

Firenze, CSF Montedomini "Il Fuligno" 24-25 ottobre 2024

HSCT: where do we stand?

IRCCS Ospedale Policlinico San Martino

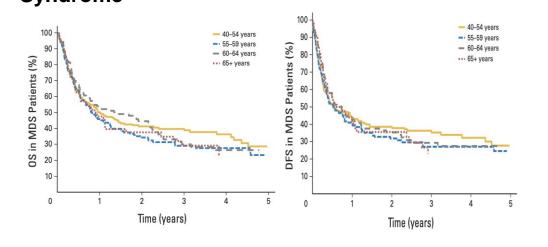
Disclosures

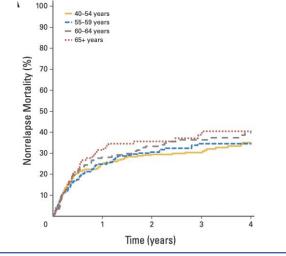
- DMC member for Vertex, BMS and Vifor
- Advisory boar for Novartis and Menarini
- Contract for Menarini

Statement

- Allogeneic HCT is the only available possibility to cure MDS
 - No curative alternatives
 - Survival vs disease free survival
- Who are the patients for whom a curative intent is reasonable.
- How to maximize curative possibility.

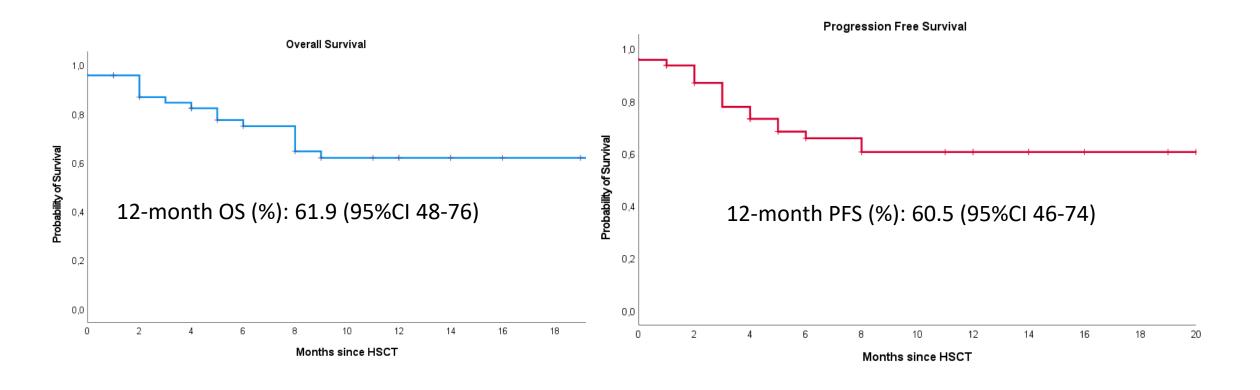
Where do we stand? Agenda


- Patients selection
 - Disease and patient
- Road to transplant
- Conditioning
- Post transplant care


- Who is the patient for whom a curative intent is reasonable.
 - Age
 - Clinical condition, organ damage (HCT-CI)
 - wiliness
 - Disease

AGE

Effect of Age on Outcome of Reduced-Intensity Hematopoietic Cell Transplantation for Older Patients With Acute Myeloid Leukemia in First Complete Remission or With Myelodysplastic Syndrome



Variable	Disease-Free Survival				Overall Survival			
	No. of Patients	OR	95% CI	P	No. of Patients	OR	95% CI	Р
Age, years								
40-54	399	1.00*		.81†‡	401	1.00*		.74†‡
55-59	289	1.03	0.82 to 1.29	.81	291	1.02	0.82 to 1.27	.85
60-64	255	1.12	0.89 to 1.42	.33	255	1.09	0.86 to 1.37	.48
≥ 65	116	1.07	0.79 to 1.45	.68	116	1.16	0.86 to 1.57	.32
Significant covariates								
KPS								
≥ 80	878	1.00*		.003†§	882	1.00*		.003†§
< 80	107	1.06	0.74 to 1.51	.75	107	1.63	1.21 to 2.20	.001
Unknown	74	1.58	1.01 to 2.45	.04	74	0.87	0.61 to 1.25	.46
Donor/recipient match								
HLA-identical sibling	457	1.00*		.003†	460	1.00*		.05†
Well matched	365	1.48	1.12 to 1.95	.01	366	1.20	0.98 to 1.47	.08
Partially matched	151	1.46	1.06 to 2.02	.02	151	1.21	0.92 to 1.57	.17
Mismatched	54	2.53	1.54 to 4.15	< .001	54	1.85	1.21 to 2.85	.005
Unknown	32	1.37	0.81 to 2.31	.24	33	1.15	0.69 to 1.90	.60
Donor age (continuous)	1066	1.01	1.00 to 1.02	.02	1066	-	1-1	-
Cytogenetic risk group								
AML, favorable/intermediate	390	1.00*		.006†¶	390	1.00*		.006†
AML, unfavorable	83	2.13	1.44 to 3.14	< .001	83	2.01	1.39 to 2.91	< .001
AML, unknown	63	1.01	0.68 to 1.49	.97	63	0.89	0.60 to 1.32	.57
MDS, good/intermediate	204	1.12	0.88 to 1.42	.37	206	1.04	0.81 to 1.33	.75
MDS, poor	228	1.27	1.01 to 1.61	.05	229	1.22	0.96 to 1.54	.10
MDS, unknown	91	1.15	0.82 to 1.61	.42	92	1.09	0.78 to 1.51	.62

- Restrospective study CIBMTR
- 1080 pts RIC-HSCT (age 40 to 78 yrs)
- 535 MDS pts
- four age cohorts (40-54, 55-59, 60-64, >65 years)

Genova Experience. AML and MDS 70-75 years old patients (#47)

FU, median duration: 12 months 95% CI: 6-33)

