HIGHLIGHTS in RADIOTERAPIA

EVIDENCE AND PRACTICE CHANGING TREATMENTS IN GENITO-URINARY TUMORS

KIDNEY CANCER

Gianluca Ingrosso

Università degli Studi di Perugia – Azienda Ospedaliera Perugia

Mail: gianluca.ingrosso@unipg.it

Disclosures

- Honoraria Travel costs: Ipsen, Takeda, Bayer, Janssen, Astellas
- Advisory Boards: Janssen, Astellas, Takeda

Mail: gianluca.ingrosso@unipg.it

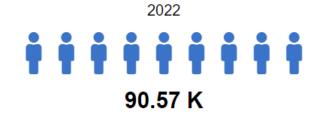
Summary: kidney cancer

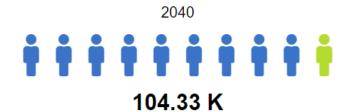
[1] Incidence

[2] Localized RCC

- Primary treatment: the standard of care
- SBRT as primary treatment

[3] Metastatic RCC


- Cytoreductive nephrectomy
- Systemic therapy
- SBRT as cytoreductive therapy
- SBRT for oligometastatic disease


[1] Incidence

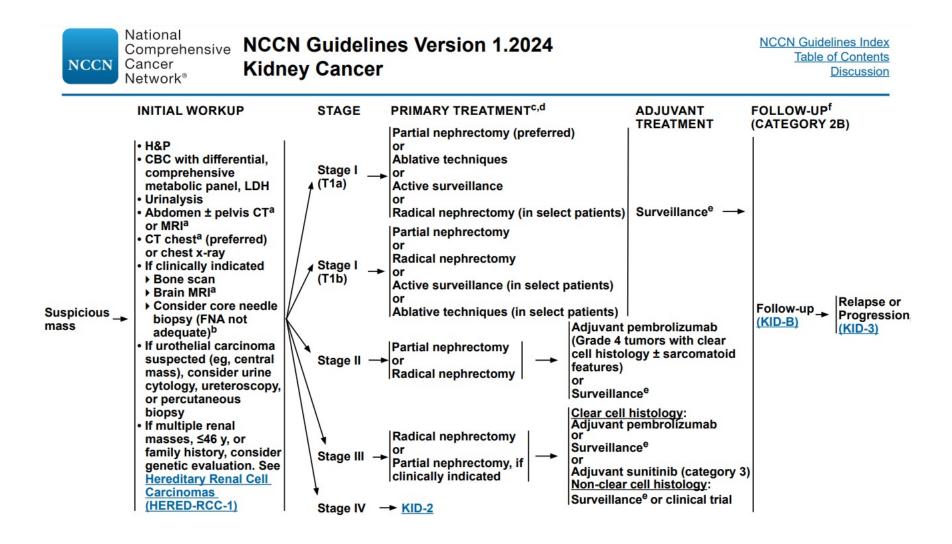
Estimated incidence in 2022 and 2040

= 10 000

EU27, Both sexes, Kidney, All ages, Baseline projected population

Relative change 15.19 %

ECIS - European Cancer Information System


Age (yrs)	Incidence 2022 (%)	Incidence 2040 (%)	Increase (%)
≤ 64	34.460 (38)	32.950 (32)	-4.39
≥ 65	56.110 (62)	71.380 (68)	27.2
≥ 75	29.430 (33)	41.360 (40)	40.5
All ages	90.570 (100)	104.330	15.19

Age (yrs)	Mortality 2022 (%)
≤ 64	6.750 (20)
≥ 65	27.020 (80)
≥ 75	18.050 (54)
All ages	33.770 (100)

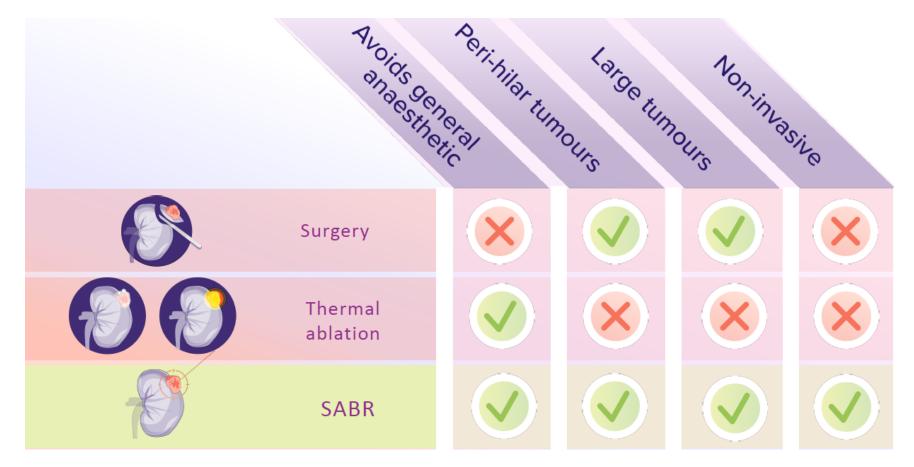
[2] Localized RCC

- Primary treatment: the standard of care
- SBRT as primary treatment

Primary treatment: the standard of care

SABR may be considered for medically inoperable patients with Stage I (2B) or Stage II-III (3)

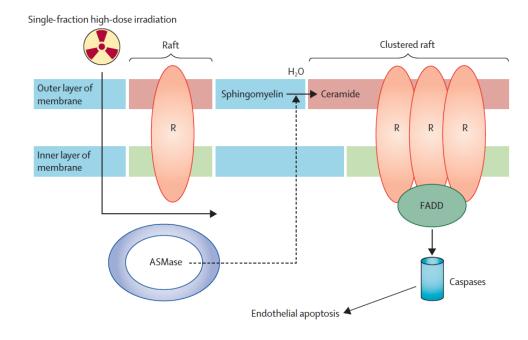
Primary treatment: the standard of care


7.1.4.3.5 Stereotactic ablative radiotherapy

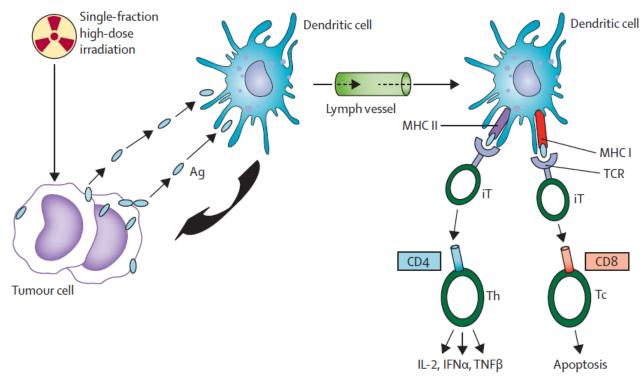
Stereotactic ablative radiotherapy (SABR) has been emerging as a treatment option for medically inoperable patients with localised cT1a and cT1b tumours. Patients usually receive 26 Gy in a single fraction, three fractions of 14 Gy or five fractions of 6 Gy [406, 407]. In a systematic review of non-comparative single-arm studies with a median follow-up range of 5.8–79.2 months, the local control rate was 97.2% and the mean change in eGFR was 7.7 mL/min/1.73 m². Grade 3 or 4 toxicities occurred in 1.5% of patients. However, viable tumour cells are often seen in post-SABR biopsies, although their clinical significance remains unclear [407]. Even though early results of SABR are encouraging, more evidence from RCTs is needed [408].

