 Gy
- End-point: Freedom from relapse
- 2000 to 2017; N=512 (stage I, 410; stage II, 102)
- Response assessed by PET/CT or CT scan in 53% of cases at a median of 3 months from RT
- In those assessed by PET/CT: Complete Metabolic Response (Deauville 1-3) in 86%


Brady JL, Blood 2019;133:237-45


Regular Article

LYMPHOID NEOPLASIA


Definitive radiotherapy for localized follicular lymphoma staged by ¹⁸F-FDG PET-CT: a collaborative study by ILROG

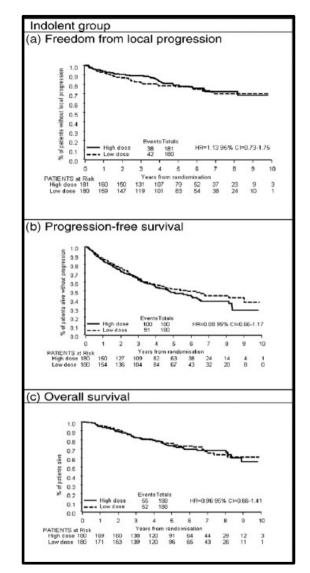
Jessica L. Brady,^{1,*} Michael S. Binkley,^{2,3,*} Carla Hajj,⁴ Monica Chelius,⁴ Karen Chau,⁴ Alex Balogh,⁵ Mario Levis,⁶ Andrea Riccardo Filippi,⁶ Michael Jones,⁷ Michael Mac Manus,^{8,9} Andrew Wirth,⁸ Masahiko Oguchi,¹⁰ Anders Krog Vistisen,¹¹ Therese Youssef Andraos,¹² Andrea K. Ng,^{13,14} Berthe M. P. Aleman,¹⁵ Seo Hee Choi,¹⁶ Youlia Kirova,¹⁷ Sara Hardy,¹⁸ Gabriele Reinartz,¹⁹ Hans T. Eich,¹⁷ Scott V. Bratman,^{2,3} Louis S. Constine,¹⁸ Chang-Ok Suh,¹⁶ Bouthaina Dabaja,¹² Tarec C. El-Galaly,¹¹ David C. Hodgson,⁷ Umberto Ricardi,⁶ Joachim Yahalom,⁴ Richard T. Hoppe,^{2,3} and N. George Mikhaeel¹

Factors predicting PFS

Brady JL, Blood 2019;133:237-45

Some RT issues ...

- Involved regional RT vs. involved-site RT (ISRT)
- Is possible to reduce the dose?



Phase III randomised trial

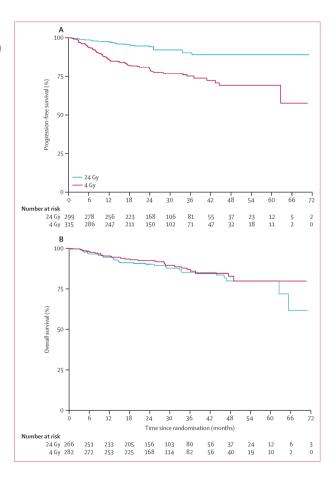
Reduced dose radiotherapy for local control in non-Hodgkin lymphoma: A randomised phase III trial *,**

Lisa Lowry^a, Paul Smith^a, Wendi Qian^b, Stephen Falk^c, Kim Benstead^d, Tim Illidge^e, David Linch^f, Martin Robinson^g, Andrew Jack^h, Peter Hoskin^{i,*}

40-45 Gy (20-23 fractions) vs. 24 Gy (12 fractions) No differences in main parameters

Campbell BA, Cancer 2010;116:3797-806; Lowry L, Radiother Oncol 2011;100:86-92

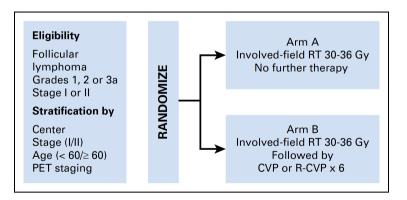
Some RT issues ...

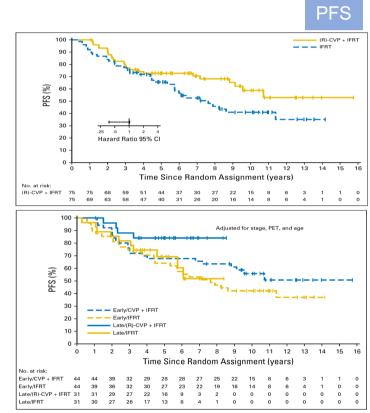

- Involved regional RT vs. involved-site RT (ISRT)
- Is possible to reduce the dose?