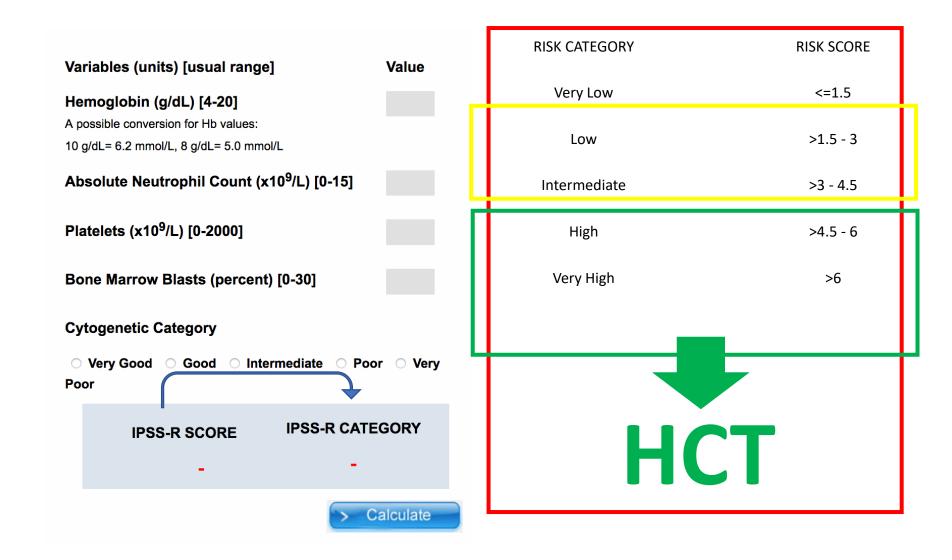
COMORBIDITIES

Hematopoietic cell transplantation (HCT)specific comorbidity index

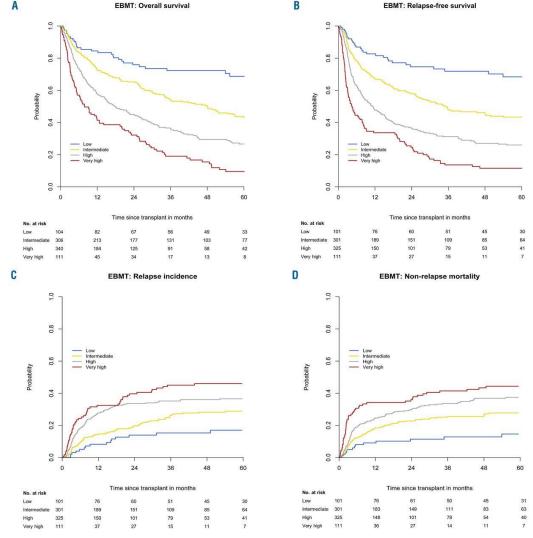
Blood 2005;106:2912-9

Comorbidity	Definitions of comorbidities included in the new HCT-CI	HCT-CI weighted scores
Arrhythmia	Atrial fibrillation or flutter, sick sinus syndrome, or ventricular arrhythmias	1
Cardiac‡	Coronary artery disease, $\$ congestive heart failure, myocardial infarction, or EF $\le 50\%$	1
Inflammatory bowel disease	Crohn disease or ulcerative colitis	1
Diabetes	Requiring treatment with insulin or oral hypoglycemics but not diet alone	1
Cerebrovascular disease	Transient ischemic attack or cerebrovascular accident	1
Psychiatric disturbance†	Depression or anxiety requiring psychiatric consult or treatment	1
Hepatic, mild‡	Chronic hepatitis, bilirubin $>$ ULN to 1.5 $ imes$ ULN, or AST/ALT $>$ ULN to 2.5 $ imes$ ULN	1
Obesity†	Patients with a body mass index $>$ 35 kg/m ²	1
Infection†	Requiring continuation of antimicrobial treatment after day 0	1
Rheumatologic	SLE, RA, polymyositis, mixed CTD, or polymyalgia rheumatica	2
Peptic ulcer	Requiring treatment	2
Moderate/severe renal‡	Serum creatinine > 2 mg/dL, on dialysis, or prior renal transplantation	2
Moderate pulmonary‡	DLco and/or FEV ₁ 66%-80% or dyspnea on slight activity	2
Prior solid tumor‡	Treated at any time point in the patient's past history, excluding nonmelanoma skin cancer	3
Heart valve disease	Except mitral valve prolapse	3
Severe pulmonary‡	DLco and/or FEV₁ ≤ 65% or dyspnea at rest or requiring oxygen	3
Moderate/severe hepatic‡	Liver cirrhosis, bilirubin $>$ 1.5 $ imes$ ULN, or AST/ALT $>$ 2.5 $ imes$ ULN	3

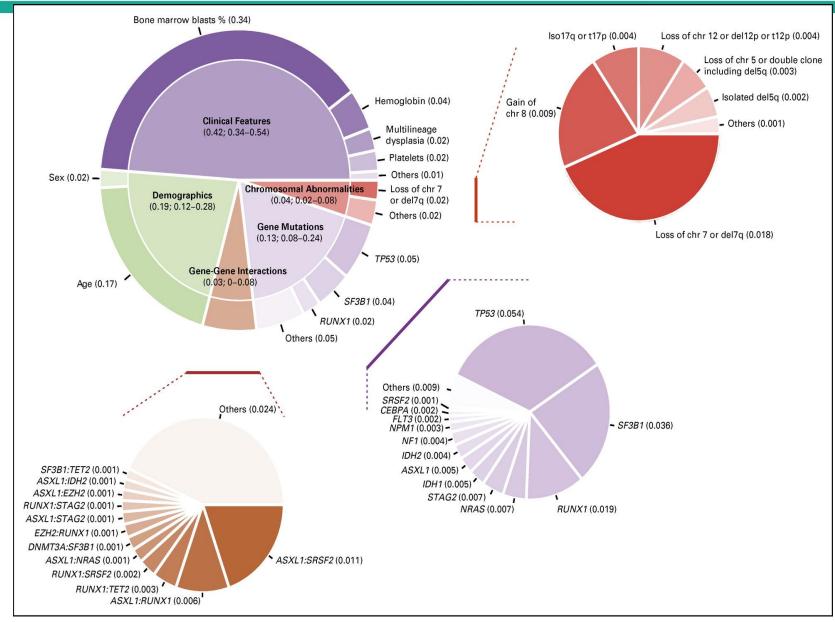
HCT-CI Percent NRM 40 30 Months after HCT C HCT-CI HCT-CI 0 Percent survival 40 HCT-CI ≥3 20 34% Months after HCT


http://www.hctci.org/Home/Calculator Sorror, Blood 2013

- Who is the patient for whom a curative intent is reasonable.
 - Age
 - Clinical condition, organ damage (HCT-CI)
 - wiliness
 - Disease



