Il quadro clinico: la malattia vista dall'ematologo

Cristina Papayannidis, MD, PhD

IRCCS Azienda Ospedaliero Universitaria di Bologna, Istituto di Ematologia «Seràgnoli»

NEOPLASIA A CELLULE DENDRITICHE PLASMACITOIDI BLASTICHE:

NUOVE OPZIONI DIAGNOSTICHE ED ALGORITMO TERAPEUTICO

Disclosures of Cristina Papayannidis

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Abbvie						x	х
Astellas						х	х
Servier							х
Menarini							х
BMS							х
Pfizer						Х	х
Amgen							х
Janssen						Х	
GSK						x	
Blueprint						х	
Incyte						x	х
Paladin Labs Inc							х
Jazz pharmaceuticals						x	
Novartis						х	
Delbert Laboratoires						x	

NEOPLASIA A CELLULE DENDRITICHE PLASMACITOIDI BLASTICHE: NUOVE OPZIONI DIAGNOSTICHE ED ALGORITMO TERAPEUTICO

Epidemiology and background

Guru M et al, Leuk Res 2018; Pagano L et al, Br J Haematol 2016; Pagano L et al, Haematologica 2013; Taylor J et al, Blood 2013; Julia F et al, Br J Dermatol 2013

NEOPLASIA A CELLULE DENDRITICHE PLASMACITOIDI BLASTICHE: NUOVE OPZIONI DIAGNOSTICHE ED ALGORITMO TERAPEUTICO

NEOPLASIA A CELLULE DENDRITICHE PLASMACITOIDI BLASTICHE: NUOVE OPZIONI DIAGNOSTICHE ED ALGORITMO TERAPEUTICO

Second scenario

Speaker's opinion

Often mistaken for other, more familiar hematologic malignancies (AML, leukemia cutis, NHL, ALL, CMML, MDS, cutaneous lymphoma), leading to **frequent misdiagnosis or underdiagnosis of BPDCN**

NEOPLASIA A CELLULE DENDRITICHE PLASMACITOIDI BLASTICHE: NUOVE OPZIONI DIAGNOSTICHE ED ALGORITMO TERAPEUTICO

Variability of presentation of BPDCN

- A significant percentage (40%-60%) of patients initially present with involvement of the bone marrow and lymph nodes.
- Other extracutaneous sites may include: spleen, liver, tonsils and **CNS**
- In few cases (11%) BPDCN patients may present with bone marrow disease without skin involvement

Characteristic	Data
Males/females	294 (74)/104 (26)
ECOG score 0-1	207 (65)
Age, median (range), y	67 (18-96)
Localization	
Skin	353 (89)
BM	243 (62)
Peripheral blood	36 (15)
Lymph nodes	152 (39)
Forms	
Cutaneous isolated	121 (30)
Disseminated with cutaneous localization	200 (50)
Disseminated with cutaneous and extranodal localization	26 (7)
Disseminated noncutaneous	43 (11)
Disseminated noncutaneous with extranodal localization	8 (2)

Laribi K et al, Blood Adv 2020

Napoli, 22 Febbraio 2024 - Grand Hotel Santa Lucia

N=398

The role of the hematologist: from diagnosis to follow-up

Speaker's opinion

Diagnostic work-up

NEOPLASIA A CELLULE DENDRITICHE PLASMACITOIDI BLASTICHE: NUOVE OPZIONI DIAGNOSTICHE ED ALGORITMO TERAPEUTICO

Morphology

Typical morphology with large pseudopodia, microvacuoles, an eccentrically located nucleus, heterogeneous coloration of the cytoplasm

Garnache-Ottou F et al, Blood Adv 2019

Lymphoid-like morphology

Monoblast-like morphology

Presence of granules in the cytoplasm

Napoli, 22 Febbraio 2024 - Grand Hotel Santa Lucia

Cytogenetics

- Cytogenetics abnormalities found in about 60% of cases (35% with ≥3 abnormalities.
- Neither the number of abnormalities nor any particular abnormality impacted on the prognosis or clinical presentation (but it's controversial)
- Deletions were predominant
- Chromosomal gains were less frequent