SBRT as primary treatment: rationale

[1] Patient age and co-morbidities


[2] RENAL score [Radius, Exophytic/endophytic, Nearness to the collecting system, Anterior/posterior descriptor, Location relative to the polar line]

SBRT as primary treatment: rationale


[3] Microenvironment remodeling

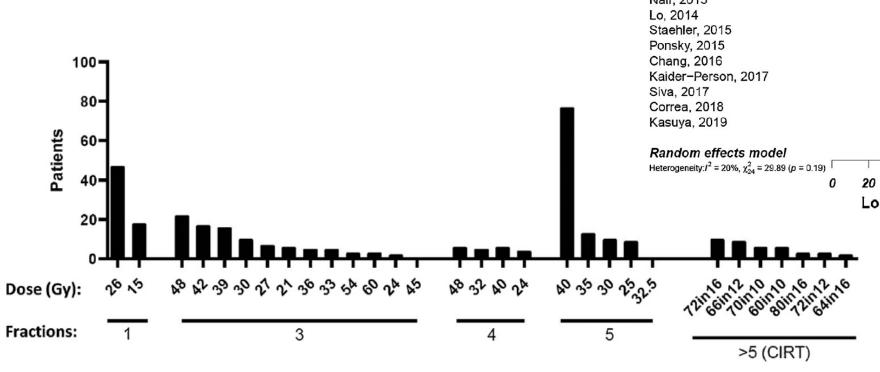
Endothelial damage

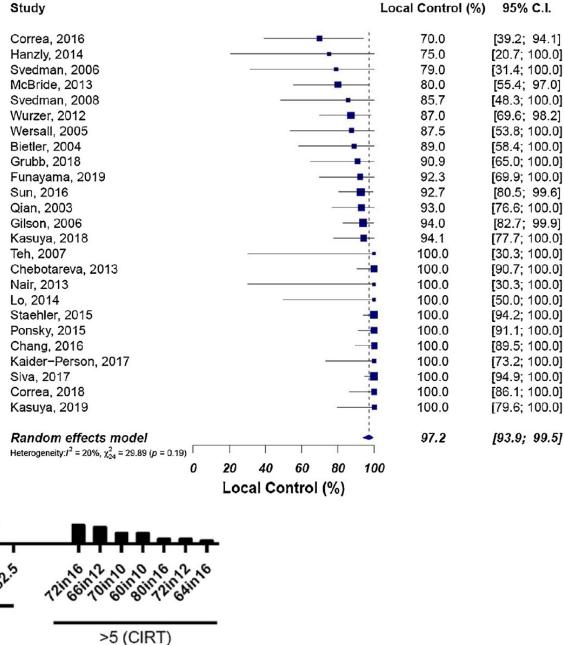
RCC – highly vascularised tumor

Immune system (re-)activation

RCC – highly immunogenic tumor

Systematic review and meta-analysis


- 26 studies
- 11 prospective trials
- 372 pts


Table 1 - Published reports of stereotactic ablative radiotherapy (SABR) for primary renal cell carcinoma.

1st author (year)	Type	Study		Patients		Treated	Age	Tumor size	Follow-Up	Dose (Gy)/	Toxicity	(CTCAE)	Ren	al function	Local		
		type	type	type	Tota	al Stage I–II	Stage III-IV	tumors	(yr)	(cm or cm ³)	(mo)	fractions	Grade 3	Grade 4	Pre-SABR eGFR (ml/min)	Post-SABR change in eGFR (ml/min)	control (%)
Qian (2003) [14]	Ab	R	20	NR	NR	27	62	367 cm ³	12	40/5	NR	NR	NR	NR	9		
Beitler (2004) [15]	Ar	R	9	7	2	11	NR	4.55 cm	26.7	40/5	1× Gastric ulcer	0	NR	NR	89		
Wersall (2005) [16]	Аг	R	8	5	3	8	NR	NR	37	40/5	45% ^a	0	NR	Unchanged	87.5		
Gilson (2006) [17]	Ab	R	33	NR	NR	33	62	356 cm ³	17	40/5	NR	NR	NR	NR	94		
Svedman (2006) [18]	Ar	Р	5	4	1	5	64	NR	52	45/3 40/4 32/4 30/2	0	0	NR	NR	80		
Teh (2007) [19]	Ar	R	2	0	2	2	NR	10-200 cm ³	9	24-40/3-6	0	0	NR	Unchanged	100		
Svedman (2008) [20]	Ar	R	7	1	6	7	NR	5.5 cm	49	30/3 40/4	0	0	Normal pre-SABR	Unchanged (5 pts) Cr increase (2 pts)	85.7		
Wurzer (2012) [21]	Ab	R	23	23	0	23	NR	NR	37	40/5	0	0	NR	NR	87		
Chebotareva (2013) [22]	Ab	R	18	0	18	18	NR	5–180 cm ³	15.5	30-52/3-4	0	0	NR	Unchanged (17 pts) Cr increase (1 pt)	100		
Nair (2013) [23]	Ar	R	2	2	0	2	NR	21.3 cm ³	13	39/3	0	0	38	+6	100		
McBride (2013) [24]	Ab	P	15	15	0	15	75	3.4 cm	36.7	21-48/3	0	0	55	-18	80		
Lo (2014) [25]	Ar	R	3	3	0	3	83	5.0 cm	13	40/5	0	0	28.7	-6.7	100		
Hanzly (2014) [26]	Ar	R	4	4	0	4	72.5	5.1 cm	21.5	15/1	0	0	NR	Unchanged	75		
Ponsky (2015) [27]	Ar	P	19	19	0	19	77.6	57.9 cm ³	13.7	24-48/4	2× CKD	1× Duodenal ulcer	NR	NR	100		
Staehler (2015) [28]	Ar	P	29	29	0	30	65.6	33.7 cm ³	28.1	26/1	0	0	76.8	-6.5	100		
Chang (2016) [29]	Ar	R	16	10	6	16	73	4.0 cm	19	30-40/5	0	2× CKD	55 ^b	-7.92 ^b	100		
Correa (2018) [30]	Ar	R	11	2	9	11	79	9.5 cm	46.8	25-40/5	1× Nausea	0	48.6	-1.5	70		
Sun (2016) [31]	Ar	R	32	32	0	32	74.5	3.9 cm	18.7	21-48/3	NR	NR	NR	NR	92.7		
Kaidar-Person (2017) [32]	Ar	R	6	6	0	6	68.5	5.0 cm	29.5	39/3	0	0	NR	Unchanged	100		
Siva (2017) [33]	Ar	P	33	33	0	34	78	4.8 cm	24	26/1 or 42/3	1× NS	0	54.7	-11	97		
Singh (2017) [34]	Ar	P	14	0	14	14	63.9	NR	1	15/1	1× Anemia	0	NR	NR	NR		
Correa (2018) [35]	Ar	P	12	0	12	12	66.8	8.7 cm	5.8	25–35/5	2× Fatigue, 1× bone pain	0	89.8	-2.8	100		
Grubb (2018) [36]	Ab	P	11	11	0	11	72	3.6 cm	20.4	48-60/3	1× Pyelo.	0	NR	NR	90.9		
Kasuya (2018) [37]	Ar	P	19	15	4	19	67	3.6 cm	79.2	66-80/12-16 (CIRT)	0	1× Dermatitis; 2× CKD	42.7	-15.6 ^b	94.1		
Kasuya (2019) [39]	Ar	P	8	7	1	8	71	4.3 cm	43.1	66-72/12 (CIRT)	0	0	64.1	-10.8	100		
Funayama (2019) [38]	Ar	P	13	13	0	13	72	2.28 cm	48.3	60 or 70/10 (CIRT)	0	2× CKD	51.9	-16.8	92.3		