Revised International Prognostic Scoring System (IPSS-R)

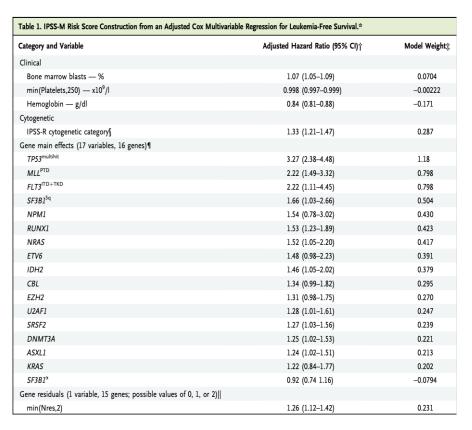


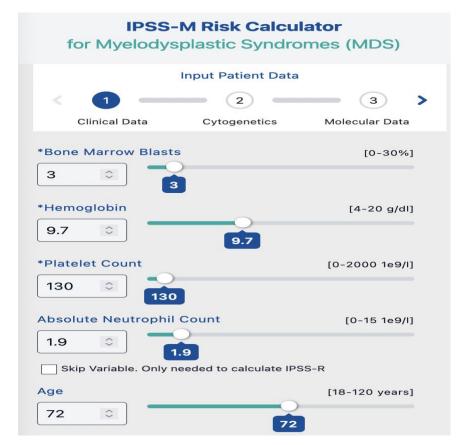
Kaplan-Meier analysis of survival following allogeneic stem cell transplantation in patients with myelodysplastic syndrome stratified according to each risk group of the EBMT transplant-specific risk score.

Nico Gagelmann et al. Haematologica 2019;104:929-936

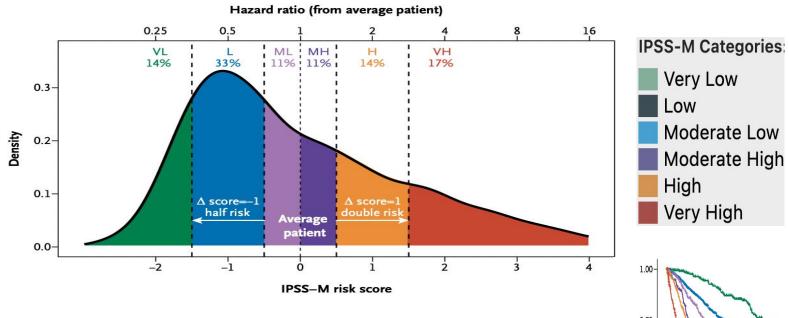
Bersanelli M et al. JCO 2021
Classification and Personalized
Prognostic Assessment on the
Basis of Clinical and Genomic
Features in Myelodysplastic
Syndromes

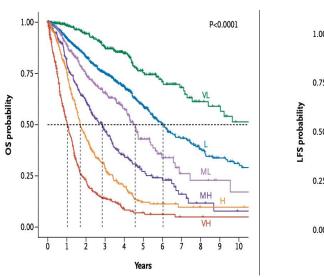
Fraction of explained variation that was attributable to different prognostic factors for overall survival

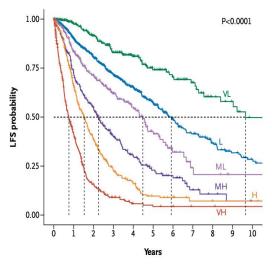

PROGNOSTIC SCORES


IPSS-Molecular

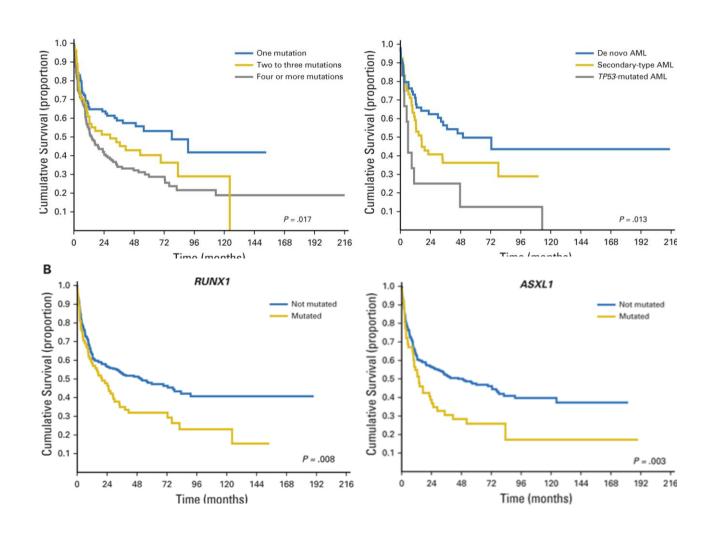
- 2957 MDS samples from 24 centers
- 9254 oncogenic mutations across 121 genes in 90% of pts
- 3186 cytogenetic alterations in 41% of pts