Garnache-Ottou F et al, Blood Adv 2019

Molecular alterations

Authors, Reference	Technique	DNA Mutated Genes					
Jardin et al, ⁷ 2011	aCGH/SNP	T <u>ET2</u> T P53					
Alayed et al, ⁸ 2013	PCR assay/TS	TET2					
Taylor et al, ⁹ 2013	TS	TET2, P53, ASXL1, IDH2, KRAS, ABL1, ARID1A, GNA13, U2AF1, SRSF2, IRF8 <u>, ZR</u> SR2					
Menezes et al, ¹² 2014	WES/TS	DNMT3A, IDH1, IDH2, TET1, TE2, ASXL1, ATRX, EZH2, KRAS, NRAS, ETV6, HOXB9, IKZF1, IKZF2, IKZF3, RUNX1, ZEB2, SF3B1, SRSF2, U2AF1, ZRSR2, NPM1, FLT3, FLT3-ID, JAK2, KIT, TP53, CBLB, CBLC, UBE2G2					
Stenzinger et al, ¹⁴ 2014	TS	NRAS, ATM, MET, KRAS, IDH2, KIT, APC, RB1, VHL,BRAF,MLH1,TP53, RET					
Emadali et al, ¹⁶ 2016	TS	ASXL1, EZH2					
Togami et al, ¹¹ 2016	WES/TS	ZRSR2, SRSF2, SF3B1, U2AF1, SF3A2, SF3B1, TET2, ASXL1, TP53, GNB1, NRAS, IDH2, ETV6, DNMT3A, RUNX1, CRIPAK, NEFH, HNF1A, PAX3, SSC5D					
Sapienza et al, ¹⁷ 2019	WES/TS	ARID1A, CHD8, SMARCA5, SMARCAD1, SMARCD1, TET2, IDH2, ASH1L, ASXL1, ASXL3, MLL2, MLL3, MLL4, SETMAR, SUZ12, KDM4D, PHF2, EP300, EP400, MYST3, MYST4, PHC1, PHC2, EYA2, SRCAP, NRAS, KRAS, BRCA1, ATM, ATR, RAD52, ZRSR2, RET, MAPK1, BRAF, RUNX2, SYK, WNT10, WNT7B, BCL9L, WNT3.					
Ladikou et al, ²³ 2018	TS	TET2, HOA					
Szczepaniak et al, ²⁴ 2019	TS	ASXL1, TET2 NF1					

• **TET2** are the **most common** molecular mutations, followed by mutations in *ASXL1*, *RAS*, splicing factors (*ZRSR2*) and *TP53*

 The type of TET2 mutation correlates with
 OS (worse outcome for nonsense and frame shift mutations vs missense)

• **CNS** positivity correlates with a higher Incidence of **TET2** mutations

Sapienza M.R., Pileri S.A. Hematol Oncol Clin N Am, 2020; Pemmaraju N et al, Clin Adv in Hem and Oncology 2023

Myeloid-like abnormalities

Lymphoid-like abnormalities

Diagnostic work-up

NEOPLASIA A CELLULE DENDRITICHE PLASMACITOIDI BLASTICHE: NUOVE OPZIONI DIAGNOSTICHE ED ALGORITMO TERAPEUTICO

CNS involvement in BPDCN

Table 2

Incidence of CNS Involvement in BPDCN Patients

		CNS Involvement						
References	BPDCN Cases	At Diagnosis	At Relapse	Overall				
Pagano et al41	43	4 (9%)	3 (7%)	7 (16%)				
Julia et al52	90	nr	nr	9 (10%)				
Martín-Martín et al53	13	6 (46%)	3 (23%)	9 (69%)				
Yun et al ²⁷	49	0	0	0				
Cernan et al54	14	1	1	1 (7%)				
Laribi et al22	398	NR	NR	10 (2.5%)				
Ozdemir et al55	9	2	0	2 (22%)				
Pemmaraju et al44	103	13 (13%)	10 (10%)	23 (22%)				
Valentini et al11	68	4	2	6 (12.5%)				

- Medicated lumbar punctures should be performed during the induction phase (at least 6-8) by combining methotrexate, cytarabine and steroids
- A diagnostic and medicated lumbar puncture should be mandatory performed in patients with leukemic presentation at diagnosis and in all patients at relapse

Prognostic impact of CNS involvement and administration of IT therapy at diagnosis

BPDCN, blastic plasmacytoid dendritic-cell neoplasm; CNS, central nervous system; IT, intrathecal. Reproduced from: Martín-Martín L, et al. *Oncotarget*. 2016;7(9):10174-81.

