GIFIL

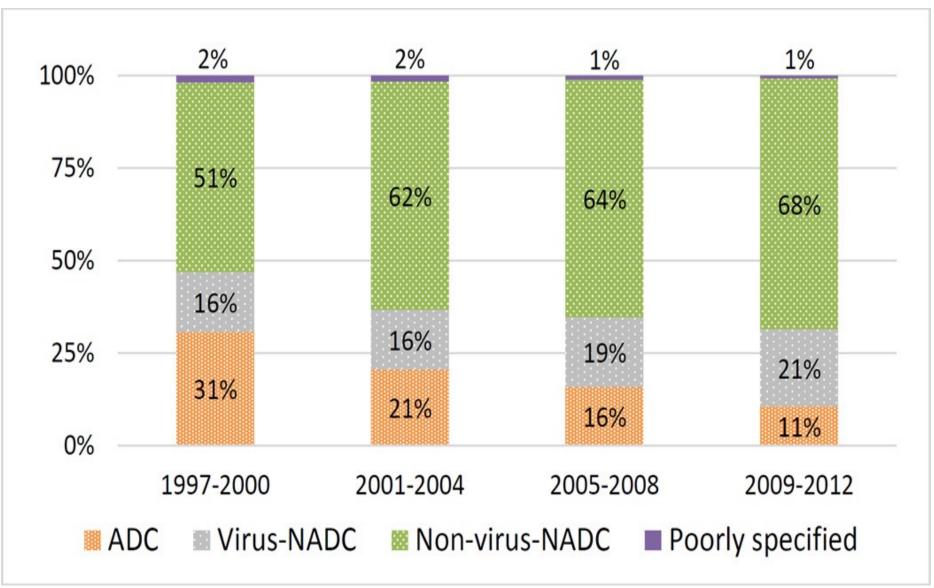
GRUPPO LINFOMI IN PAZIENTI CON IMMUNODEFICIT

Milano, Starhotels Anderson 24 maggio 2024

Innovative Treatment and Preventive Strategies in Persons Living with HIV and Lymphomas

Emanuela Vaccher

Medical Oncology and Immunorelated Tumours Centro di Riferimento Oncologico (CRO) IRCCS, AVIANO Dichiaro che negli ultimi due anni NON ho avuto rapporti, anche di finanziamento, con soggetti portatori di interessi commerciali in campo sanitario.


HIV-related Lymphoma

Background

- The epidemiology of HIVdisease has evolved in the cART era
- The incidence and morbidity of AIDS-defining cancers has decreased, whereas morbidity and mortality of NADCs (including Hodgkin Lymphoma) has increased
- However, NHLs remain the main cause of death in Persons Living with HIV.
- PLWH survivors after lymphoma diagnosis are at increased risk for subsequent primary cancers, suggesting the need for long-term surveillance programs.

Proportion of Cancer Cases among HIV-infected Patients by Cancer Group in each Calendar Period (VA System 1997-2012)

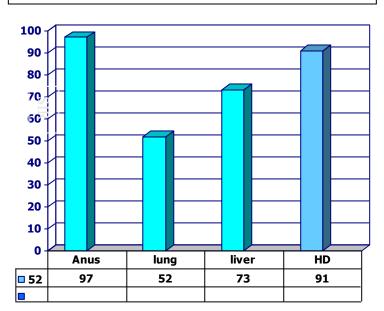
Park LS et al AIDS 2016

Standardized Incidence Ratio (SIR) of AIDS-defining cancers in 99.309 pts with HIV/AIDS from French registry-linkage study in different cART periods (mean Follow-up 6.9 yrs)

Cancer	Pre-cART (1992-96) SIR (95%CI	(1992-96) (1997-2000)		Late cART (2005-2009) SIR (95%CI	
KS All pts	787.0 (754-821)	388.1 (353 -425.)	408.6 (370-451)	304.5 (274-338)	
MSM	1399.9 (1334 -1467)	534.5 (476-599)	531.6 (468-602)	414.1 (365-474)	
NHL	116.7 (110-124)	33.6 (31-37)	15.4 (14-17)	9.1 (8-10)	
Cervical cancer	12.2 (9-17)	9.3 (7-12)	5.4 (4-8)	5.4 (4-7)	

Message. The risk for all AIDS-cancers continued to fall, including invasive cervical cancer, but it remained higher than in the general population in late cART era

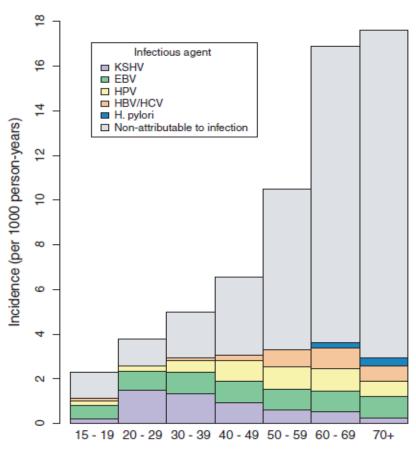
Meta-analysis of Standardized Incidence Ratio (SIR) for non-AIDS-defining Cancers among People Living with HIV(PLWH) (1992-2022)


Type of Cancer	SIR (95%CI)		Number of studies	Number of effect sizes	Number of Hete observed cancers /2(5	rogenity %)
A. Infection related cancers						
Anus and anal canal	28.33 (20.30-38.96)	H	27	82		
/ulva and vagina	14.13 (7.58-26.36)	⊢ ■	14	26	Virus-related	SIR
lodgkin lymphoma	10.93 (9.05-13.20)	-	32	81		
ye and adnexa	8.97 (2.95-27.28)	──	9	20	Cancer	(95%CI)
enis	7.60 (3.68-15.70)	⊢	11	17		
iver	5.54 (4.39-7.00)	-	34	69	Anus	28 (20.3-38.9)
kin nonmelanoma	4.41 (2.80-6.92)	H	22	36	Allus	20 (20.3 30.3)
asal cavity, middle ear, and accessory sinuses	3.29 (1.55-6.98)		7	10		
ip, oral cavity and pharynx	3.15 (2.25-4.41)	H III	26	112		
Lip	2.85 (1.47-5.54)	⊢	6	16	Vulva-Vagina	14 (7.6-26.4)
Salivary glands	3.32 (0.28-39.12)	-	4	5		,
Nasopharynx	3.06 (1.88-4.97)	H	13	13		
Tongue	2.44 (1.84-3.22)	HIIIH	8	12		- - - - - - - - - -
Tonsil	2.32 (1.74-3.09)	H	3	3	Penis	7.6 (3.4-15.7)
Oropharynx	2.23 (0.25-20.18)		3	5		
Iterus	2.61 (1.05-6.52)	——	12	18		
ead and neck	2.06 (1.32-3.22)	⊢=	12	23	Hadakin I	100(00127)
arynx	2.21 (1.50-3.24)	H=H	15	29	Hodgkin L.	10.8 (8.9-13.7)
sophagus	2.16 (1.35-3.46)	I- ■ -I	17	27		
tomach	1.86 (1.36-2.54)	HINH	24	52		
. Non-infection related cancers					Eye and Adnexa	8.9 (2.9-27.3)
lesothelial and soft tissue	3.50 (2.10-5.81)	I	14	36	Lye and Adnesa	6.9 (2.9-27.5)
lultiple myeloma	3.41 (2.44-4.77)	HIRH	18	42		
iliary tract	3.19 (0.78-13.02)	-	5	7		
one and joints	2.94 (1.53-5.64)	-	12	18	Liver	F F (4 4 7 2)
rachea, bronchus, and lung	2.48 (1.94-3.16)	-	38	99	Liver	5.5 (4.4-7.2)
eukaemia	2.81 (2.18-3.62)	Hamilton I and the second	22	77		
rain and central nervous system	2.80 (1.80-4.37)	HIIIH	23	50		
mall intestine	2.53 (1.15-5.54)	-	8	12	Skin	4.4 (2.8-6.9)
vary	2.40 (1.53-3.77)	H = H	15	24		4.4 (2.0 0.3)
hymus, heart, mediastinum, and pleura	2.17 (0.90-5.21)		7	9	nonmelanoma	
estis	2.10 (1.43-3.11)	I- ■ -I	18	47		
ancreas	1.99 (1.32-3.01)	H-100-H	19	35	Lung	2.48
idney and renal pelvis	1.47 (0.98-2.21)	I	20	40	Lung	2.40
allbladder	1.39 (1.01-1.90)		3	3		(1.94-3.16)
lelanoma of skin	1.19 (0.89-1.61)	Hamel .	25	55		(2.3 1 3.23)
ladder	1.18 (0.82-1.68)	H-100-1	25	48	0	2 22 (0 25 20 4)
colon and rectum	1.09 (0.79-1.51)	1-00-1	25	75	Oropharynx	2.23 (0.25-20.1)
hyroid	0.98 (0.60-1.59)	H	20	33	Larvny	2.21 (1.50-3.2)
reast	0.91 (0.68-1.20)	H	29	56	Larynx	2.21 (1.30-3.2)
rostate	0.81 (0.63-1.05)		28	61		