Systematic review and meta-analysis

- 26 studies
- 11 prospective trials
- 372 pts

Individual patient data meta-analysis - International Radiosurgery Consortium of the Kidney (IROCK)

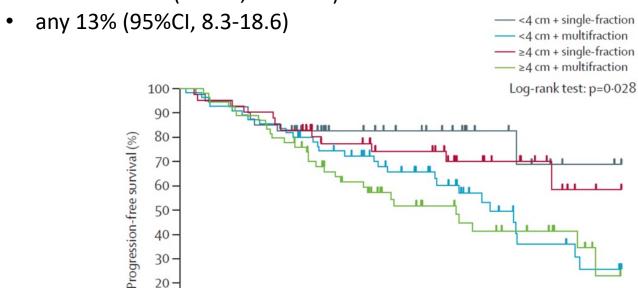
- Primary RCC
- Age >18
- Inoperable declined surgery
- Follow-up at least 2 yrs
- Any performance status
- No previous local therapy
- No adjuvant or concurrent systemic therapy

Primary endpoint investigator-assessed LC per RECIST

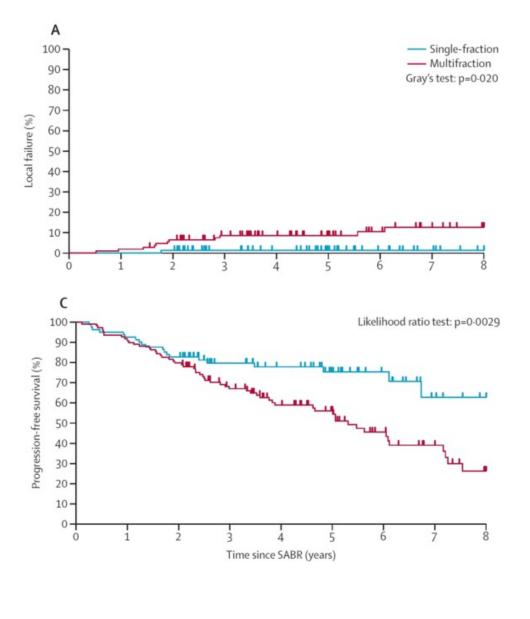
- (2007-2018) 190 pts
- 56 (29%) had solitary kidney
- Median age 73 (IQR, 66.2-82)
- Median fu 5 yrs (IQR, 3.4-6.8)
- Median tumor diameter 4 cm (IQR, 2.8-4.9)
- Median RENAL score 7 (IQR, 5-9)
- Single fraction 81 (43%) [25 Gy/1 fr] Multifraction 109 (57%) [42 Gy (IQR, 35-48)/2-10 frs]

Individual patient data meta-analysis - IROCK

Median decrease in eGFR 14.2 ml/min (IQR, 5.4-22.5) RENAL score > 7 was associated with a larger eGFR decrease 10/190 (5%) cancer-related deaths


5-yrs failure:

- local 5.5% (95%CI, 2.8-9.5)
- distant 10.8% (95%CI, 6.6-16.2)


