

MÉDECINE Santé Université Paris Cité

Treatment of HR MDS – Future perspective

Lionel Adès

Hopital Saint Louis, Paris

Conflict of interest

Name of Company	Research support	Scientific Advisory Board
BMS/CELGENE	Х	Х
NOVARTIS		Х
TAKEDA		Х
ABBVIE	Х	Х
ROCHE		Х
SERVIER	Х	

Treatment algorithm for high-risk MDS before 2024

Malcovati L, et al. Blood 2013;122:2943-64

Treatment algorithm for high-risk MDS in 2024

Malcovati L, et al. Blood 2013;122:2943–64

So far, No benefit in randomized studies

1. Prébet T, et al. J Clin Oncol 2014;20:1242–8; 2. Garcia-Manero G, et al. Cancer 2017;213:994–1002; Sekeres M, et al. J Clin Oncol 2017;35:2745–53, 4 Zeidan et al Blood Adv 2022, 5 Issa et al. Cancer 2015, 6 Ades et al, BJH 2022

... Even in more recent trials, with «more potent» drugs

Rational selection rather than convenient repurposing

Problem #1 Have a good definition of the disease

MDS HR : Do we have a definition problem?

Other recurrent

Elsa Bernard et al. ASH 2023

mNOS

No-event

7.9 (254)

6.5 (210)

Huber et al, Leukemia 2023

Orphant entities in each classification

How to avoid a confusion of languages ? A Delphi consensus process involving 71 experts from 11 countries

Adapted from Lanino et al. ASH 2023 RS Komrokji, L Lanino, S Ball, JP Bewersdorf et al. Submitted

Towards a molecular definition of MDS?

A first attempt by the MLL: A proposed classification makes the use of blast counting redundant (9 groups)

Towards a molecular definition Molecular taxonomy of MDS ...but how to deal with 18 groups?

% (N.) Groups Entry 3.3 (107) DDX41 DDX41 NPM1 or inv(3) 2.0 (66) AML-like or ≥2 in (WT1, FLT3, PTD, MYC) TP53 multi-hit[^] or CK 10.1 (325) **TP53-complex** 0.5 (16) t(1;7) t(1;7) -7 or SETBP1 -7/SETBP1 4.9 (157) 6.9 (222) del(5q) del(5a) None of the above (EZH2 & ASXL1) 4.0 (129) EZH2-ASXL1 IDH2¹⁴⁰ or IDH1 or (STAG2 & ASXL1) or **IDH-STAG2** 8.9 (288) (STAG2 & SRSF2) BCOR or BCORL1 3.5 (114) BCOR/L1 Bi-allelic TET2^{\$} or bi-TET2 12.8 (411) (TET2 & SRSF2)# None of the above 2.2 (72) U2AF1 U2AF1157 U2AF1157 U2AF134 U2AF1³⁴ 2.1 (68) 2.2 (71) SRSF2 SRSF2 ZRSR2 ZRSR2 1.3 (43)

Elsa Bernard et al. Blood 2024

Problem #2 Avoid TP53^m patients in clinical trial for HR MDS

Mutation profile: Two consecutive trials STIMULUS-MDS1 and MDS2

■ STIMULUS-MDS1 (n=118) ■ STIMULUS-MDS2 (n=403)

Valeria Santini et al. ASH 2022

IPSS, IPSS-R, et IPSS-M : Two consecutive trials STIMULUS-MDS1 & MDS2

- Patients enrolled according to IPSS-R
- Upstaging was observed from IPSS criteria to IPSS-R
- Upstaging was also observed from IPSS-R criteria to IPSS-M
 - 51% of patients with HR IPSS-R were upstaged to vHR IPSS-M

Complete genetic assessment at baseline will improve evaluation in clinical trials and provide useful information for treatment decisions.