Yuan T et al Thelancet.com 2022 0.1

Excess Cancers Among 859.522 people living with HIV in the United States (2010)

NADCs



NADCs	DEFICIT %	(95% CI)
Breast	- 42	(-42 to -14)
Prostate	- 41	(-53 to -26)

Robbins H. Br J Nat Cancer Inst 2015

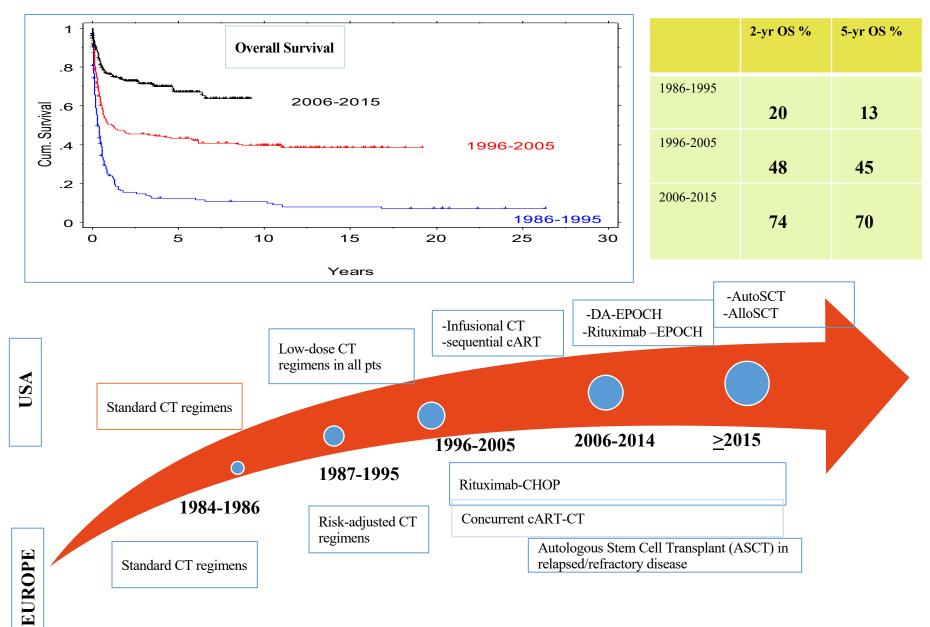
Cancers attributable and non-attributable to infections among adults with HIV in the United States (2008)

Age group (years)

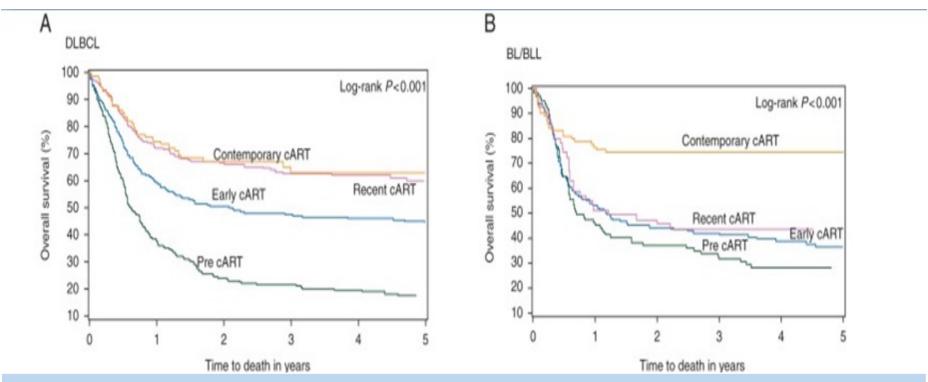
The incidence rate of cancer non-attributable to infection, including breast and prostate cancers steeply increased with age,.

de Martel C et al AIDS 2015

Deaths Attributable to Cancer in the US HIV Population (2001-2015)