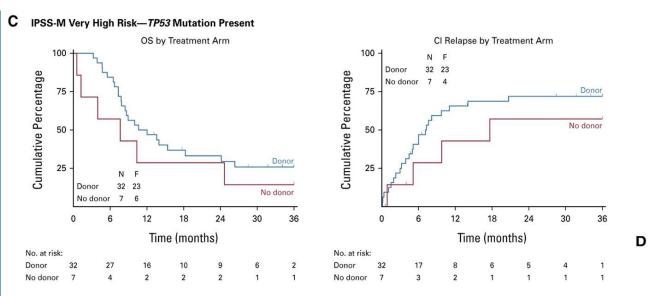



PROGNOSTIC SCORES

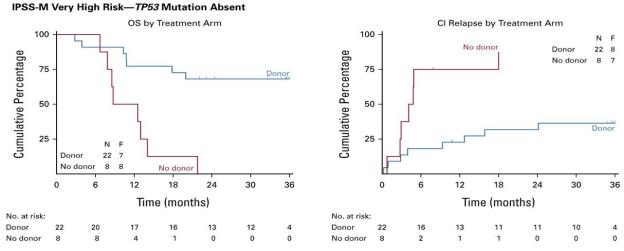
IPSS-Molecular



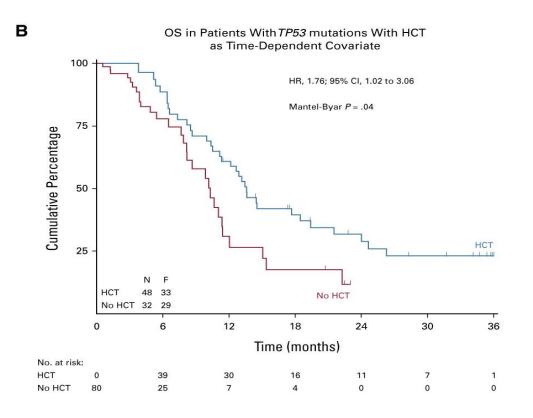
- Restratification of pts from IPSS-R to IPSS-M: 46% of pts change risk group
- 50% of int-risk shift to high risk



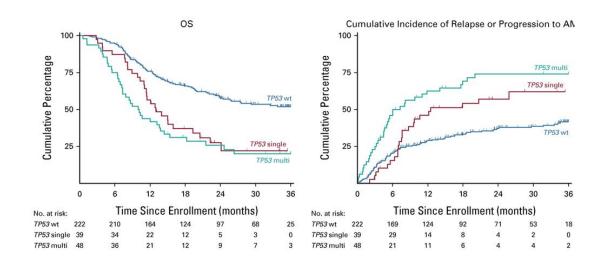
MDS TREATED WITH HSCT: IMPACT OF DRIVER SOMATIC MUTATIONS ON SURVIVAL OUTCOMES



- ASXL1 // RUNX1 // TP53: independent predictors of OS and relapse after HSCT in MDS and AML post-MDS
- The **number of somatic mutations** is associated with survival outcome
- Gene ontology is an independent predictor of post-HSCT outcome


GENETIC ANALYSIS OF THE BMT CTN 1102 STUDY PROSPECTIVE COHORT – POST HOC GENETIC ANALYSES

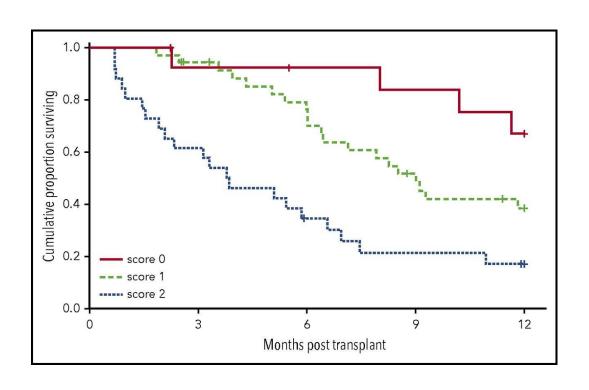
OS among patients with molecular IPSS (IPSS-M) very high risk without a TP53 mutation was significantly improved if they had a donor (68% \pm 10% v 0% \pm 12% at 3 years; P = .001).



GENETIC ANALYSIS OF THE BMT CTN 1102 STUDY PROSPECTIVE COHORT – POST HOC GENETIC ANALYSES

OS in TP53 mut patients was worse compared with TP53 wt patients (21% \pm 5% [SE] v 52% \pm 4% at 3 years; P < .001).

No significant OS difference between TP53single versus TP53multihit (22% \pm 8% v 20% \pm 6% at 3 years; P = .31).


TP53 mut patients undergoing HCT had improved OS

compared with non-HCT treatment (OS at 3 years: 23% ±

 $7\% \text{ v } 11\% \pm 7\%; \text{ P} = .04)$

HR of 3.89; 95% CI, 1.87 to 8.12; P < .001

TRANSPLANT FOR TP53-MUTATED MDS RETROSPECTIVE STUDY (84 PATIENTS, 55 HCT)

Retrospective series of 84 TP53 mut patients

3 independent factors associated with worse OS: HCT-CI > 4 // KPS ≤ 80% // disease not in CR1/2

1 year OS according to risk score (0, 1 and \geq 2). 67% - 39% - 17%

Who are the patients for whom a curative intent is reasonable?

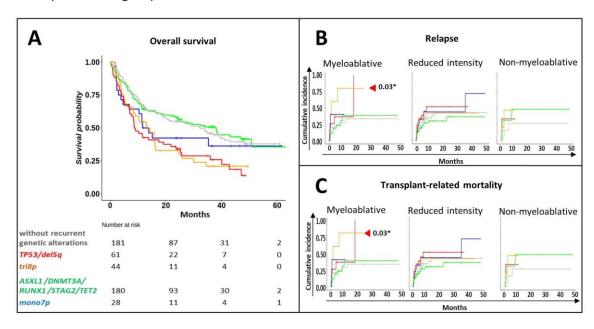
- Disease: Intermediate/ high/ very high R-IPSS
- Lower risk with well defined clinical and/or molecular risk
- Age <70-75 years
- Clinical condition, organ damage (HCT-CI)
- wiliness

How to maximize curative possibility.

- Selecting the right patient at the right moment
- Selecting conditioning intensity on relapse risk (M-IPSS)
- Selecting the right donor (DSA)
- Road to transplant

CONDITIONING REGIMENS

Overview of transplant preparatory regimens


Type of regimen	Description
Conventional myeloablative (high) intensity (MA) regimen	Standard dose total body irradiation (TBI) (>500 cGy, single dose or >800 cGy fractionated dose) with or without standard dose cyclophosphamide (Cy) or fludarabine (Flu); busulphan (Bu) and Cy/Flu in standard doses (Bu: ≥9 mg/kg orally or equivalent intravenous dose); ²⁰ melphalan >150 mg/m² ± other agents. new regimens, including treosulfan (42 g/m²) and fludarabine (Flu: 150 mg/m²) ²³
Intermediate, reduced intensity conditioning (RIC)	Reduced TBI dose >200 cGy and <500cGY single dose or fractionated TBI dose <800cGY ± other reduced Cy/Flu; reduced dose of Bu ≤8 mg/kg oral dose or equivalent intravenous dose combined with reduced dose of Cy/Flu; melphalan: ≤150 mg/m² total dose combined with reduced dose Cy/Flu ¹⁹
Non myeloablative (low) intensity	2Gy TBI <u>+</u> Flu or Cy + Flu ¹⁹
(NMA) regimen	