50-

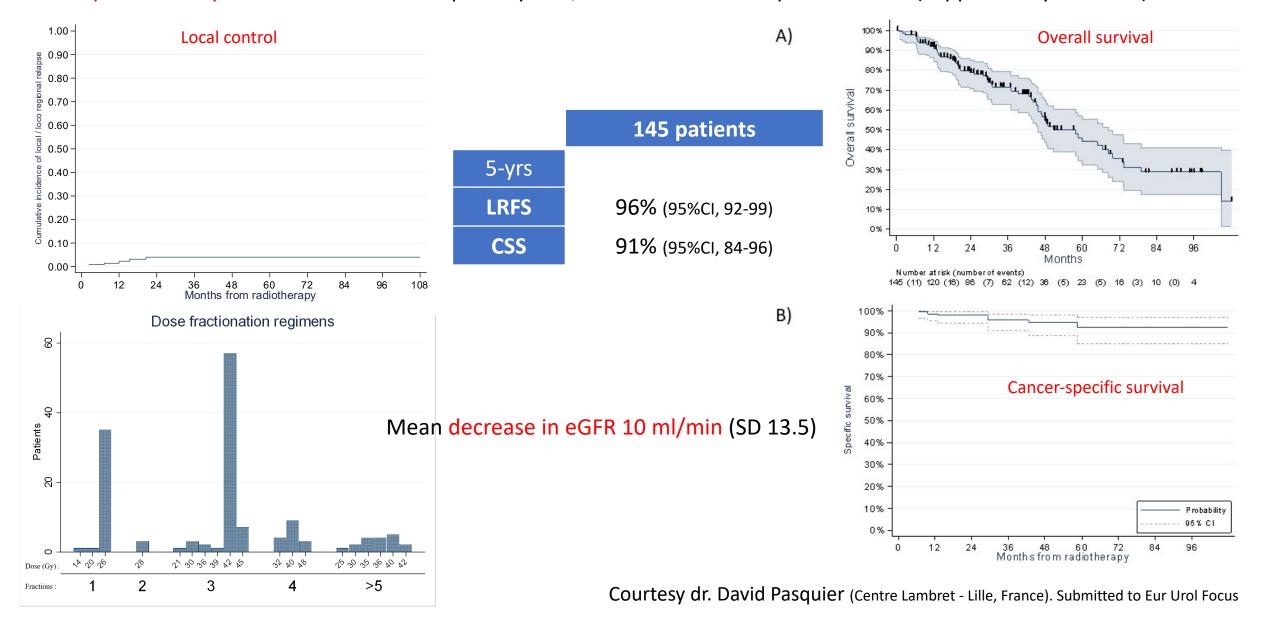
30 -20-

10 -

Time since SABR (years)

Siva S, et al. Lancet Oncol 2022

Retrospective analysis - Results of SBRT for primary RCC, a multicenter retrospective series (supported by GETGUG)

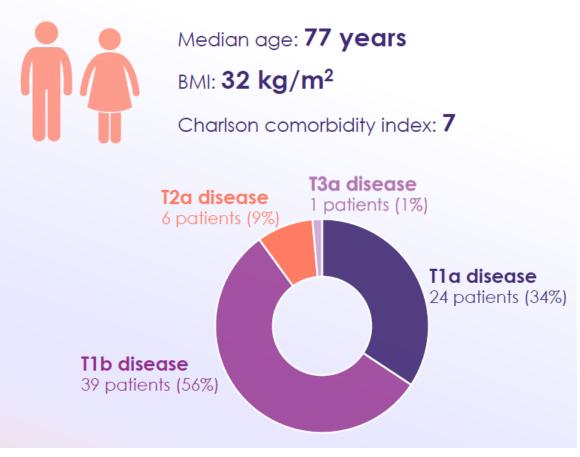

16 participating centers (Australia, France, Italy, and the Netherlands)

- Primary RCC
- Age >18
- Inoperable declined surgery
- Follow-up at least 2 yrs
- Any performance status
- No previous local therapy
- No adjuvant or concurrent systemic therapy

Primary endpoint investigator-assessed LC per RECIST Secondary endpoints OS, CSS, toxicity, renal function

- (2008-2020) 145 pts
- 56 (29%) had solitary kidney
- Median age 76 (IQR, 67-82)
- Median fu 3.4 yrs (IQR, 2.0-6.7)
- Median tumor diameter 4.2 cm (IQR, 3.3-5.5)
- Median RENAL score 8 (IQR, 5-9)

Retrospective analysis - Results of SBRT for primary RCC, a multicenter retrospective series (supported by GETGUG)



cT1 treatment options - comparison

	IROCK (cT1a-1b)	Mayo Clinic (cT1a)				
	SABR (MØ 4 cm; 190 pts)	PN (MØ 2.4 cm; 1055 pts)	RFA (MØ 1.9 cm; 175 pts)	CRYO (MØ 2.8 cm; 178 pts)		
5-yrs						
LRFS	93.7 % (95%CI, 88.5-96.6)	97.7% (95%CI, 96.7-98.6)	95.9% (95%CI, 92.3-99.6)	95.9% (95%CI, 92.3-99.6)		
FFDF	87.3 % (95%CI, 80.3-92.0)	98.0% (95%CI, 97.0-99.0)	93.9% (95%CI, 88.3-100)	100 % (95%CI, 100-100)		
CSS	92 % (95%CI, 85.2-95.8)	99.3 % (95%CI, 98.7-99.9)	95.6 % (95%CI, 89.7-100)	100 % (95%CI, 100-100)		

Phase II non-randomized trial - FASTRACK II

- Biopsy-confirmed RCC with a single lesion in kidney
- Medically inoperable or high-risk for surgery
- Multidisciplinary decision that active treatment is warranted
- eGFR > 30mls/min
- Tumour not abutting bowel
- Tumour maximum size not larger than 10cm

70 pts

Median tumor size: 4.6 cm

 $\emptyset \le 4 \text{ cm} - 1 \times 26 \text{ Gy}$

 $\emptyset > 4 \text{ cm} - 3 \times 14 \text{ Gy}$

Courtesy Prof. Shankar Siva (Peter MacCallum Cancer Center, Victoria Australia)

Phase II non-randomized trial - FASTRACK II

FASTRACK II

Clinical outcomes

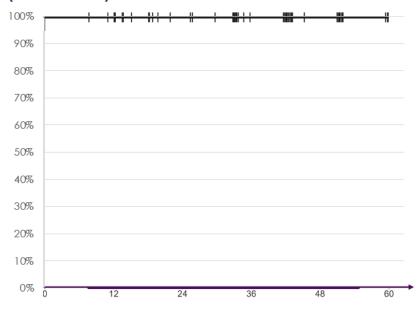
at a median follow-up of 43 months

100%

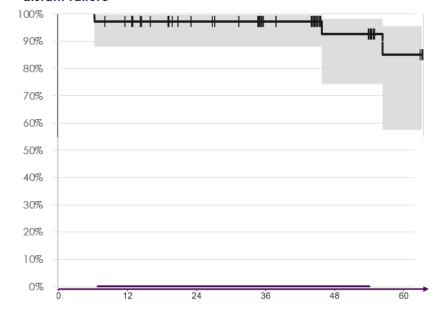
Freedom from distant failure

99%

Cancer specific survival 100%


Kidney function loss
(1 patient underwent dialysis)

-14.6_{mls/min}


Courtesy Prof. Shankar Siva (Peter MacCallum Cancer Center, Victoria Australia)

ASTRO 2023 - IJROBP Suppl, 2023

Local Control rate (RECIST criteria)