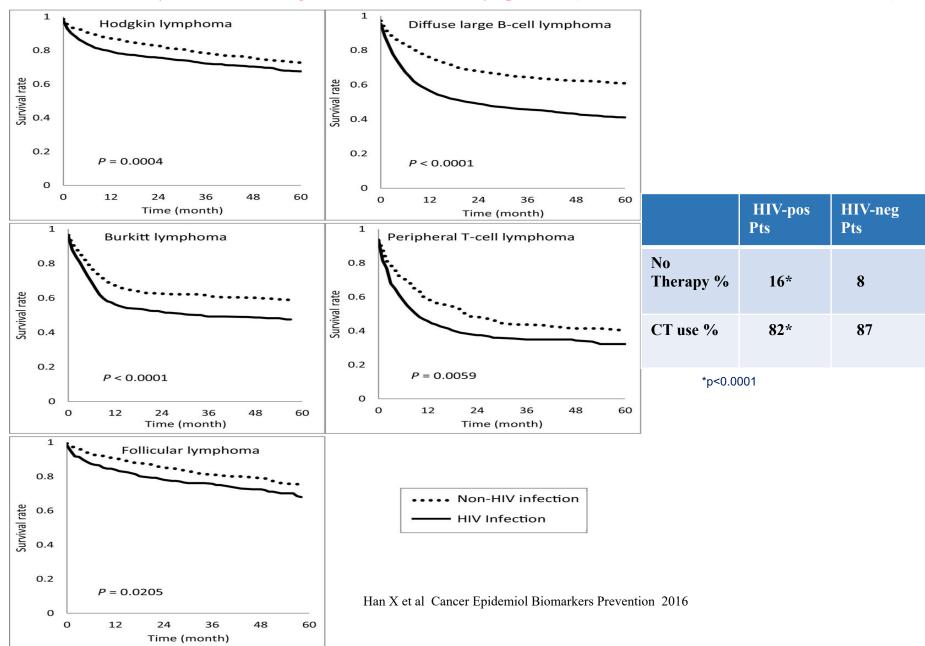

Horner MJ et al CID 2021

PAF (%)	Mortality Rate per 100.000 py	Cancers	PAF (%) (95% CI)
15- ଥି	300- 300- 300- 300-	All cancers	14.5 (13.6-15.4)
PAF (%)		AIDS-Defining Cancers	5 (4.4-5.6)
5-	Mortality Per	Non-AIDS Def Cancers	9.2 (8.5-9.9)
2001–2005 2006–2010 2011–2015 Calendar Year	2001–2005 2006–2010 2011–2015 Calendar Year	Cancer Site	
C. ²⁰ 7	D.	NHL	3.5 (3.0-3.9)
PAF (%)	ity rate per 100 000 person-years 00 00 00 00 00 00 00 00 00 00 00 00 00	Lung	2.4 (2.0-2.7)
5-	ortality rate person 000- 000-	Cervix	2.0 (1.0-4.0)
20-39 40-59 60+ Age (years)	20–39 40–59 60+ Age (years)	Kaposi Sarcoma	1.3 (8.5-9.9)
AIDS-defining cancer non-AIDS-defining cancer	AIDS-defining cancer non-AIDS-defining cancer	Liver	1,1 (0.9-1.6)


Population-Attributable Fractions (PAF):proportional contributions of cancer to mortality

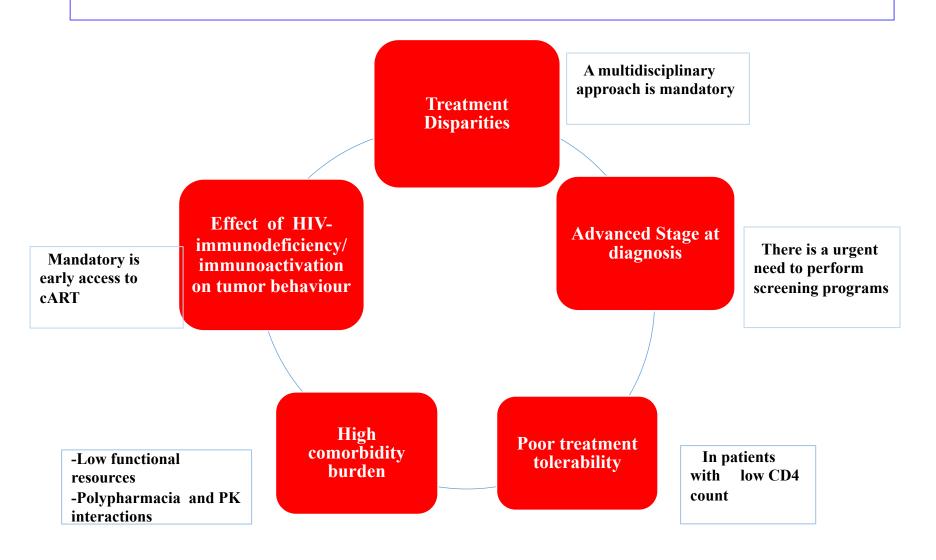
Although cancer mortality is declined over time, it remains high and represents a growing fraction of deaths in the US HIV population. NHL is a leading cause of cancer-attributable deaths

Change in Treatment Paradigm and Outcome of HIV-Lymphoma



Overall Survival of HIV-NHL by Histological subtypes in different eras: pre-cART (1986-1995),early (1996-2000), recent (2001-2004),contemporary (2005-2010)

Pre/early cART era	Early cART era	Contemporary cART
CD4 count< 100 /μL	CD4 count< 100/μL	aa-IPI score
Prior AIDS diagnosis	aa-IPI score	Failure to achieve CR
Performance Status	BL subtype	
	Failure to achieve CR	


Overall Survival by HIV status among 179.520 Patients with Lymphoma - (USA-National Cancer Database 2004-2011)

Outcomes after Cancer Diagnosis for HIV-Infected Patients compared to the General Population (1996-2010) Coghill A et al J clin Oncol 2021

Cancer	Overal Death HR (95%CI	Cancer Specific Death HR (95%CI
Lung	1.85 (1.73-1.97)	1.28 (1.17-1.39)
Prostate	2.59 (2.14-3.14)	1.57 (1.02-2.41)
Breast	4.62 (3.92-5.45)	2.61 (2.06-3.31)
Colorectal	2.26 (1.95-2.61)	1.49 (1.21-1.84)
Liver	1.50 (1.32-1.70)	1.17 (0.99-1.39)
Anal	1.86 (1.60-2.16)	0.97 (0.75-1.25)
Head Neck	2.46 (2.09-2.88)	1.31 (0.94-1.83)
Hodgkin L.	4.19 (3.65 -491)	0.86 (0.61.21)1
DLBCL	3.5 5 (3.31-3.81)	0.88 (0.76-1.01)

Major Causes of Poor Cancer Outcomes in HIV Population

Treatment Guidelines for HIV-related Cancers

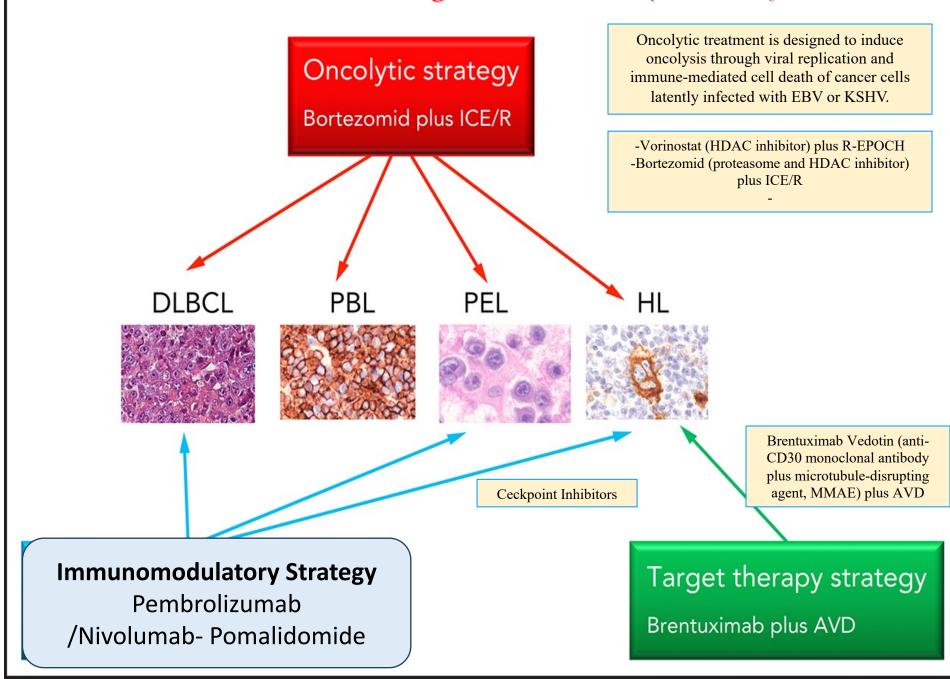
Treatment Strategies

The treatment strategy for cancers in patients receiving effective cART should not be influenced by HIV status