• Higher risk patients with good performance status and no comorbidities are candidates for MA regimens, whereas less fit patients with comorbidities should be considered for RIC schedules (recommendation level C- de Witte et al. Blood 2017)

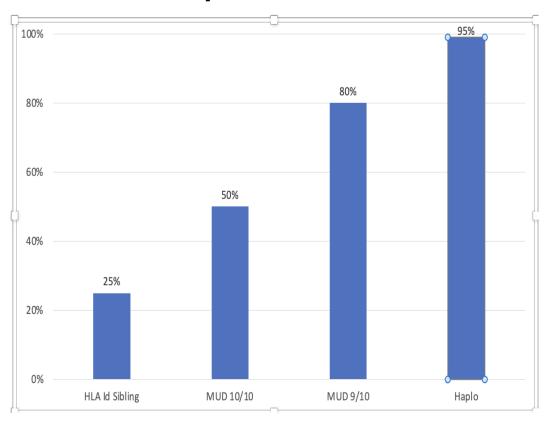
ASH 2021. #3678 Genomic Subgroups Impact Post-Transplant Survival in Patients with Myelodysplastic Syndrome: A CIBMTR Analysis. *Tao Zhang, PhD*^{1*}, 494 patients

Figure.1 The characteristics of molecular signatures and survival outcomes in MDS patient genomic subgroups. A. Survival curve of post-transplant overall survival outcome in different MDS patient subgroups. B. Cumulative risk curve of relapse in different MDS patient subgroups. C. Cumulative risk curve of transplant-related mortality in different MDS patient subgroups.

Conclusion

- Molecular signatures from MDS patient genomes at HCT may provide an independent prognosis of post-transplant survival.
- The choice of regimen intensity could be informed by knowledge of the individual genomic signature of a given MDS patient.

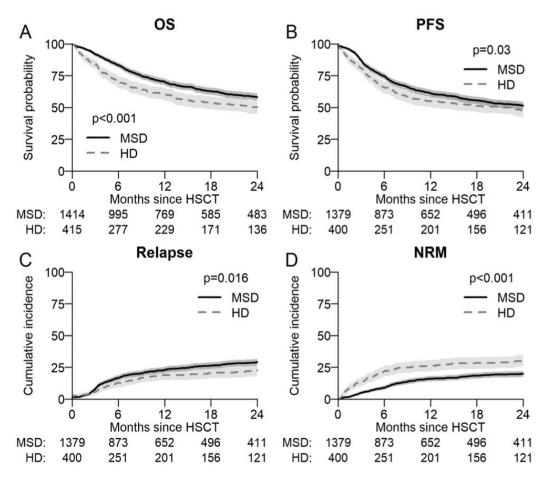
DONOR


Algorithm for donor selection for adult patients with hematological malignancies

HLA-identical sibling donor

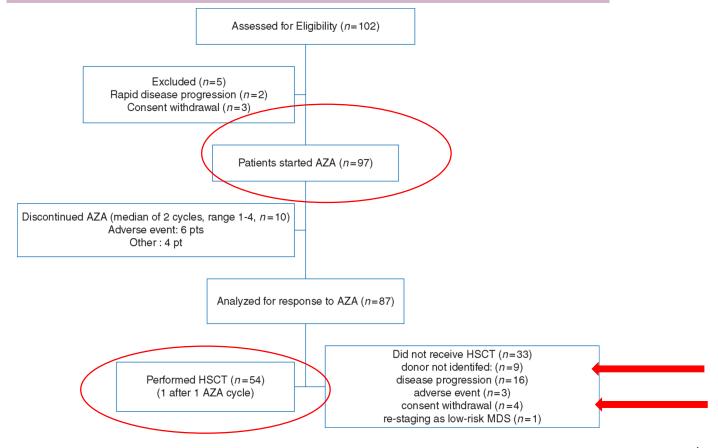
HLA-10/10 matched unrelated donor
Beyond HLA: donor age> CMV-matching, sex-matching, ABO-matching

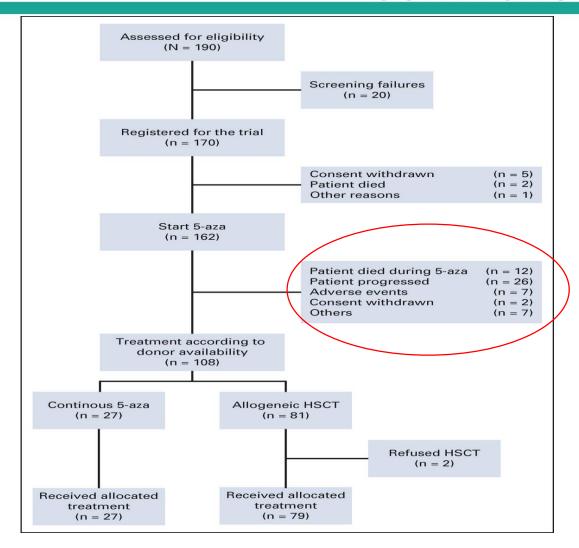
HLA-9/10 matched unrelated donor; HLA-mismatched related donor; cord blood Beyond HLA: donor specific antibodes, specific center experience


Probability to Find a Donor

Role of anti HLA ab

DONOR


Comparison of outcomes for HLA-matched sibling and haplo- identical donors in Myelodysplastic syndromes: report from the chronic malignancies working party of EBMT


- Restrospective study
- 1414 MSD pts median age 58 yrs
- 415 HD-PTCY pts median age 61 yrs
- MSD better OS,PFS,NRM vs haplo donor

Feasibility of allogeneic stem-cell transplantation after azacitidine bridge in higher-risk myelodysplastic syndromes and low blast count acute myeloid leukemia: results of the BMT-AZA prospective study

German MDS Study Group and the German Cooperative Transplant Study Group

Prospective multicenter phase 3 study comparing 5-azacytidine (5-Aza) induction followed by SCT vs continuous 5-Aza according to donor availability in elderly MDS pts (55-70 years) (VidazaAllo Study)

FIG 1. Flow diagram. 5-aza, 5-azacytidine; HSCT, allogeneic stem-cell transplantation.