Freedom from distant failure

Phase II non-randomized trial - FASTRACK II

FASTRACK II

Clinical outcomes

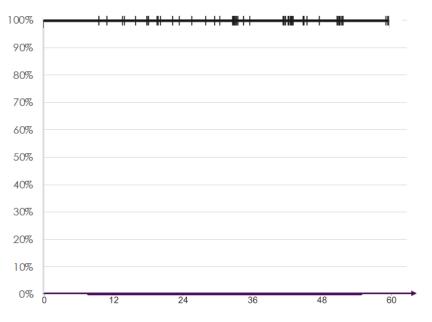
at a median follow-up of 43 months

100%

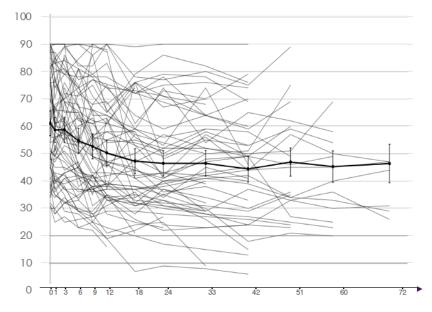
Freedom from distant failure

99%

Cancer specific survival 100%

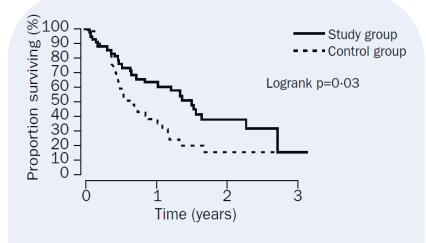

Kidney function loss
(1 patient underwent dialysis)

-14.6_{mls/min}

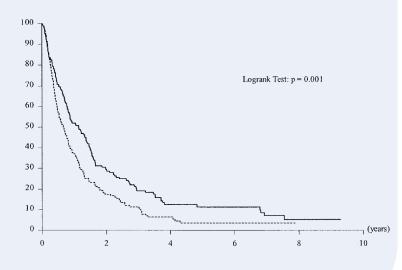

Courtesy Prof. Shankar Siva (Peter MacCallum Cancer Center, Victoria Australia)

ASTRO 2023 - IJROBP Suppl, 2023

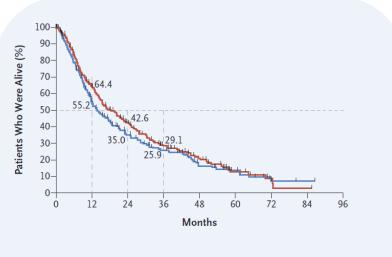
Cancer specific survival



eGFR, mLs/min (CDK-EPI)

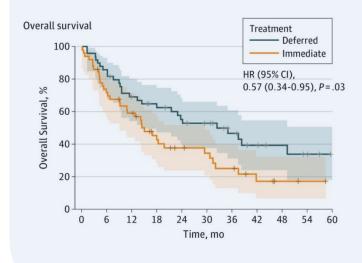

[3] Metastatic RCC

- Cytoreductive nephrectomy
- Systemic therapy
- SBRT as cytoreductive therapy
- SBRT for oligometastatic disease

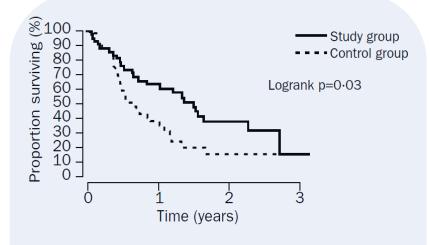


Mickisch GH, Lancet 2001

CN + INF

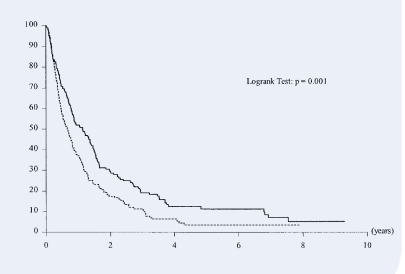


Flanigan RC, J Urol 2004

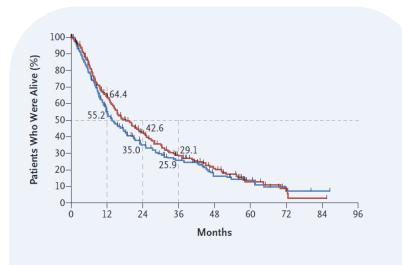


Mejean A, NEJM 2018 - CARMENA

CN + TKI

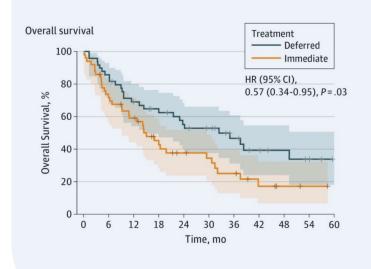


Bex A, JAMA Oncol 2019 - SURTIME



Mickisch GH, Lancet 2001

CN + INF



Flanigan RC, J Urol 2004

Mejean A, NEJM 2018 - CARMENA

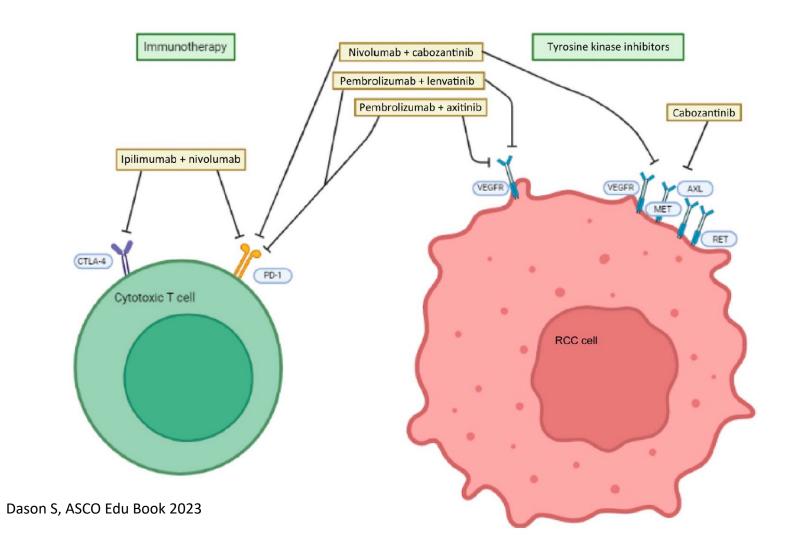
CN + TKI

Bex A, JAMA Oncol 2019 - SURTIME

Systemic therapy

CLEAR [2019]

lenvatinib + pembrolizumab / lenvatinib + everolimus


KEYNOTE-426 [2019] axitinib + pembrolizumab

CHECKMATE-9ER [2021] cabozantinib + nivolumab

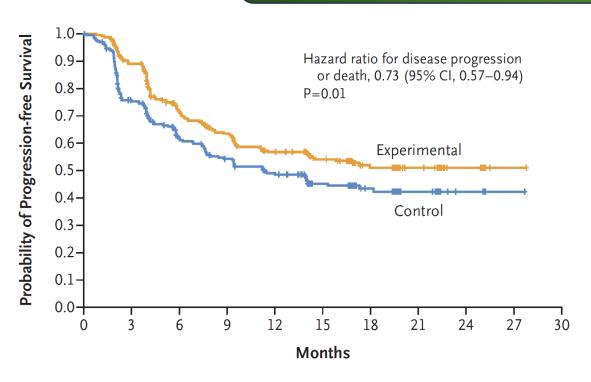
CHECKMATE-214 [2018] ipilimumab + nivolumab