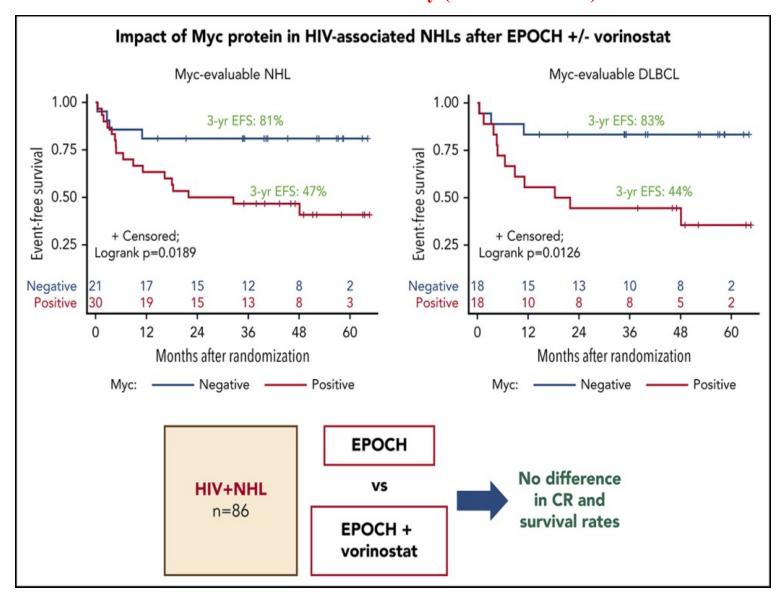
All PLWH with cancer must receive cART during antineoplastic treatment

PLWH with cancer should not be excluded from cancer clinical trials of the general population.

HIV-Specific Issues


Potential pharmacokinetic interactions between cART and anticancer or supportive care drugs

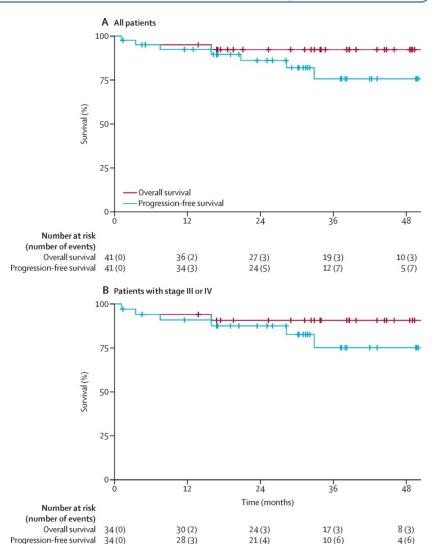
The need to maximize supportive care, particularly prophylaxis against opportunistic infections and support with hematopoietic growth factor, in high risk patients


The management of comorbity in aging PLWH

(Alert: higher comorbidity rate in PLWH compared to general population

New Treatment Strategies for HIV-NHL (2012-2019)

Impact of Myc in HIV-associated Highly Aggressive NHL* treated with EPOCH +/- Vorinostat Phase 2 Randomized Study (AMC-075 Trial)



^{*}non-GCB DLCL,PBL, PEL subtype ,high aa-IPI score

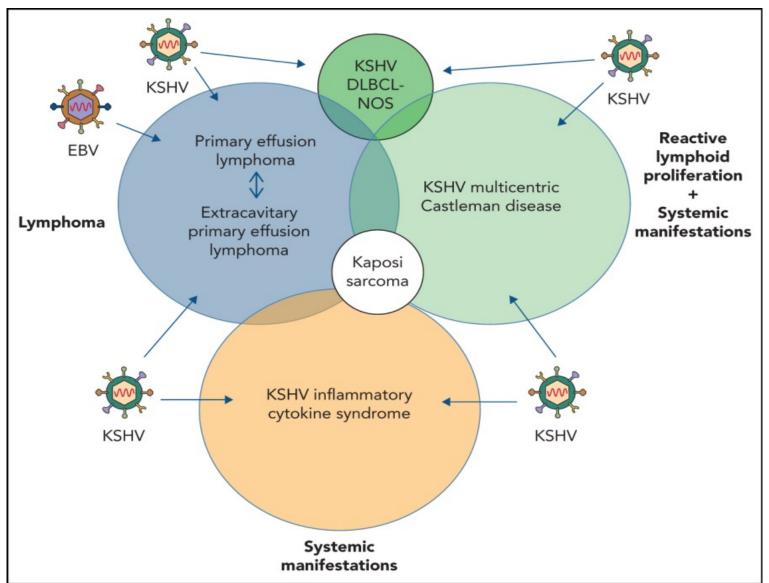
Brentuximab Vedotin with AVD for Stage II-IV HIV-related Hodgkin Lymphoma: Phase 2 Results from a Multicenter Phase 1/2 Trial (AMC-085 Trial)

Previously untreated patients with HIV-cHL on cART: unfavourable II stage (17%), III-IV (83%),histology: NS 41%, MC 37%, LD 2%,NOS 20%; IPI score ≥3 73%; median CD4 count 258/μcL- median followup: 29 mos

	Results n° (%)
Total PTS n° Pts with complete therapy	41 37 (90)
CR Rate	37 (100)
Major grade 3-4 Toxicity: - Neutropenia -Febrile Neutropenia - peripheral sensory neuropathy -Neutropenia	18/41 (44) 5/41 (12) 4/41 (10)
Toxic Death	1/41 (2)
2-yr PFS % (95% CI) - Entire cohort Pts - PTS with III-IV stage cHL	87 (71-94) 87 (71-94)
2-yr OS % (95% CI) Entire cohort Pts - PTS with III-IV stage cHL	92 (78-97) 90 (74-97)

Innovative Treatment Strategies for HIV-NHL Focus on Gammaherpesvirus-related Lymphpomas (2020-2024)

Targeted Therapy


Bortezomib+ Chemotherapy
.-CDK4/CDK6 Inhibitors
-Daratumumab
Ibrutinib +/-Chemotherapy
Pacritinib

Immunomodulatory Therapy

-Lenalidomide-Pomalidomide +/- Rituximab and Chemotherapy--Pomalidomide+Nivolumab

Cellular Therapy

-CART-T
-EBV-Specific Adoptive Immunotherapy*
-KS HV-Specific Adoptive Immunotherapy*
(* with epigenetic modulation)

The clinical and molecular phenotypes of the KSHV disease depend on the cellular targets as well as host environment, including HIV infection, degree of host immunodeficiency/immune dysregulation