Published in: Nicolaus Kröger; Katja Sockel; Christine Wolschke; Wolfgang Bethge; Richard F. Schlenk; Dominik Wolf; Michael Stadler; Guido Kobbe; Gerald Wulf; Gesine Bug; Kerstin Schäfer-Eckart; Christof Scheid; Florian Nolte; Jan Krönke; Matthias Stelljes; Dietrich Beelen; Marion Heinzelmann; Detlef Haase; Hannes Buchner; Gabriele Bleckert; Aristoteles Giagounidis; Uwe Platzbecker; Journal of Clinical Oncology 2021 393318-3327.

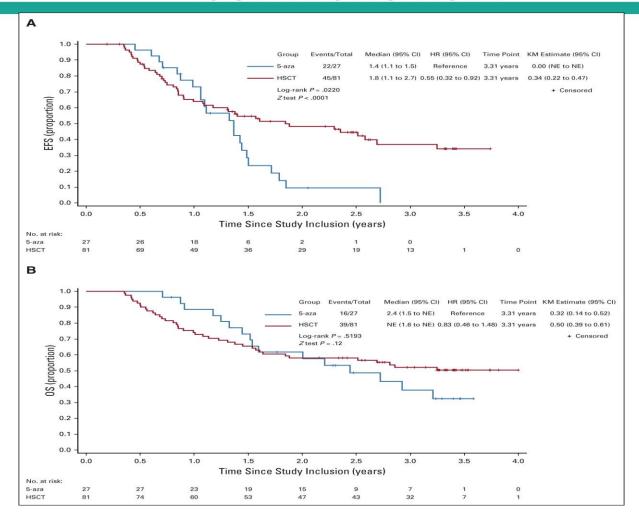
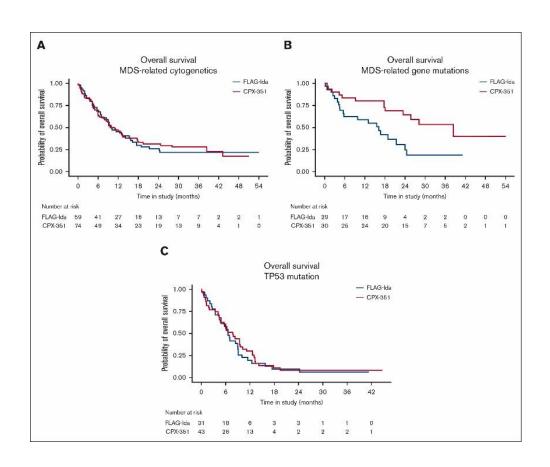



FIG 2. Kaplan-Meier estimates of (A) EFS and (B) OS after allocation to 5-aza or HSCT. 5-aza, 5-azacytidine; EFS, event-free survival; FAS, full analysis data set; HR, hazard ratio; HSCT, allogeneic stem-cell transplantation; KM, Kaplan-Meier; NE, not evaluable; OS, not evaluable, overall survival.

Published in: Nicolaus Kröger; Katja Sockel; Christine Wolschke; Wolfgang Bethge; Richard F. Schlenk; Dominik Wolf; Michael Stadler; Guido Kobbe; Gerald Wulf; Gesine Bug; Kerstin Schäfer-Eckart; Christof Scheid; Florian Nolte; Jan Krönke; Matthias Stelljes; Dietrich Beelen; Marion Heinzelmann; Detlef Haase; Hannes Buchner; Gabriele Bleckert; Aristoteles Giagounidis; Uwe Platzbecker; *Journal of Clinical Oncology* 2021 393318-3327.

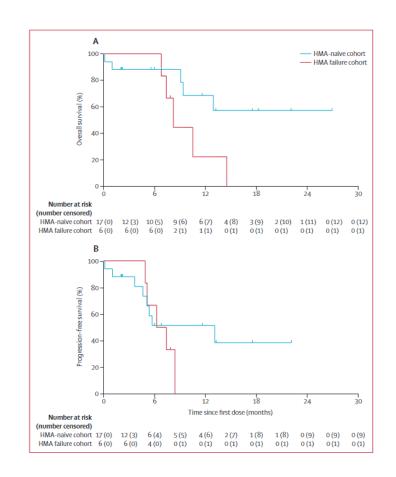
DOI: 10.1200/JCO.20.02724. Copyright © 2021 American Society of Clinical Oncology

A RANDOMIZED COMPARISON OF CPX-351 AND FLAG-IDA IN ADVERSE KARYOTYPE AML AND HIGH-RISK MDS: THE UK NCRI AML19 TRIAL

- ✓ 189 patients: 30% high-risk MDS.
- ✓ No difference in OS (13.3 months vs 11.4 months) or EFS in multivariable analysis.
- ✓ In high-risk AML and MDS, CPX-351 did not improve response or survival compared with <u>FLAG-Ida but produced</u> better relapse-free survival.
- ✓ In the exploratory subgroup of patients defined by the presence of mutations in MDS-related genes, CPX-351 improved OS.

AZACITIDINE PLUS VENETOCLAX IN PATIENTS WITH HIGH-RISK MDS: PHASE 1-2 STUDY

Phase I/II study


23 patients enrolled in phase I (74% HMAs naïve, 26% post-HMAs failure)

Median FU 13.2 months

Dose/duration reduction in azacytidine and venetoclax administration

ORR 87%; median TTR 1 cycle

Median OS not reached in HMAs-naïve cohort vs 8.3 months in HMAs failure Median PFS 13.1 mo vs 6.2 mo

POST-HSCT MAINTENANCE NEW PERSPECTIVES

Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): an open-label, multicentre, phase 2 trial