Systemic therapy

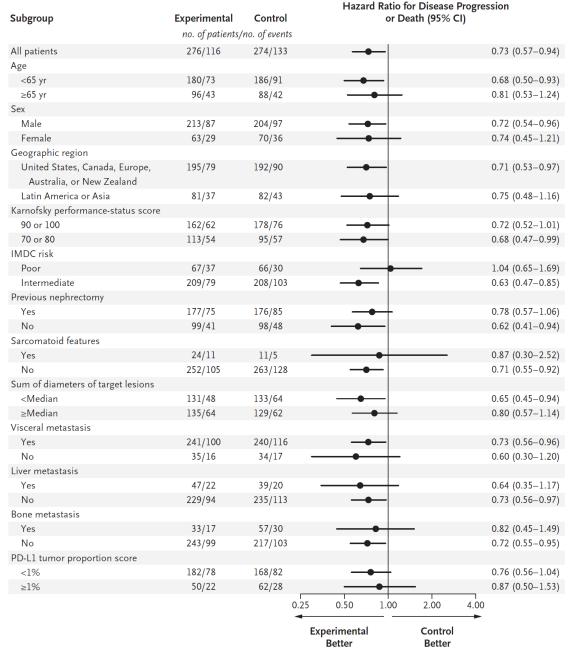
sunitinib

CLEAR [2019]

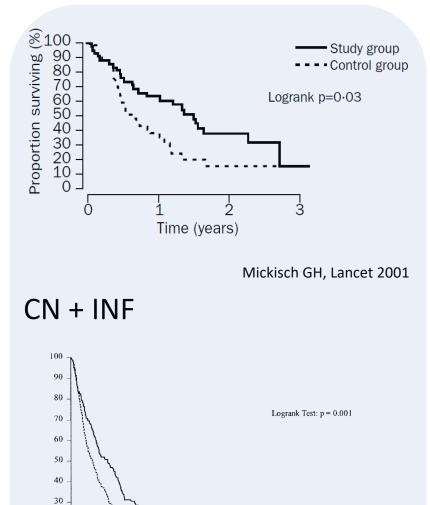
lenvatinib + pembrolizumab / lenvatinib + everolimus


KEYNOTE-426 [2019] axitinib + pembrolizumab

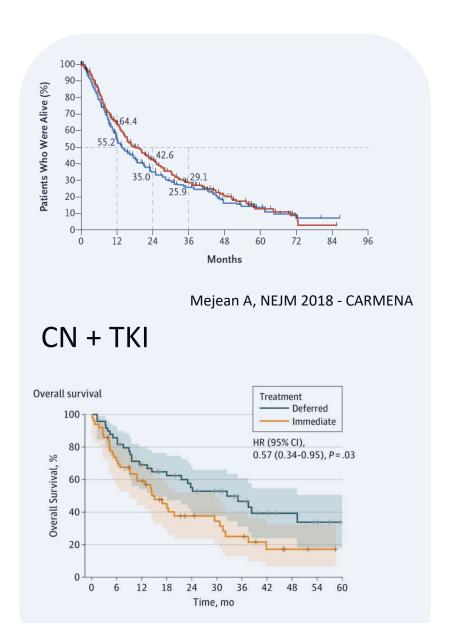
CHECKMATE-9ER [2021] cabozantinib + nivolumab


CHECKMATE-214 [2018] ipilimumab + nivolumab

Systemic therapy



Event	•	Experimental (N = 426)		Control (N = 424)		
	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4		
		number of pati	ents (percent)			
Any event	425 (100)	337 (79)	424 (100)	236 (56)		


Choueiri TK, et al. New Engl J Med 2023

20

Flanigan RC, J Urol 2004

(years)

Bex A, JAMA Oncol 2019 - SURTIME

7

CN + IO/TKI

7

JAVELIN Renal 101 [2019] axitinib + avelumab vs sunitinib

Synchronous M1 (412 pts)

- TKI + ICI (198 pts): prior CN, 126 (64%) pts
- TKI (214 pts): prior CN, 147 (68%) pts

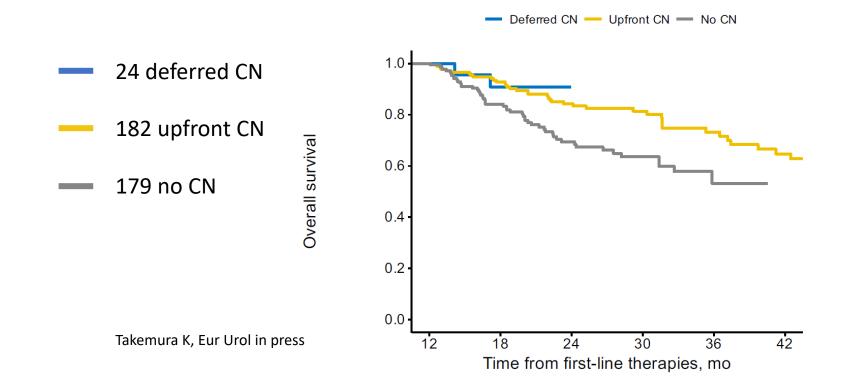
Prior CN vs no prior CN	HR (95%CI) PFS	HR (95%CI) OS
Avelumab + axitinib	0.79 (0.53-1.16)	0.59 (0.38-0.93)
Sunitinib	1.15 (0.77-1.70)	0.86 (0.55-1.34)