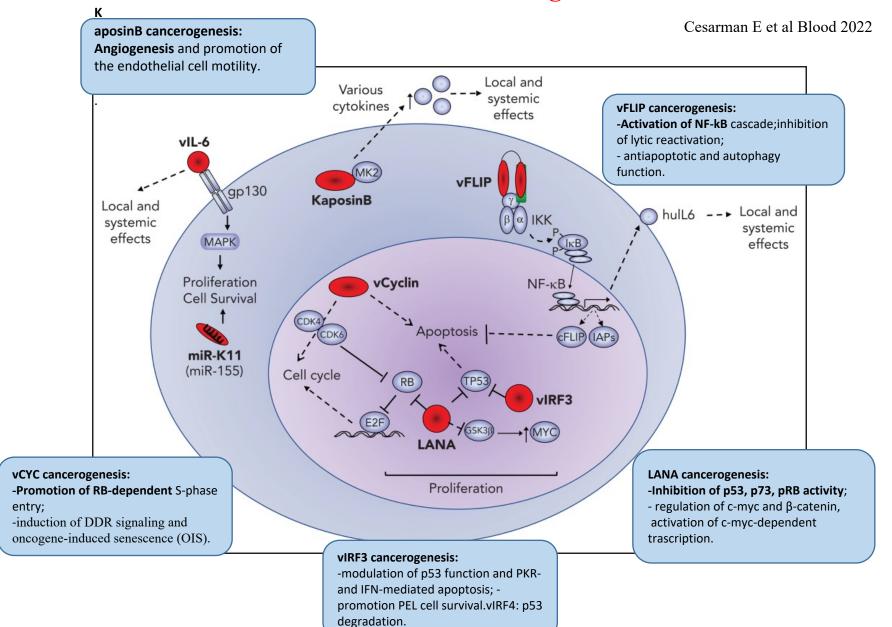
Major Clinico-Pathological Features of KSHV and/or EBV-associated Lymphoproliferative Disorders

	Classic PEL	EC-PEL	HHV8+ DLBCL-NOS	MCD	PBL
Clinical Evolution	Aggressive	Aggressive	Aggressive	Aggressive	Agressive
Site Involvement	Serous cavities	Extra cavities	Nodal/extranodal	Nodal	Extranodal Nodal
HIV Infection %	>90	>90	>90	>95%	>90%
HHV8 (LANA) %	100	100	100	100	-
EBV (EBER) %	90 (latency I)	90 (Latency I)	-	-	70-80 (Latency I)
Phenotype: CD20 CD 38 -CD138 -MUM1 -CD30 -EBER	- + + + + +	- + + + +	- - - + -	microenvironment + +	- + + + + +/- +/-
Ig	IgG	IgG	IgM	IgM	K, lambda
IgVH status	Mutated	Mutated	Non mutated	Non mutated	Mutated CRO 2024

Cesarman E et al Blood 2022; Carbone A et al Blood Advances 2024

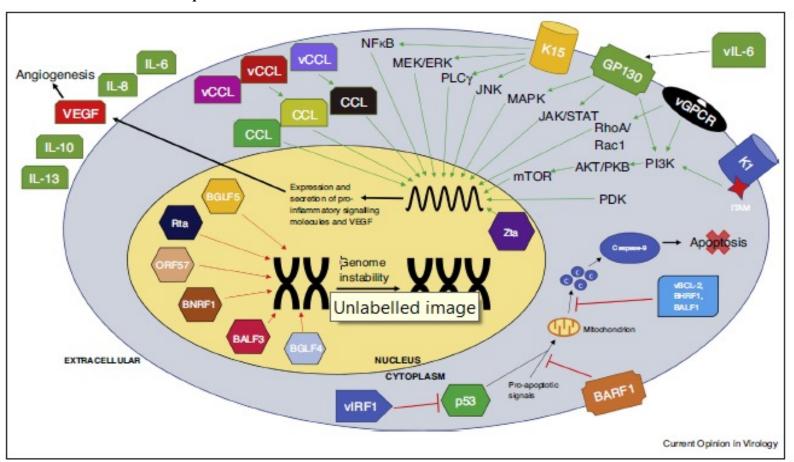
Primary Effusion Lymphoma: Major Series

	Castillo JJ (2012)	Guillet S (2016
N° Pts (yr of study)	301 (2001-2012)	51 (1996-2013)
PEL %	76	67
EC-PEL	24	33
Age median yrs	55	45
HIV %	67	100
cART%		100
CD4/μL median	NA	204 (90-370)
EBV %	50	66
KS %	28	49
MCD %	4	35


	Castillo JJ (2012)	Guillet S (2016
Receiving CT %	86	88
CT Type	various	CHOP-like
CR Rate %	NA	62 classic 41 EC
OS median mo	6	10
OS Rate 5-y %	NA	43 classic 39 EC
DFS 2-yr %	NA	71 classic 100 EC

Primary Effusion Lymphoma in Persons Living With HIV: Major Series

	Guillet	Boulanger	Simonelli	Chadburn	Lurain	Ramos	Lurain
N° Pts (yr of study)	51 1996-2013	28 1993-2003	11 1987-2002	8 1987-2001	20 2000-2013	7 2010-2017	8
PEL %	76	100	100	0	98	100	67
EC-PEL	24			100	2		33
Age median yrs	55	44	41	40	44	NA	38
cART %	100	78	NA	20	100	100	100
CD4/μL median	204	133	140	NA	125	NA	231
EBV %	66	71	NA	NA	73	60	NA
KS %	49	67	27	25	75	NA	66
MCD %	35	32	NA		30	NA	27
Chemotherapy %	88 CHOP	79 CHOP	73 CHOP	75 CHOP	95 DA-EPOCH	100 DA-EPOCH	100 DA-EPOCH
CR Rate %	62 C 43 EC	41	42	NA	53	71	50
OS median mo	10	6	6	11	22	NA	Data non mature
OS Rate %	at 5-yr 43 C, 39 EC	at 1-yr 39	NA	at 5-yr 40	at 3-yr CSS 47	71 3-yr EFS	at 2-yr 67


CRO 2024

KSHV/HHV8 Oncogenesis

Contribution of the KSHV and EBV Lytic Cycles to Tumourigenesis

Manners O et al Curr Opin Virol 2018

Schematic representation how KSHV and EBV lytically expressed proteins augment the pathogenesis of KSHV and EBV-associated malignancies.

Innovative Treatment Strategies for HIV/Gammaherpesvirus (GHV)-related lymphoma

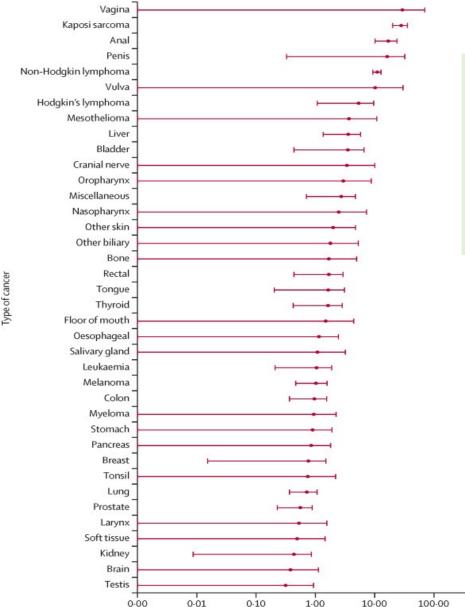
Drug	Mechanism of Action	Potential Targets	Study	Major Risks	
Targeted Therapies	Targeted Therapies				
Bortezomib (Proteosoma and HDAC inhibitor)	Potent activator of EBV/HHV8 lytic cycle.Citotoxicity, Inductor of apoptosis, Sinergistic/additive activity with CT.AZT	GHV- malignancies	-Preclinical -Ongoing trial (B+DA- EPOCH)	Infections of other cells Cytokine syndrome	
CDK4/6 Inhibitors (inhibition of cyclineD- CD4/6 complex formation: cycle arrest from G1 to S phase)	Inhibitor of cell growth. Potent activator of immunological control by blocking virus-induced downregolation of MCH-1, ICAM -1, CD86.	GHV- malignancies	Preclinical	Myelotoxicity, Gastrointestinal toxicity	
Daratumumab (anti-CD38 monoclonal antibody)	Cytotoxicity by ADCC- mediated lysis Inductor of apoptosis	GHV- malignancies	Preclinical (PEL cell lines) Ongoing trial (DARA+CT)	Severe infusional reaction HBV reactivation	
Ibrutinib (BTK inhibitor)	Inhibitor of B cell receptor signaling and downstream activation of NF-kB pathway	EBV-lymphoma (eg R/R PCNSL)	Ongoing trial (I plus CT)	Myelotoxicity	
Pacritinib (JAK/STAT inhibitor)	Inhibitor of vII-6,hIL-6 signaling, Inductor of apoptosis and cytotoxicity	GHV- malignancies	Preclinical		