4 Gy versus 24 Gy radiotherapy for patients with indolent lymphoma (FORT): a randomised phase 3 non-inferiority trial

Peter J Hoskin, Amy A Kirkwood, Bilyana Popova, Paul Smith, Martin Robinson, Eve Gallop-Evans, Stewart Coltart, Timothy Illidge, Krishnaswamy Madhavan, Caroline Brammer, Patricia Diez, Andrew Jack, Isabel Syndikus

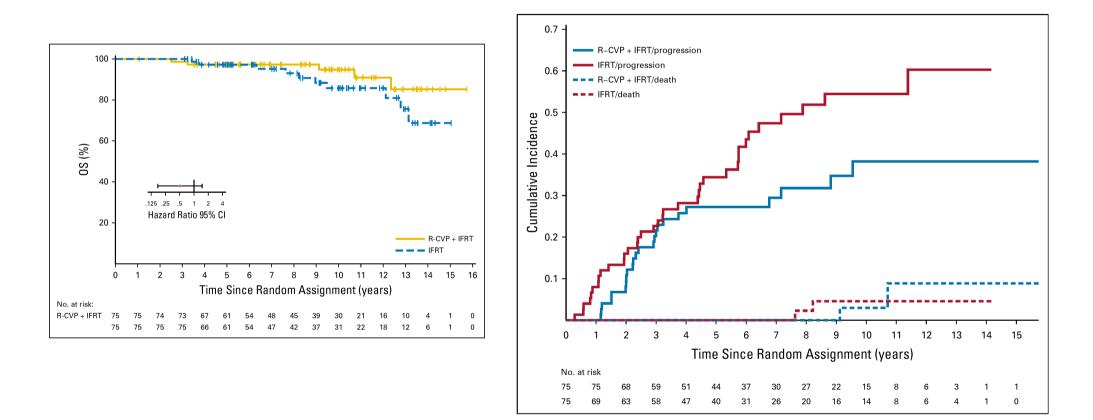
Heterogeneity in the series: FL+MZL / Curative and palliative intent

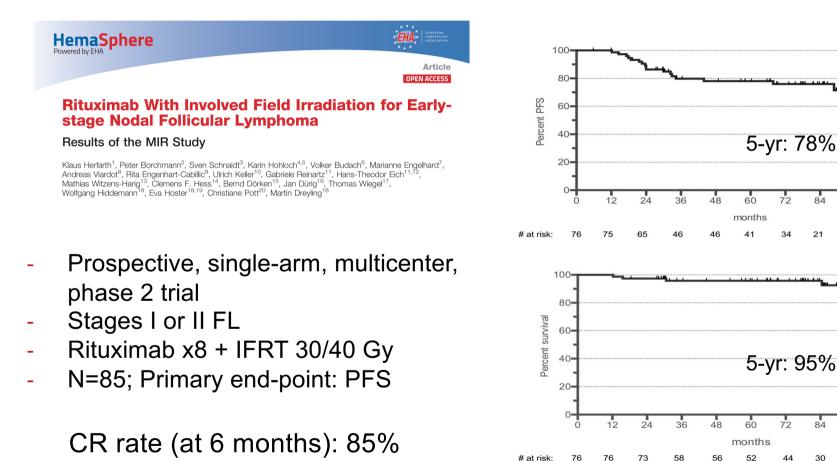

	24 Gy (12 fractions)	4 Gy (2 fractions)
CR rate	83%	58%
3-yr PFS	~87%	~75%
3-yr OS	~85%	~85%
Toxicity (grade ≥3)	3%	1%



Hoskin PJ, Lancet Oncol 2014;15:457-63

Systemic therapy after IFRT in patients with early-stage FL


- Multicenter, randomized, controlled trial
- Stages I (N=113) or II (N=37) FL
- Staging: CT scan + BM biopsy (PET/CT not mandatory)
- IFRT 30 Gy
- Primary end-point: PFS