Magrolimab-AZA in HR MDS (Phase Ib)

Outcome	All (N = 95^{a})	<i>TP53</i> -wt MDS (N = 61)	<i>TP53</i> -mut MDS (N = 25)
OR rate, % ^b	74.7	78.7	68.0
CR, % (95% CI)	32.6 (23.4 to 43.0)	31.1 (19.9 to 44.3)	40.0 (21.1 to 61.3)
mCR, %	31.6	37.7	20.0
PR, %	0	0	0
SD with HI, %	10.5	9.8	8.0
Duration of CR, months, median (95% CI)	11.1 (7.6 to 13.4)	12.9 (8.0 to NR)	7.6 (3.1 to 13.4)
Time to CR, months, median (range)	3.7 (1.7-7.2)	4.6 (1.7-7.2)	3.1 (1.9-4.0)
Duration of OR, months, median (95% CI)	9.8 (8.8 to 12.9)	9.8 (8.5 to 18.5)	9.2 (5.0 to 12.2)
Time to OR, months, median (range)	1.9 (0.7-10.9)	1.9 (0.7-5.5)	1.9 (1.8-10.3)
mCR with HI/Any HI, %	16.8/58.9	19.7/60.7	12.0/56.0
Converted to RBC transfusion independence, $\%^{\rm c}$	35.1	26.1	46.2
PFS, months, median (95% CI)	11.6 (9.0 to 14.0)	11.8 (8.8 to 16.6)	11.0 (6.3 to 12.8)
OS, months, median (95% CI)	NR (16.3 to NR)	NR (21.3 to NR)	16.3 (10.8 to NR)

CONCLUSION Magrolimab + azacitidine was well tolerated with promising efficacy in patients with untreated higher-risk MDS, including those with *TP53* mutations. A phase III trial of magrolimab/placebo + azacitidine is ongoing (ClinicalTrials.gov identifier: NCT04313881 [ENHANCE]).

The Enhance trial : HMA + Magrolimab or placebo

Geography (US vs ex-US)

BM blasts (≥ 10% vs < 10%)

Cytogenetic risk^b

Dual primary end points:

- CR rate^e
- OS

Key secondary end points:

- ORR
- Duration of CR
- RBC TI rate
- EFS
- PFS
- CR rate in TP53m MDS
- MRD-negative response rate
- Time to transformation to AML
- Safety

Patient characteristics (n=539)

Characteristic		Magrolimab + AZA (n = 268)	PBO + AZA (n = 271)
Age, median (range), years		71 (28–87)	69 (19–88)
Male, n (%)		181 (67.5)	177 (65.3)
Geographical region, n (%)	US	175 (65.3)	177 (65.3)
	Ex-US	93 (34.7)	94 (34.7)
Bone marrow blasts, ^a n (%)	≥ 10%	103 (38.4)	106 (39.1)
	< 10%	165 (61.6)	164 (60.5)
Cytogenetic risk status, ^{a,b} n (%)	Very good/good/intermediate	130 (48.5)	138 (50.9)
	Poor/very poor	123 (45.9)	124 (45.8)
IPSS-R,º n (%)	Intermediate	77 (28.7)	65 (24.0)
	High	81 (30.2)	87 (32.1)
	Very high	109 (40.7)	118 (43.5)
TP53 mutation-positive, ^d n/N (%)		79/167 (47.3)	64/178 (36.0)
Eligible for hematopoietic SCT per investigator, n (%)		135 (50.4)	160 (59.0)
RBC transfusion dependent, n (%)		140 (52.2)	125 (46.1)
Therapy-related MDS present, n (%)		53 (19.8)	48 (17.7)

Reponses

Outcome	Magrolimab + AZA (n = 268)ª	PBO + AZA (n = 271)ª
Best response of CR at primary analysis (n = 348), ^b % (95% Cl)	20.5 (14.8–27.2)	25.0 (18.7–32.2)
Odds ratio (95% Cl), <i>P</i> -value	0.779 (0.471–1.288)	
Final analysis (ITT)		
Best response of CR, % (95% CI)	21.3 (16.5–26.7)	23.6 (18.7–29.1)
Median ^d duration of CR (95% CI), ^{b,e} months	10.9 (8.9–16.7)	11.1 (8.1–NE)
ORR, ^f % (95% CI)	53.7 (47.6–59.8)	58.7 (52.6–64.6)
CR rate in <i>TP53m</i> population, % (95% CI) ^g	17.7 (10.0–27.9)	32.8 (21.6-45.7)
TI rate, % (95% CI) ^h	27.9 (20.6–36.1)	35.2 (26.9-44.2)
Median ^d duration of TI (95% CI), ⁱ months	11.8 (6.1–17.2)	8.2 (4.9-10.4)
MRD-negative status, % (95% CI) ^j	21.6 (16.9–27.1)	22.5 (17.7–28.0)
Transformed to AML, n (%)	34 (12.7)	43 (15.9)
Median ^d time to transformation (95% CI), ^k months	NE (21.2–NE)	25.5 (25.5–NE)
SCT rate, ¹ % (95% CI)	20.9 (16.2–26.3)	35.4 (29.7–41.4)
Median ^d time to SCT (range), months	6.05 (2.66–16.85)	5.85 (2.76–19.12)