Innovative Treatment Strategies for HIV/Gammaherpesvirus (GHV)-related lymphoma

Drug	Mechanism of Action	Potential Targets	Study	Major Risks
Immunomodulatory Therapies				
Pomalidomide (inhibitor of cereblon, E3ubiquitin ligase = inhibition of NF-kB)	Potent activator of immunological control by blocking virus-induced downregolation of MCH-1, ICAM -1, CD86. T-cell,NK cell activation. Cytoxic activity (targeting IRF4) Antiangiogenic/anti-inflammatory activity	GHV- malignancies	Preclinical Ongoing trials (Poma+Nivo in R/R NHL)	Myelotoxicity Thromboembolic events, Neuropathy

Innovative Treatment Strategies Conclusions

Persons living with HIV remain at higher risk of a variety of aggressive lymphomas with worse overall survival than the general population.


Restoration of immune system by cART is the core of all treatments providing benefit for treatment outcomes.

Understanding the distinct pathogenesis of HIV-related lymphoma affords opportunities to develop novel therapies targeting the specific role of EBV and HHV8 in immunodeficiency-related lymphomagenesis.

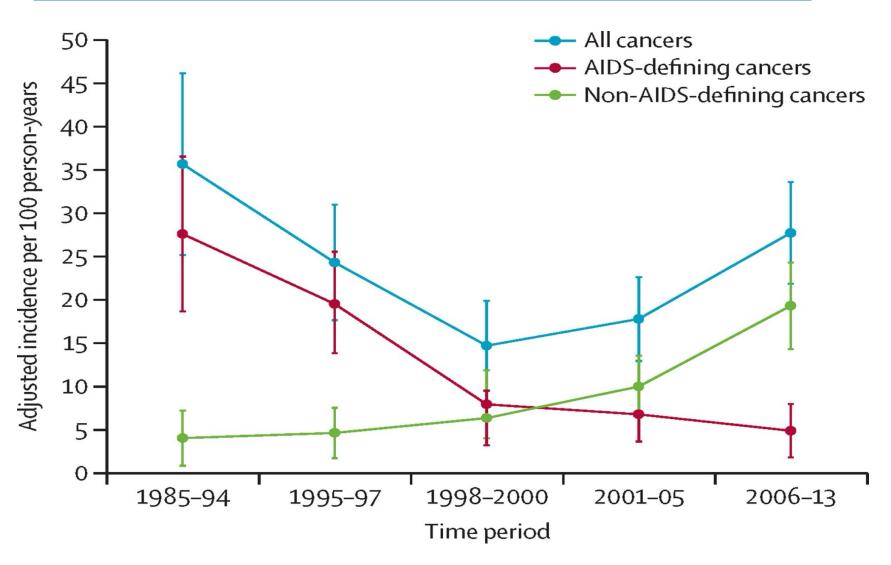
Preventive Measures

Incidence of Second Primary Cancers among 22.623 People with HIV Infection in the USA: a Population-based Registry Linkage Study (1985-2013)

1000-00

Standardised incidence ratio

Overall, 9% of 4545 incident primary cancers were second or later cancers, a proportion similar to that in the general population of people aged 20-64 years.


However, the incidence was higher than in the general population for both first and second primary malignancies among people with HIV.

Second Primary Cancer	SIR (95% CI
Kaposi Sarcoma	28.0 (20.2-35.9)
Anal Cancer	17.0 (10.2-23.8
NHL	11.1 (9.3-12.8)
Hodgkin Lymphoma	5.4 (1.1-9.7)
Liver Cancer	3.6 (1.4-5.8)

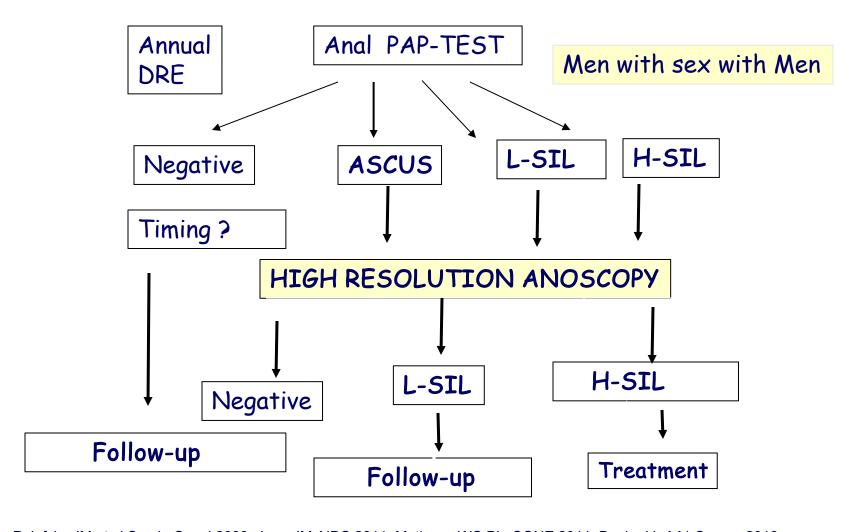
Hessol NA et al Lancet HIV 2018

Incidence of Second Primary Cancers among People with HIV Infection in the USA: a Population-based Registry Linkage Study (1985-2013)

Age,race and sex adjusted second primary cancer incidence per 100 person-years by calendar period

Cancer Risk following Lymphoid Malignancies among 531.460 HIV-infected People Case-Control Study (USA 1996-2015)

Cancers	aHR (95%CI) Model 1	aHR (95% CI) Model 2
Any non-Lymphoid Cancers	2.7 (2.3-3.2)	1.7 (1.5-2.0)
Kaposi Sarcoma	4.6 (3.4-6.2)	2.0 (1.5-2.7)
Rectum Rectal SCC Rectal non-SCC	3.6 (1.9-6.7) 5.5 (2.3-13.5) 2.7 (1.1-6.4)	2.7 (1.5-5.1) 4.1 (1.7-10.1) 2.0 (0.8-4.9)
Anus	3.6 (2.5-5.1)	2.6 (1.8-3.6)
Oral cavity	2.6 (1.2-5.5)	1.9 (0.9-4.0)
Colon	2.4 (1.1-5.0)	2.0 (1.0-4.3)
Liver	2.0 (1.2-3.5)	1.7 (1.0-3.0)
Lung	1.6 (1.1-2.4)	1.2 (0.8-1.8)
Myeloid Malignancies	9.7 (6.1-15.4)	7.1 (4.5-11.3)
Miscellaneous	3.4 (2.1-5.3)	2.5 (1.6-3.9)


aHR: adjusted Hazard Ratio; Model 1: adjusted for sex, risk group, race, calendar year; Model 2 additional adjustment for prior AIDS and time since HIV diagnosis