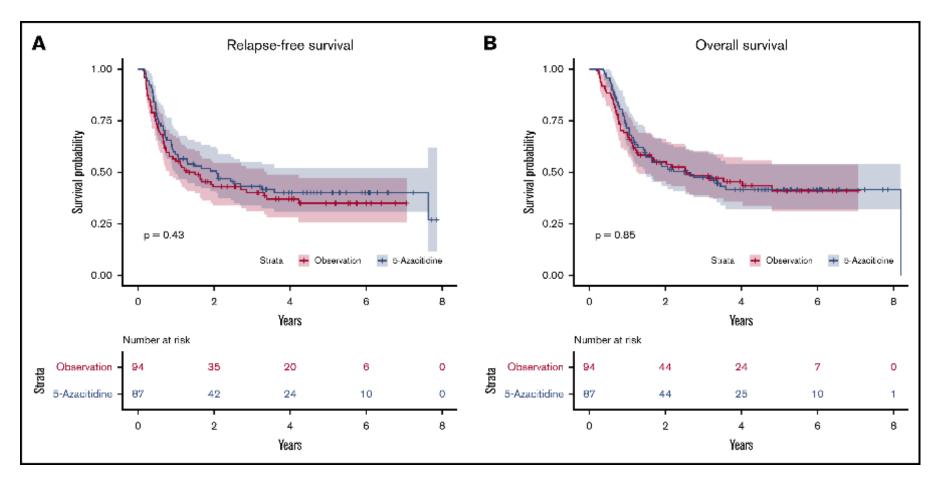
Uwe Platzbecker*, Jan Moritz Middeke*, Katja Sockel*, Regina Herbst*, Dominik Wolf*, Claudia D Baldus*, Uta Oelschlägel*, Anke Mütherig*, Lars Fransecky*, Richard Noppeney*, Gesine Bug*, Katharina S Götze, Alwin Krämer*, Tilmann Bochtler*, Matthias Stelljes*, Christoph Groth*, Antje Schubert*, Marika Mende*, Friedrich Stölzel*, Christin Borkmann*, Anne Sophie Kubasch*, Malte von Bonin*, Hubert Serve*, Mathias Hänel*, Ulrich Dührsen*, Johannes Schetelig*, Christoph Röllig*, Michael Kramer*, Gerhard Ehninger*, Martin Bornhäuser*, Christian Thiede*

Eprenetapopt Plus Azacitidine After Allogeneic Hematopoietic Stem-Cell Transplantation for *TP53*-Mutant Acute Myeloid Leukemia and Myelodysplastic Syndromes

Asmita Mishra, MD¹; Roni Tamari, MD²; Amy E. DeZern, MD³; Michael T. Byrne, DO⁴; Mahasweta Gooptu, MD⁵; Yi-Bin Chen, MD⁵; H. Joachim Deeg, MD⁷; David Sallman, MD⁸; Phillip Gallacher, BSc⁹; Anders Wennborg, MD, PhD⁹; Denice K. Hickman, BSN, RN⁵ Eyal C. Attar, MD⁹; and Hugo F. Femandez, MD¹⁰

REGULAR ARTICLE

blood advances


Enasidenib as maintenance following allogeneic hematopoietic cell transplantation for *IDH2*-mutated myeloid malignancies

Amir T. Fathi, ¹ Haesook T. Kim, ² Robert J. Soiffer, ³ Mark J. Levis, ⁴ Shuli Li, ² Annette S. Kim, ⁵ Alice S. Mims, ⁶ Zachariah DeFilipp, Areej El-Jawahri, ¹ Steven L. McAfee, ¹ Andrew M. Brunner, ¹ Rupa Narayan, ¹ Laura W. Knight, ¹ Devon Kelley, ¹ AJ S. Bottoms, ¹ Lindsey H. Perry, ¹ Jonathan L. Wahl, ³ Jennifer Brock, ³ Elayne Breton, ⁴ Vincent T. Ho, ³ and Yi-Bin Chen ¹

¹Massachusetts General Hospital Cancer Center, Havard Medical School, Boston, MA, ²Department of Data Science, Dans-Farber Cancer Institute, Havard School of Public Health, Boston, MA; ³Dans-Farber Cancer Institute, Harvard Medical School, Boston, MA; ⁴Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; ⁵Brigham and Women's Hospital, Havard Medical School, Boston, MA; and ⁵The Offic State University Comprehensive Cancer Center, Columbus, OH

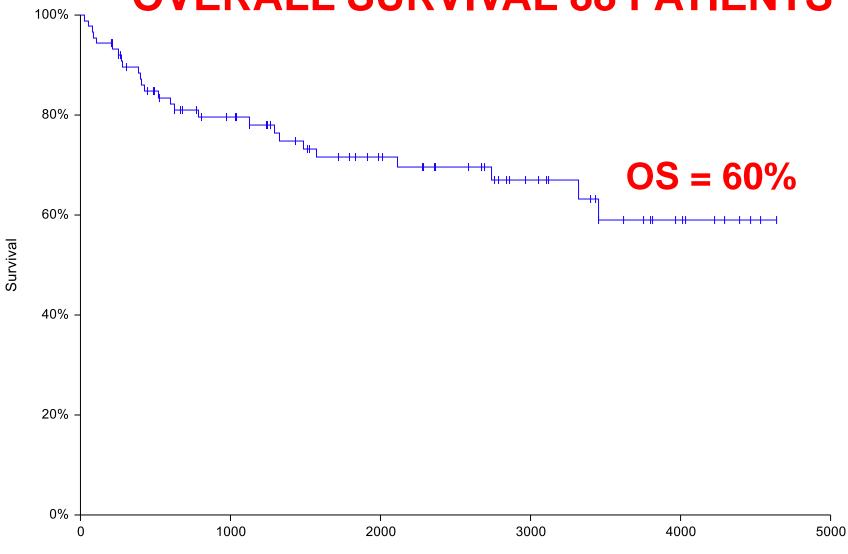
1. Eprenetapopt plus azacitidine after allogeneic hematopoietic stem-cell transplantation for TP53-mutant acute myeloid leukemia and myelodysplastic syndromes, J Clin Oncol (2022;40:3985-3993) 2.AT Fathi, HT Kim, RJ Soiffer, et al. Enasidenib as maintenance following allogeneic hematopoietic cell transplantation for IDH2-mutated myeloid malignancies Blood Adv, 6 (2022), pp. 5857-5865

POST-HSCT MAINTENANCE NEW PERSPECTIVES

The use of subcutaneous 5-azacitidine as posttransplant maintenance strategy was not associated with improved RFS (A) and OS (B) compared with observation arm.