- There was no significant difference in CR rate or ORR between treatments
- The CR rate in the *TP53m* population was lower with magrolimab + AZA
- Fewer patients in the magrolimab + AZA arm proceeded to SCT (P = 0.0001)

Overall survival of all enrolled patients

David Sallman et al. EHA 2024

Problem #3 Having realistic endpoints

Under powered studies or optimistic endpoints ?

... Or ineffective drug of course !!

	Phase	Arm	n	Primary endpoint	Sample size calculation
Panther	3	2	454	EFS	10 → 17 mo
AZA PLUS	2	4	322	CR+PR	30% → 45%
US-Intergroup	2	3	277	ORR	35% → 55%
APR246 ph3	3	2	154	CR rate	25% → 50%
Stimulus MDS-1	2	2	127	CR/PFS	CR : 18%→50% PFS: 12→20mo

Problem #4 Do not underestimate side effects

Toxicities observed in AZA-Plus Trial

Rates of hospitalization during the first 6 cycles

Another example of increased toxicities in Randomized trials

where toxicity induced an early discontinuation of treatment in experimental arms

AZA +/- Lenalidomide or Vorinostat

Magrolimab-AZA phase 3 trial

Magrolimab + AZA was associated with a higher incidence of fatal TEAEs, grade \geq 3 and serious TEAEs,

	Overall		
Safety outcome, n (%)ª	Magrolimab + AZA (n = 263)	PBO + AZA (n = 264)	
Grade ≥ 3 TEAE	244 (92.8)	209 (79.2)	
Related to any study drug	201 (76.4)	149 (56.4)	
Serious TEAE	189 (71.9)	136 (51.5)	
Related to any study drug	114 (43.3)	52 (19.7)	
TEAE leading to discontinuation of any study drug	63 (24.0)	32 (12.1)	
TEAE leading to delay or interruption of any study drug	199 (75.7)	147 (55.7)	
TEAE leading to death ^a	40 (15.2)	26 (9.8)	

VEN-AZA in MDS: Treatment-Emergent Adverse Events (n=107)

- SAEs occurred in 73 (68.2%) patients:
 - Febrile neutropenia in 39 (36.4%)
 - Infections in 43 (40.2%)
 - 59 deaths (55.1%) were reported
 - 23 (21.5%) due to disease progression
 - 17 (15.8%) due to TEAEs
 - 7 (6.5%) due to complications from SCT
 - 6 (5.6%) due to other reasons
 - 6 (5.6%) unknown
 - 60-day mortality after the first dose was 6.5%
 - 72 (67.3%) patients experienced ≥1 TEAE leading to Ven interruption

Problem #5 why real life data are so different from clinical trials?

HMAs: Survival from real-world data

- Retrospective study
- Spanish MDS registry from 2000–2013
- Higher-risk MDS (N=821); azacitidine (n=251)
- Raised many unsolved questions:
- Is MDS a very heterogenous disease?
- What is the impact on specific subgroups?
- What is the impact of comorbidities?

AZA-VEN in AML: clinical trial results may differ in real life

Amanda C. Winters, Blood Adv, 2019

AZA-VEN in MDS

Rami S. Komrokji et al. Blood Cancer J 2022

Problem #6 Who are the best candidate for SCT?

The role of SCT in MDS

- the only potentially curative treatment
- outcome is influenced by multiple factors inherent to the patient, the MDS subtype, and the allo-HCT procedure itself.
- Many unanswered questions including :
 - What type of disease ?
 - Classified according to what ?
 - Which prognosis scoring system ?
 - Any treatement before SCT? After SCT?
 - Among others....

Problem #7 Academic access to the drugs

Conclusions

- Early phase 2 trials might overestimate the activity of studied drugs in combination.
- Population probably too heterogeneous: IPSS→IPSS-R→IPSS-M
- The « one size fit all » is not anymore the way to go
- Primary endpoint : OS (or EFS?) in randomized trial → Impact on #Patients.
- Reinforce the dialogue between clinic & Science
- International collaborative studies : Clinic & Science
- Don't overlook toxicty
- But some great expectation for our patients in the future (comming next)