HIV-related Solid Tumours focus on Screening Programs and Preventive Strategies

Major Features:

- -Few trials for cancer prevention have be done to provide guidance on HIV-specific surveillance programs for patients with solid tumours.
- -European and US guidelines recomended cancer screening that is appropriates for age and risk factors
- -New target population: Long-term survivor patients with prior malignancies

Guidelines for diagnosis and Treatment of Anal Precancerous Lesions in HIV-infected Patients

Cervical Cancer Screening Guidelines of Various Organizations in the General Population

Organization	Age Group	Screening Test	Screening Interval	Recommendations
WHO	30-49	Cytology	3-5 yrs	If HPV test unvailable
		HPV test	5 yrs	Preferred
European Guidelines	<30 yrs	Cytology	3-5 yrs	Cytology alone
Guidennes	35-65	HPV Test	5-10 yrs	HPV testing alone; cytology triage if HPV test+
US Preventive Task Force	21-29	Cytology	3 yrs	-HPV testing not recommended
NCCN	30-65	Cytology	3 yrs	Cytology alone
INCCIN		HPV test	5 yrs	Alone or Cotesting with Cytology

Screening Programs for Anogenital Cancer in Persons Living with HIV: Provocative Questions

hr-HPV Prevalence

Site	HIV-pos Pts %	HIV-neg Pts %	
Cervix	46-64	29	
Anus MSM MSW Women	74-94 27 16-76	14- 37 7 42	
Head- Neck	16-28	4	

High-risk HPV test in anal/cervical smears: can it optimize the screening for anal/cervical cancers?

What is the impact of cART on the natural history of anogenital HPV infection among persons living with HIV?

Anal Screening Programs Controversial Issues

	*	*
	Sensitivity %	Specificity
Anal Pap test	69-93	32-52
HPV test	80-100	16-18

[•]High Resolution Anoscopy is the gold standard test for anal cancer screening

- •Limited n°of clinicians with necessary expertise
- •Paucity of cost-effectiveness data on anal screening approaches

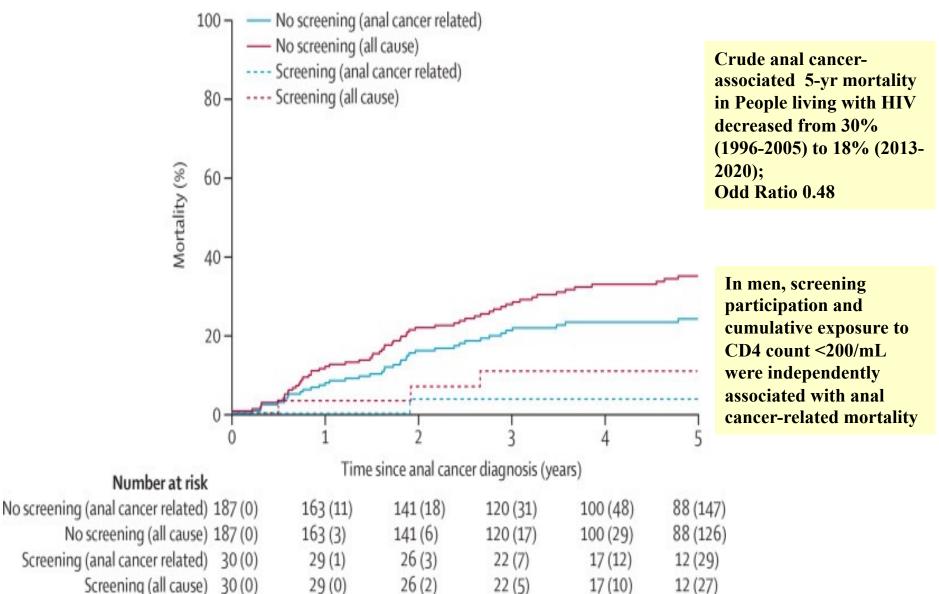
HRA: limited expertise and equipment availability

There are no formalized anal screening programs

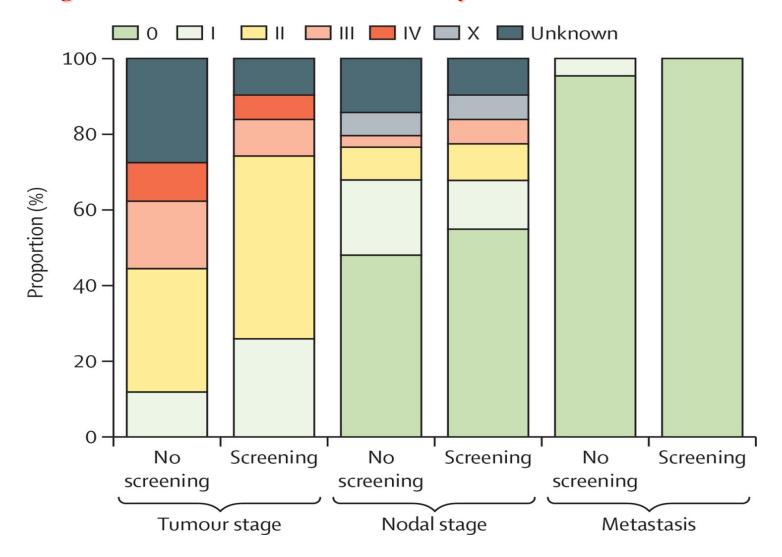
^{*}for HGAIN in MSM

Clinical Performance for Anal Precancer Detection of Major Biomarker Testing in Person Living with HIV (Pooled Meta-Analysis)

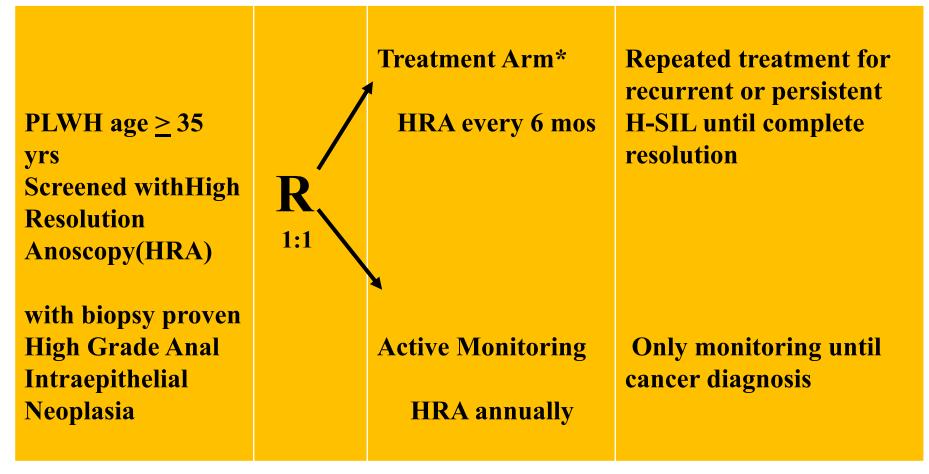
Test	Sensibility %	Specificity %	Immediate AIN2 risk% if Test pos	Immediate AIN2 risk% If Test neg
Cytology (ASCUS+)	84	60	37	6
Cytology H-SIL	23	96	64	20
HPV-testing	94	35	31	5
Cytology+HPV testing (co-testing)	92	32	27	6
HPV16 genotyping	44	92	36	14
HPV 16/18 genotyping	46	69	24	16