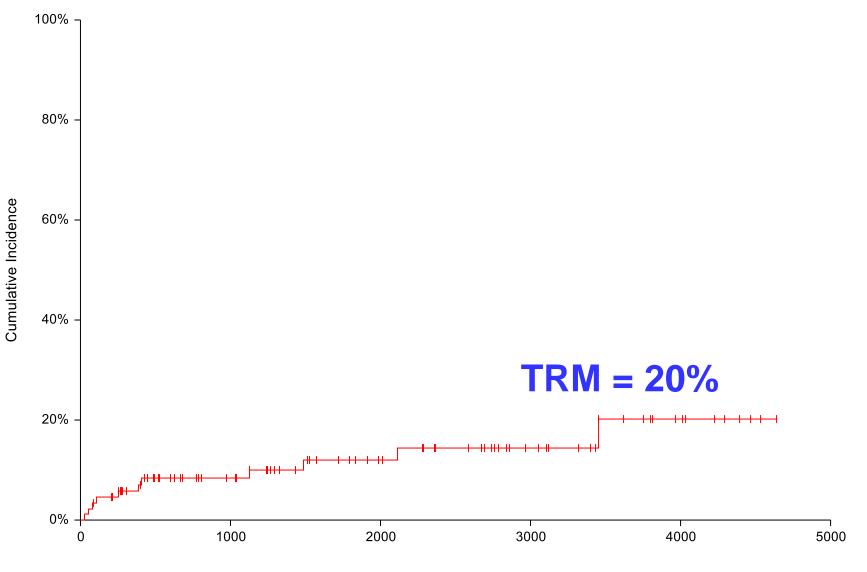
Betül Oran, Marcos de Lima, Guillermo Garcia-Manero, Peter F. Thall, Ruitao Lin, Uday Popat, Amin M. Alousi, Chitra Hosing, Sergio Giralt, Gabriela Rondon, Glenda Woodworth, Richard E. Champlin, A phase 3 randomized study of 5-azacitidine maintenance vs observation after transplant in high-risk AML and MDS patients, Blood Adv, 2020, Figure 2.

Post transplant immunologic treatment

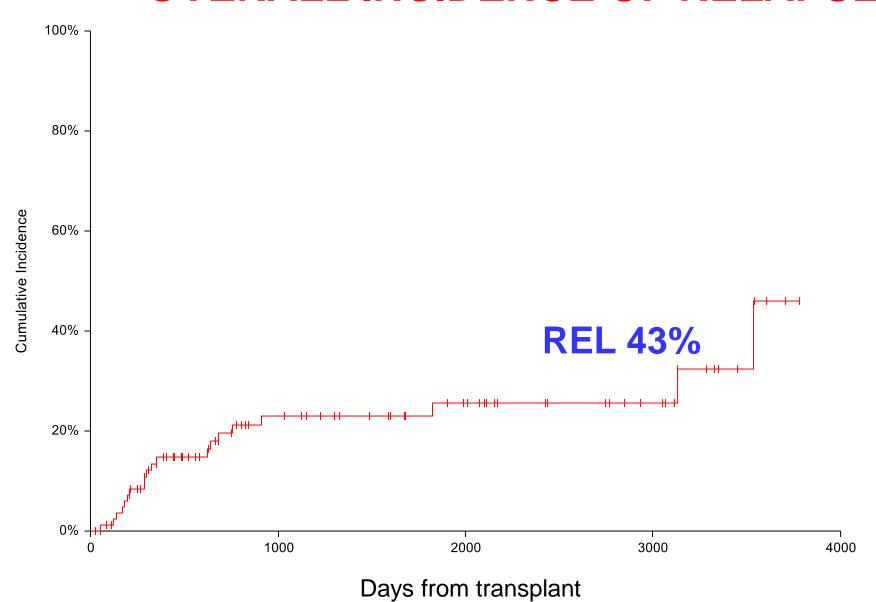

To increase the immunological effect (GvL) without improving GvHD

- Prophylactic DLI
- Preventive DLI
- Increase activity of T cells and NK cells

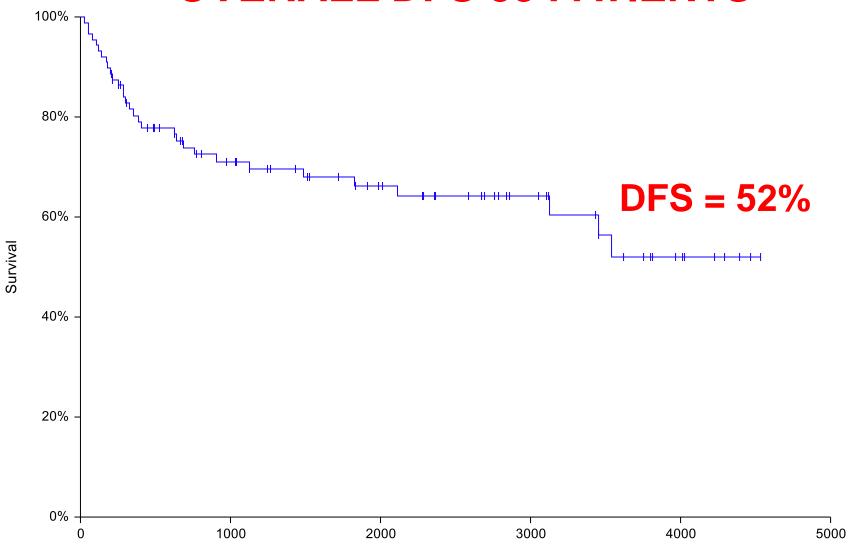
HSCT in MDS San Martino experience Jan 2012 – Mar 2024


	MDS	
Patients	88	
R-IPSS Low / Intermediate / high / very high	13 / 27 / 28 / 20	
Pre HSCT therapy no /yes	39 / 49	
Source (BM / PB)	61/ 27	
Donor MSD ID-SIB/ MUD / HAPLO / MMUD	13 / 20 / 54 / 1	
AGE	60 (18-73)	
Median duration follow up (dd)	2280 (206-4643)	

OVERALL SURVIVAL 88 PATIENTS


Days from transplant

NON RELAPSE MORTALITY 88 PATIENTS



Days from transplant

OVERALL INCIDENCE OF RELAPSE

OVERALL DFS 88 PATIENTS

Days from transplant

- How to maximize curative possibility.
 - Transplant consultation ASAP
 - Work together with transplanters (since the beginning)

MEDICINES CAN CURE DISEASES BUT ONLY DOCTORS CAN CURE PATIENTS.

CG. Jung.

Thank you for your kind attention