MacManus M, J Clin Oncol 2018;36:2918-25

Systemic therapy after IFRT in patients with early-stage FL

MacManus M, J Clin Oncol 2018;36:2918-25; MacManus M, J Clin Oncol 2018;37:257-9

Rituximab with IFRT in patients with early-stage nodal FL

Herfarth K, HemaSphere 2018;2:6

PFS

OS

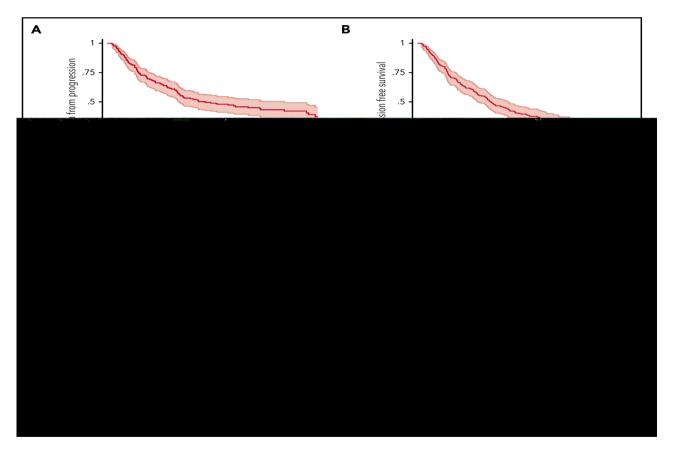
A real patient from our clinics ...

- Biopsy: grade 2 FL (August 2006)
- Staging was performed
 - PET/CT: no other lymph node or extranodal involvement
 - Bone marrow biopsy: N

Diagnosis: grade 2 FL, stage I-"A"

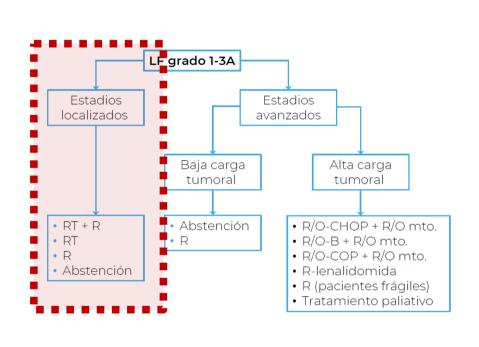
- IFRT (30Gy) + 4 weekly doses of rituximab
- He reached CMR; almost 18 years after, he maintains the response

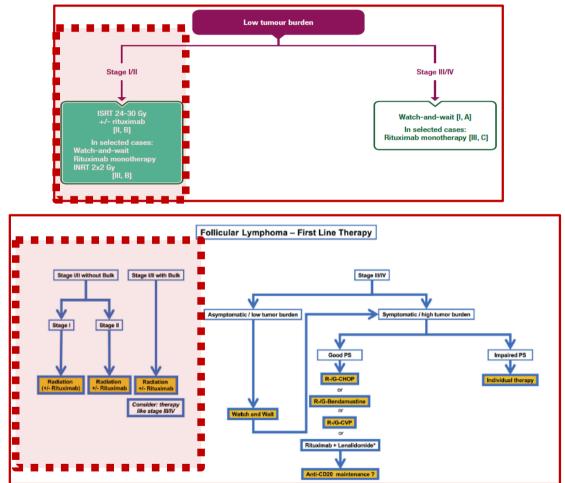
LYMPHOID NEOPLASIA


Comment on Brady et al, page 237

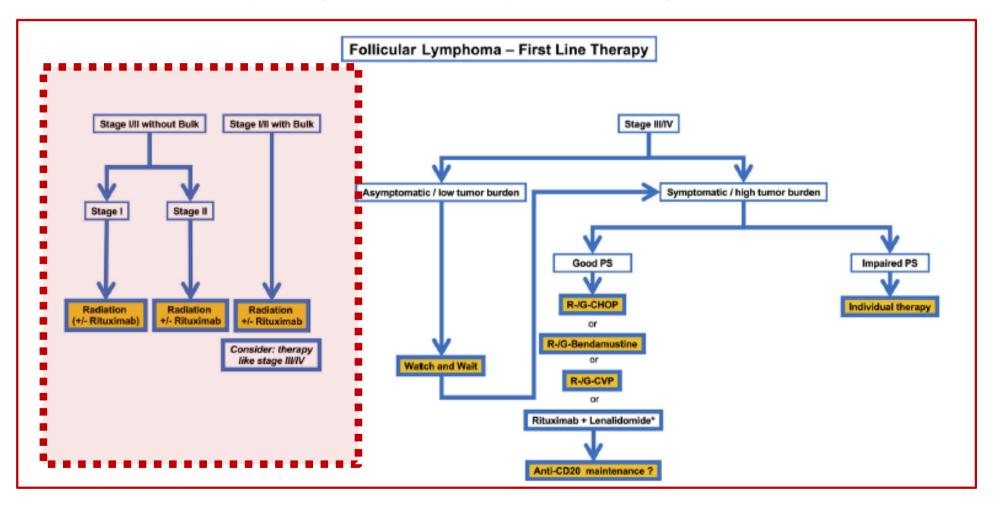
Localized FL: how long in response to be cured?