7

CN + IO/TKI

 $\dot{\mathbf{c}}$

IMDC real-world [2024] IO/IO doublet or IO/TKI

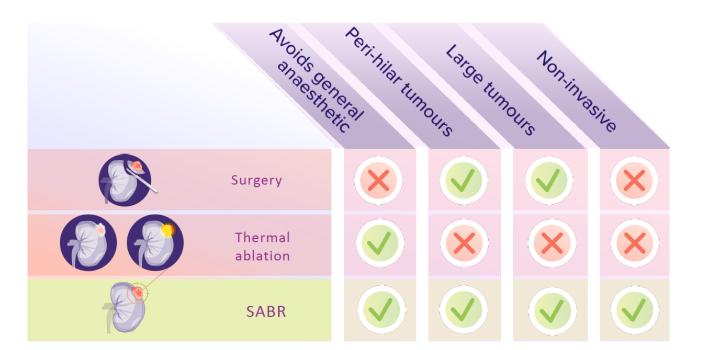

Treatment naive M1 (385 pts)

IO/IO doublet: 280 pts

IO/TKI: 105 pts

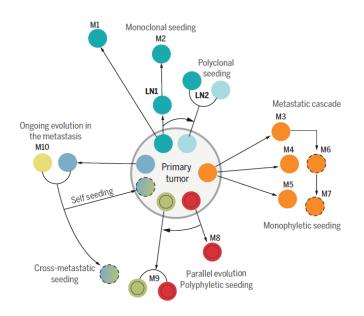
Table 1 - Baseline patient characteristics by CN status

Deferred CN $(N = 24)$	Upfront CN $(N = 182)$	No CN (N = 179)	p value
57 (50-65)	60 (52-67)	63 (57–70)	< 0.001
18/24 (75)	137/182 (75)	127/179 (71)	0.6
9/20 (45)	21/156 (14)	9/119 (7.6)	< 0.001
4/15 (27)	42/147 (29)	13/107 (12)	0.004
2/23 (8.7)	9/173 (5.2)	14/172 (8.1)	0.5
6/23 (26)	41/175 (23)	77/176 (44)	< 0.001
1/23 (4.3)	23/173 (13)	32/172 (19)	0.14
			< 0.001
0/19	13/168 (7.7)	3/153 (2.0)	
10/19 (53)	116/168 (69)	83/153 (54)	
9/19 (47)	39/168 (23)	67/153 (44)	
	(N = 24) 57 (50-65) 18/24 (75) 9/20 (45) 4/15 (27) 2/23 (8.7) 6/23 (26) 1/23 (4.3) 0/19 10/19 (53)	(N = 24) (N = 182) 57 (50-65) 60 (52-67) 18/24 (75) 137/182 (75) 9/20 (45) 21/156 (14) 4/15 (27) 42/147 (29) 2/23 (8.7) 9/173 (5.2) 6/23 (26) 41/175 (23) 1/23 (4.3) 23/173 (13) 0/19 13/168 (7.7) 10/19 (53) 116/168 (69)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$



Ongoing phase II - III trials

NCT04370509 ³⁶	Recruiting, estimated completion in 2025	ccRCC treated with pembrolizumab with or without axitinib for 9 weeks before nephrectomy or metastasectomy, M0, or mRCC	Primarily the impact of pembrolizumab on composition, phenotype, and function of tumor-infiltrating immune cells Secondarily efficacy, safety, and tolerability of preoperative pembrolizumab	Immunologic impact of pembrolizumab on RCC Efficacy and safety of neoadjuvant pembrolizumab with or without axitinib before CN or metastasectomy
NCT05319015 ³⁷	Recruiting, estimated completion in 2025	RCC with IVC tumor thrombus treated with lenvatinib + pembrolizumab before nephrectomy and IVC thrombectomy, M0, or mRCC	Primarily disease control rate, local and metastatic progression rate, postoperative complications	Efficacy and safety of neoadjuvant lenvatinib + pembrolizumab in patients with RCC with IVC thrombus, many of whom will have mRCC
NORDIC-SUN ³⁸	Recruiting, estimated completion in 2026	mRCC receiving doublet systemic therapy, randomly assigned to CN ν no CN if resectable and 3 or less IMDC risk factors are present after 3 months of ST; reassessed for random assignment after 6 months of ST if not eligible at 3 months	Primarily OS	Assess the role for CN in mRCC with contemporary ST regimens
CYTO-KIK ³⁹	Recruiting, estimated completion in 2027	Clear cell mRCC receives cabozantinib and nivolumab for 12 weeks before nephrectomy	Primarily complete response rate Secondarily median size reduction of primary tumor, PFS, response rate, OS, surgical outcomes	Oncologic and perioperative outcome data after neoadjuvant treatment with cabozantinib + nivolumab
PROBE ⁴⁰	Recruiting, estimated completion in 2033	mRCC receiving doublet systemic therapy, randomly assigned to nephrectomy ν no nephrectomy in the absence of progression at 12 weeks	Primarily OS	Assess the role for CN in mRCC with contemporary ST regimens


SBRT as cytoreductive therapy: rationale

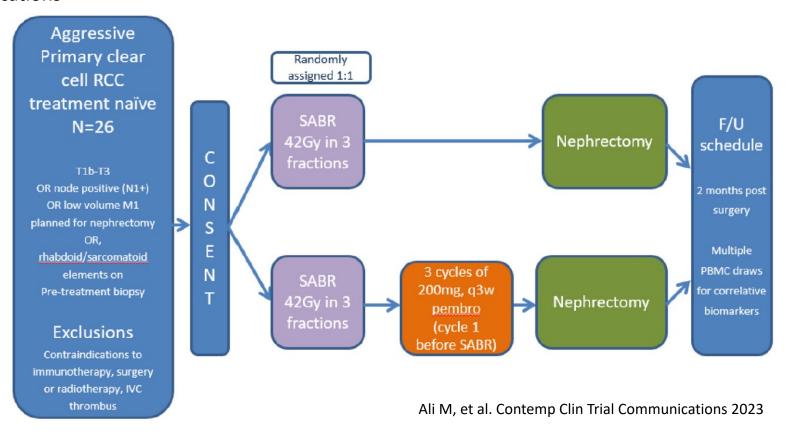
- 1. Early ablation may prevent further metastatic seeding, and result in long-term freedom from disease
- 2. Positive impact on metastatic cross-talk
- 3. Trigger immune-response

Turajlic S, Science 2016

SBRT as cytoreductive therapy

NCT05024318 - NeoAdjuvant Pembrolizumab and STEreotactic Radiotherapy Prior to Nephrectomy for RCC (NAPSTER)

SABR as neoadjuvant treatment + IO in advanced or mRCC


Primary endpoint:

- Major pathological response [MPR] (defined as < 10% viable cells)
- Tumoral microenvironment inflammation modifications