- CNS+ patients have:
- lower median baseline Hb levels
- higher frequency of TET2 mutations or variants
 bone marrow involvement in 96% of cases

Pemmaraju N et al, Blood 2021

Diagnostic work-up

NEOPLASIA A CELLULE DENDRITICHE PLASMACITOIDI BLASTICHE: NUOVE OPZIONI DIAGNOSTICHE ED ALGORITMO TERAPEUTICO

The role of the hematologist: from diagnosis to follow-up

Speaker's opinion

1. Can we stratify patients?

BPDCN patients show a dismal prognosis, with OS of <1 year in most patients treated by conventional therapies

NEOPLASIA A CELLULE DENDRITICHE PLASMACITOIDI BLASTICHE: NUOVE OPZIONI DIAGNOSTICHE ED ALGORITMO TERAPEUTICO

Disseminated vs «isolated» skin disease

78 pts. French national registry, 2000- 2013:

- cutaneous lesions preceded BM / visceral involvement in 48% of pts. (by a mean of 2.5 months)
- BM dysplasia ≥1 lineage in 31%
- BM blasts in 96%, with mean %-infiltration of 64%
- skin only' in 4%
- CNS involvement 4.5%

Garnache-Ottou et al, Blood Adv. 2019 Dec 23;3(24):4238-4251

59 pts., retrospective, 3 US centers, 2000-2017 Reprinted from *Blood* (2019) 134 (8), Taylor J et al, Multicenter analysis of outcomes in blastic plasmacytoid dendritic cell neoplasm offers a pretargeted therapy benchmark, Pages No. 678–687, Copyright (2019), with permission from Elsevier.

- Amitay-Laish et al, JAAD Case Rep 2017,3:310-15 "localized skin-limited BPDCN"
- Pagano L et al., Haematologica. 2013;98(2):239-246 and Zhang et al, Crit Rev Oncol Hematol. 2020 May;149:102928 "leukemic without skin"

2. Is the patient fit for alloHCT?

The role of the hematologist: from diagnosis to follow-up

Speaker's opinion

Historical data showed a poor outcome...

Group	n	Response criteria used	CR rate	Early death rates		¹⁰⁰	١					
Poret, 2015	86	Not reported	43%	Not reported	ival	80-	Ľ					
Martin- Martin, 2015	46	Not reported	55%	High early death rate (26%)	nt surv	60 -	۴.,	٢				
Pagano, 2013	43	AML	41%	High death rate (17%) during induction therapy	Percel	40 - 20 -		L _L	. .,			
Dalle, 2010	47	Not reported	47%	Not reported		٥Ļ		-				
For publishe 56% in first-	ed pri line E	imary series (ni BPDCN	≥ 10 patie	nts), the CR rate is 43-		0		10	S (month	is)	,	40

AML, acute myeloid leukemia; CR, complete response; OS, overall survival. Pagano L et al. Haematologica 2013;98:239-246.

Napoli, 22 Febbraio 2024 - Grand Hotel Santa Lucia

40

...but new approaches are available today

Adimora I et al, Cancer 2022

Take home messages

IMPROVE EXPERTISE

- Creation of multidisciplinary teams with expertise in the field
- Sharing knowledges

IMPROVE DIAGNOSIS

- Quickly

 identification of
 BPDCN patients,
 reducing delays to
 improve outcome
- Optimization of diagnostic
 pathway
- Identification of prognostic factors to stratify patients

TREAT PATIENTS

- Allow more and more patients to receive the most appropriate treatment
- Identification of mechanisms of resistance to new drugs
- SCT unit+hematoloy unit connection

Speaker's opinion

Thank you!

cristina.papayannidis@unibo.it

Prof M. Cavo

Antonio Curti Stefania Paolini Chiara Sartor Jacopo Nanni Sarah Parisi Letizia Zannoni Gianluca Cristiano Federico Zingarelli Andrea Davide Romagnoli Federica Ardizzoia Caterina Azzimondi

Francesca Bonifazi Mario Arpinati Enrico Maffini

Elena Sabattini Claudio Agostinelli Carlo Sagramoso Alessandro Pileri

Valentina Robustelli Carolina Terragna Simona Soverini Manuela Mancini Lorenza Bandini Nicoletta Testoni Carmen Baldazzi Gabriella Chirumbolo **Dorian Forte** Martina Barone Francesco Ingletto Ottavia lotti Manuel Cella Antonella Pagano

Emanuela Ottaviani

NEOPLASIA A CELLULE DENDRITICHE PLASMACITOIDI BLASTICHE: NUOVE OPZIONI DIAGNOSTICHE ED ALGORITMO TERAPEUTICO