Silvia Montoto | St Bartholomew's Hospital


In this issue of *Blood*, Brady and colleagues¹ report the outcome after treatment with definitive radiotherapy (RT) in 512 patients with localized follicular lymphoma (FL) staged with ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) with positron emission tomography-computed tomography (PET-CT) to prove the hypothesis that a more accurate staging results in a better outcome, supporting the curative potential of RT.


Long-term follow-up for patients with early-stage FL

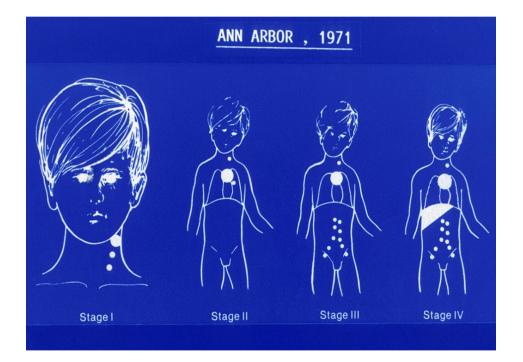
- Population-based study (British Columbia)
- Staging assessed by CT scan
- RT alone (median dose: 20 Gy)
- Median follow-up: 16.1 years


Early stage follicular lymphoma guidelines

GELTAMO guidelines 2023; Dreyling M, Ann Oncol 2021;32:298-308; Fischer L, Leuk Lymph 2023;64:761-75

Early stage follicular lymphoma guidelines

Fischer L, Leuk Lymph 2023;64:761-75


Other entities and variants related to FL (showing early-stage disease in most cases)

- In situ follicular neoplasia
- Duodenal-type FL
- BCL2-R-negative, CD23+ follicle center lymphoma*
- Primary cutaneous follicle center lymphoma
- Pediatric-type FL
- Testicular FL
- Large B-cell lymphoma with IRF4 rearrangement

*Provisional entity at the ICC Campo E, Blood 2022;140:1229-53

Staging in lymphomas

- Defines disease location and extend
- Suggests prognostic information
- Allows comparisons among studies
- Provides a baseline against which response or disease progression can be compared
- Initial staging criteria were designed for HL and superseded by the Ann Arbor classification
- Staging remains according to Ann Arbor

Resenberg SA, Cancer Res 1971; Carbone PP, Cancer Res 1971; Rosenberg SA, Cancer Treat Rep 1977; Cheson BD 2014

Revised staging system (Lugano classification)

Revised staging system for primary nodal lymphomas					
Stage	Involvement	Extranodal (E) status			
Limited I	One node or a group of adjacent nodes 2 or more nodal groups on the same side of the diaphragm	Single E lesions without nodal involvement Stage I or II nodal extend with limited contiguous E involvement			
ll bulky	II as above with "bulky" disease	n/a			
Advanced III IV	Nodes on both sides of diaphragm; nodes above diaphragm with spleen involvement Additional noncontiguous extralymphatic involvement	n/a n/a			

www.geltamo.es

folicular LF grado 1-3A Estadios Estadios localizados avanzados Baja carga Alta carga tumoral tumoral • RT + R Abstención • R/O-CHOP + R/O mto. • R/O-B + R/O mto. R • RT • R/O-COP + R/O mto. • R Menor eficacia Menor toxicidad • R-lenalidomida Abstención • R (pacientes frágiles) • Tratamiento paliativo

El orden de las opciones terapéuticas no pretende reflejar la preferencia de uso: ver las recomendaciones de la guía.