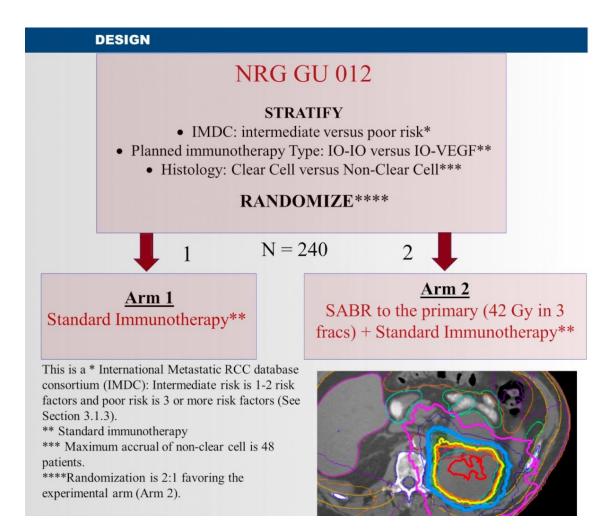
Secondary endpoints:

- Safety of IO+SBRT
- Association immune response MPR
- Changes in PD-L1 PD-L2 expression in tumor

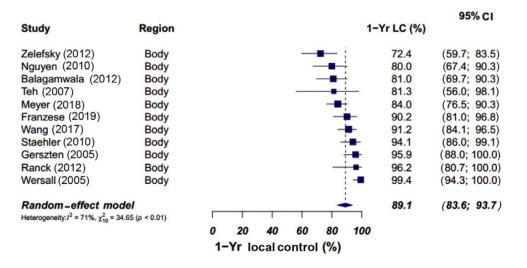
NAPSTER schema (n=26)

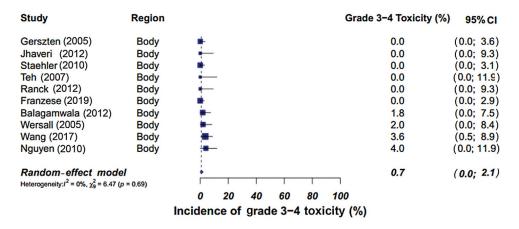
SBRT as cytoreductive therapy

NCT05327686 - Testing the Addition of SBRT With Immunother. for Patients With Unresectable or mRCC, SAMURAI Study


SABR as an alternative approach to treat the primary tumor in mRCC pts receiving IO, not eligible or declining surgery

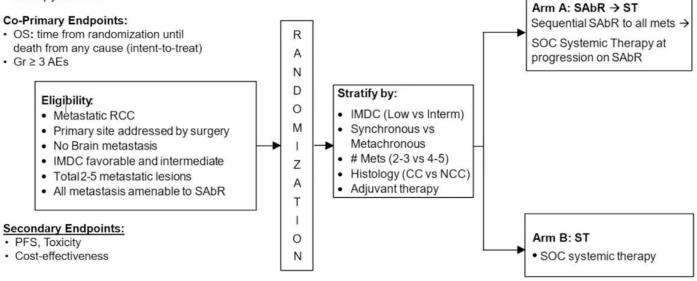
Primary endpoint:


nephrectomy and radiographic progression-free survival


Secondary endpoints:

- time to second-line therapy
- rate of cytoreductive nephrectomy
- Treatment-free survival
- overall survival

SBRT for oligometastatic disease



Zaorsky NG, Eur Urol Oncol 2019 - (SABR ORCA)

EA8211 SOAR (NCT 05863351) Randomized Phase III Non-inferiority Trial of SBRT vs Systemic Therapy for Oligometastatic RCC

Hypothesis:

 For Oligometastatic RCC, sequential disease control with SAbR will not be inferior to upfront systemic therapy for OS.

2023 - Localized RCC - SBRT

Population: > 70 yrs

Median:

- IROCK 73 yrs
- GETUG 76 yrs
- FASTRACK II 77 yrs

Tumor size: ≤ 10 cm

Median:

- IROCK 4 cm
- GETUG 4.2 cm
- FASTRACK II 4.6 cm

Treatment schedule: 26 Gy/1 fr or 42 Gy/3 frs

 $\emptyset \le 4 \text{ cm} - 1 \times 26 \text{ Gy}$ $\emptyset > 4 \text{ cm} - 3 \times 14 \text{ Gy}$

Decrease in eGFR: 14 ml/min

- IROCK 14.2 ml/min
- GETUG 10 ml/min
- FASTRACK II 14.6 ml/min

2023 - Metastatic RCC

Cytoreductive nephrectomy in the IO/TKI era

Phase III trials:

- NORDIC-SUN
- PROBE

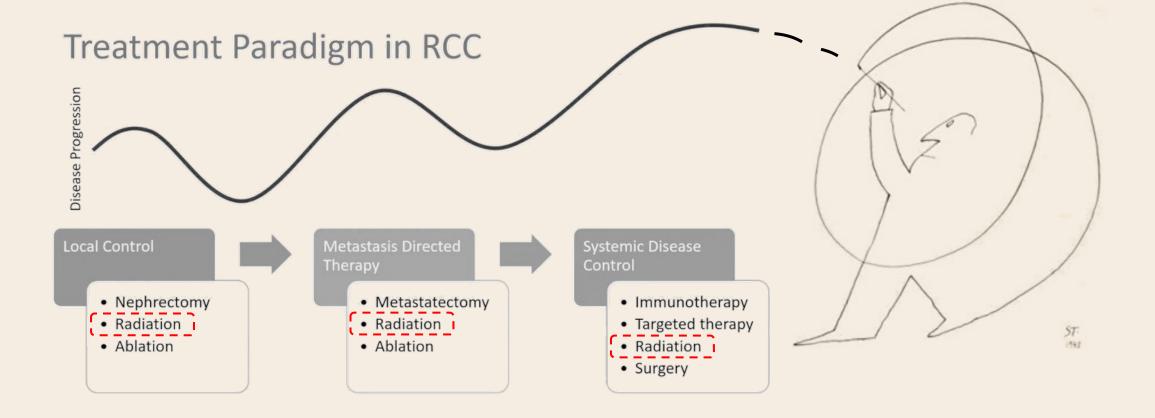
Systemic therapy

Phase III trial:

COSMIC

SBRT as cytoreductive therapy

Phase II trials:


- NAPSTER
- SAMURAI

SBRT for oligometastatic disease

Phase III trial:

SOAR

KIDNEY CANCER:

THIS MUST BE THE PLACE

To build more evidence FOR RADIOTHERAPY