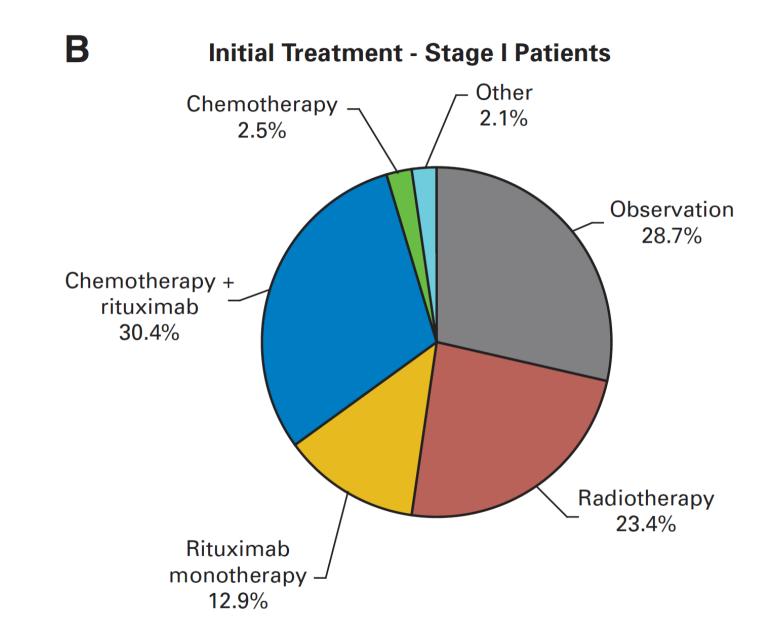
LF: linfoma folicular; RT: radioterapia; R: rituximab; O: obinutuzumab; C(H)OP: ciclofosfamida, (doxorrubicina), vincristina y prednisona; B: bendamustina; RP: respuesta parcial; RC: respuesta completa.

Tratamiento estadios localizados → RDT

RDT + Rituximab RDT sola 24Gy limitado a campo afecto Fase 2, prospectivo GLSG N= 85 (mejor que dosis más altas) PFS 60- 80% y OS 80% @ 10 ys 78% @ 5ys PFS Posible estrategia curativa en algunos pacientes (40% libres de enfermedad a los 10-20 años) 48 60 72 RDT + iQMT 95% @ 5ys Aunque mejora la PES -- mas toxicidad por lo OS que no parece justificada esta estrategia No diferencias en OS respecto a RDT sola months

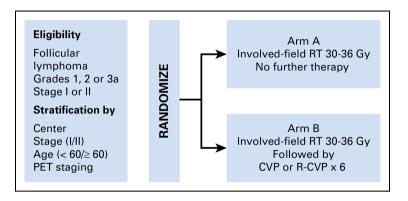
Lowry L, et al. 2011; Hoskin PJ, et al. 2014; MacManus M,. 2018; Tobin et al. 2019; Herfarth K, 2018;

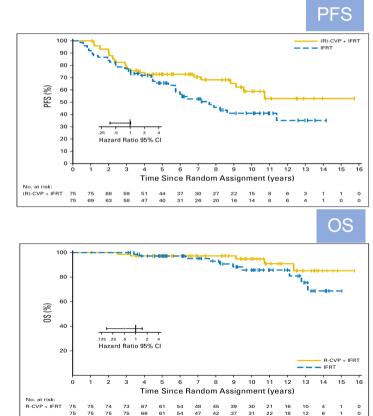
Early stage follicular lymphoma (FL): staging


Localized FL is often neglected from clinical research for two main reasons:

- Small number of patients with excellent prognosis, so prospective trials are time-consuming and expensive.
- Excellent prognosis with standard approaches; most are considered "curable", so less incentive for research.

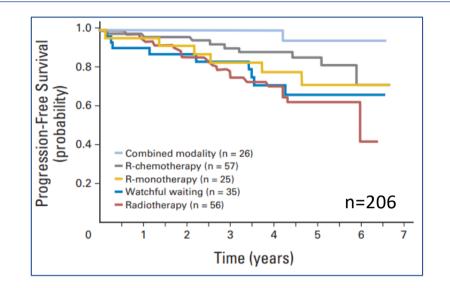
Montoto S, Blood 2019;133:187-8


Conclusions


- Limited stage DLBCLs have good prognosis with current R-CHOP-based +-IFRT treatment.
- R-CHOPx4 (+Rx2) is adequate for low-risk (smIPI 0) cases.
- PET-based strategy is useful, since it allows to tailor the number of cycles or the use of IFRT in cases with insufficient metabolic response.
- The development of new biomarkers could guide the use of novel targeted therapies.

Systemic therapy after IFRT in patients with early-stage FL

- Multicenter, randomized, controlled trial
- Stages I (N=113) or II (N=37) FL
- Staging: CT scan + BM biopsy (PET/CT not mandatory)
- IFRT 30 Gy
- Primary end-point: PFS



MacManus M, J Clin Oncol 2018;36:2918-25

Tratamiento estadios localizados

W&W

- No hay estudios randomizados
- Estrategia poco consolidada dada la potencial curabilidad de este subgrupo
- En algunas series retrospectivas (era pre-Rituximab) \rightarrow peor SG
- En serie prospectiva de LF estadio I (National LymphoCare Study)
- N=471
- Dx entre 2004-2007
- Pacientes en W&W tenían SLP similar a la RDT sola
- No diferencias en SG

Rituximab monoterapia

- Alternativa razonable en pacientes que no toleren la RDT (R semanal x 4 dosis)

Friedberg JW et al. J Clin Oncol. 2012: Sorigué M et al. Eur J Haematol. 2018; Guías GELTAMO LF 2023

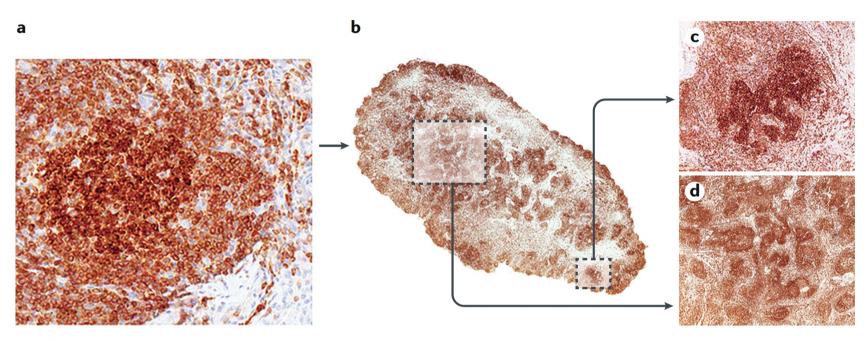
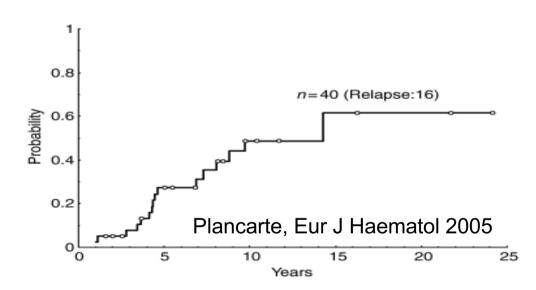


Fig. 6 | **In situ follicular neoplasia.** Tumour progression from in situ follicular neoplasia to early follicular lymphoma (FL) or overt FL. **a** | The strongly immunostained BCL2⁺ B cells are confined to the germinal centre. The BCL2 staining in this population is more intense than that exhibited by the surrounding mantle cells. Magnification ×20. **b** | A lymph node displaying overt FL and early FL. Magnification ×0.2. **c** | Foci of early FL in which BCL2⁺ cells expand outside the follicle without a defined mantle zone. Magnification ×2. **d** | Foci of overt FL showing intense immunostaining of BCL2 within the neoplastic follicle. Magnification ×2. All panels are of formalin-fixed, paraffin-embedded tissue sections.

Carbone A, et al. Nat Rev Dis Primers 2019;5:83

Early-stage follicular lymphoma

- Importance of ruling out disseminated stage
 - PET/TC better than CT scan (44-62% of patients increase stage)¹⁻²
 - BM biopsy mandatory


Study	N	PET/CT Staging?	PFS	OS
MacManus et al, ⁹ 2018	75	Some patients	10 y: 41%	10 y: 86%
Manus & Hoppe, ⁸ 1996	177	No	10 y: 40% 20 y: 37%	10 y: 64% 20 y: 35%
Tobin et al, ¹¹ 2019	171	Yes	5 y: 68%	5 y: 93%
Ng et al, 12 2019	47	Yes	5 y: 78%	5 y: 97%
Brady et al, ¹³ 2019	512	Yes	5 y FFP: 69%	5 y: 96%
Friedberg et al, ¹⁴ 2012	206	Yes	Median: 72 mo	
Guckenberger et al, ²³ 2012	86	No	10 y FFP: 58% 15 y FFP: 56%	10 y: 64% 15 y: 50%

1) Luminari S, Ann Oncol. 2013; 2) Metser U, Cancer 2017;123:2860-6; 3) Cohen JB & Kahl BS, Hematol Oncol Clin N Am 2020

Early stage FL

Stage I (<10% of FLs)

- Treatment: XRT (<u>+</u> CT/R)
- Long overall survival
- High risk of relapse (>50%)
- Are cured some of the patients?