Screening Carcinoma Anale in HIV- Update Linee Guida

Popolazione	Procedura Screening	Tempistica	Livelli Raccomandazione
-MSM; -Tutti con storia di condilomi ano- genitali; -Donne con istologia genitale patologica	-PAP test convenzionale -PAP test su base liquida Anoscopia ad alta risoluzione	*Annuale, se 2 esami consecutivi neg Se Pap test patologico	Elevata (categoria 1)
∞∞∞∞∞∞ MSM*	∞∞∞∞∞∞ Anoscopia ad alta risoluzione		



Effect of the Introduction of Anal Screening among 16.817 MSM with HIV: a Nationwide Cohort Study


Van der Zee RP et al Lancet HIV 2023

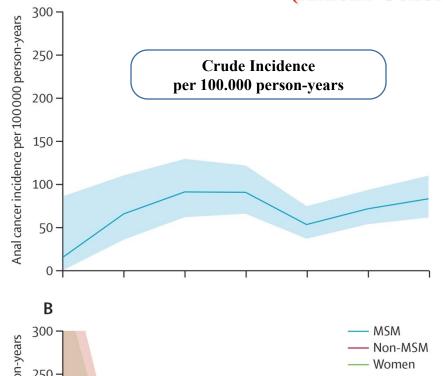
Effect of the Introduction of Anal Screening on Cancer Stage in Persons Living with HIV: a Nationwide Cohort Study

Anal Cancer/H-SIL Outcomes Research (ANCHOR) Study in Persons Living With HIV (PLWH) (USA 2014-2021)

^{*} electrocautery in most cases

Palefsky J CROI 2022

Anal Cancer/H-SIL Outcomes Research (ANCHOR) Study in Persons Living With HIV (PLWH) (USA 2014-2021) Palefsky NEJM 2022


	Treatment Arm n°2227	Active Monitoring Arm n°2219
Median Age	51 (44-57)	51 (44-57)
Gender Identify n° (%) Male Female Transgender Unknown	1793 (81) 346 (16) 85 (4) 3	1782 (80) 365 (17) 68 (3) 4
Risk Group n°(%): MSM Heterosex. IVDU Other	1738 (78) 532 (24) 152 (7) 84	1742 (79) 510 (23) 177 (8) 78
Median Duration HIV (yrs)	17	17
Median CD4 count μ/mL	602 (393-827)	607 (410-837)
HIV-RNA cp/mL <50 51-199 200-1000 >1000	1852 (84) 155 (7) 83 (4) 122 (6)	1800 (82) 160 (7) 93 (4) 148 (7)

Anal Cancer/H-SIL Outcomes Research (ANCHOR) Study in Persons Living With HIV (PLWH) (USA 2014-2021)

Med	ian Fol	llowup:	26 months

	Treatment Arm n°2227	Active Monitoring Arm n°2219
Anal cancer		
n° cases	9	21
Incidence/100.000 PY	173	402
REDU	JCTION 57% (95%	CI 6-80%) p 0.03
Adverse Events n° (%)	683	635

Anal Cancer Incidence among 28.175 Persons Living with HIV in the Netherlands (Athena Cohort-1996-2020)

Age-adjusted Incidence Rate Ratios (RR) (95% CI) over time

	MSM	Men non-MSM	Women
1996-2005	1 (ref)	1 (ref)	1(ref)
2006-2012	0.75 (0.49-1.14)	0.98 (0.38-2.55)	1.03 (0.09-11.53)
2013-2020	0.62 (0.41-0.92)	1.03 (0.42-2.55)	1.94 (0.22-16.98)

300 — MSM — Non-MSM — Women —

As anal cancer incidence is slowly declining in MSM but not in non.MSM and women, health-care professionals should not focus only on MSM for anal cancer prevention

Screening Carcinoma Cervice Uterina in HIV- Linee Guida

Popolazione	Procedura Screening	Tempistica
Donne sessualmente attive. Lo screening deve iniziare all'età ≥ 21 aa e continuare	PAP test convenzionale PAP test su base liquida	Età < 30 aa: il secondo° esame a 12 mesi; -ogni 3 aa se 3 Pap test annuali negativi.
per tutta la vita	- Co-testing (Pap test+HPV test)	Età > 30 aa: il secondo° esame a 12 mesi; - ogni 3 aa se 3 Pap test annuali negativi o se Co-test negativo°°
		- Co-test annuale se Pap test normale ed HPV test positivo
	- Colposcopia	Se Pap test patologico o HPV test positivo per ceppi alto rischio

Screening Specifici per HIV- Update Linee Guida Italiane

Tumore	Popolazione	Procedura Screening	Tempistica	Forza Raccomandazione
Fegato	-HCV coinfetti con cirrosi; -Tutti HBV con viremia rilevabile -Tutti HBV/HCV aviremici se con cirrosi -Tutti HCV aviremici (post-DAAs) con pregresso epatocarcinoma	Ecografia addome +/- α-fetoproteina	Ogni 6-12 mesi	
Polmone	-Fumatori con storia di > 30(A), >20 (E) pacchi di sigarette/anno; -se ex-fumatori entro 10 (E)- 15(A) anni dalla cessazione - Età> 40 aa**	TAC spirale a basso dosaggio senza mdc	Annuale	Elevata (categoria 1) Per età di inizio Debole (C)
Cute	- Pelle chiara; - Razza bianca non-ispanica	Esame della cute Dermatoscopia	Annuale	

Benefits and Harms of Lung Cancer Screening by Low Dose CT in the General Population A Meta-Analysis

Passiglia F et al J Clin Oncol 2021

Study or Subgroup	LDCT Sc Events	reening Total	NS or Events		Weight (%)	RR M-H, Random (95%	RR CI) M-H, Random (95% CI)
LDCT v NS							
DANTE	59	1,264	55	1,186	8.8	1.01 (0.70 to 1.44)	
DLCST	15	2,052	11	2,052	2.2	1.36 (0.63 to 2.96)	-
ITALUNG	43	1,613	60	1,593	7.8	0.71 (0.48 to 1.04)	
LUSI	29	2,029	40	2,023	5.4	0.72 (0.45 to 1.16)	
MILD	40	2,376	40	1,723	6.3	0.73 (0.47 to 1.12)	
NELSON	160	6,583	210	6,612	20.6	0.77 (0.62 to 0.94)	
Subtotal (95% CI)		15,917		15,189	51.1	0.80 (0.69 to 0.92)	•
Total events	346		416				
Test for overall effect LDCT v CXR	J. Z = 3.10	(r = .002)					
LSS	32	1,660	26	1,658	4.7	1.23 (0.74 to 2.05)	
NLST	1,147	26,722	1,236	26,730	44.2	0.93 (0.86 to 1.00)	-
Subtotal (95% CI)		28,382		28,388	48.9	0.95 (0.82 to 1.10)	•
Total events	1,179		1,262				
Heterogeneity: $\tau^2 = 0$ Test for overall effect			$(P = .29); I^2 =$	= 11%			
Total (95% CI)		44,299		43,577	100.0	0.87 (0.78 to 0.98)	
Total events	1,525		1,678				
Heterogeneity: $\tau^2 = 0$ Test for overall effect Test for subgroup d	et: $Z = 2.30$	(P = .02)			4 G0/		Favors LDCT Screening Favors NS or CXR
rest for subgroup a	merences:	$\chi = 2.53, 0$	0 = 1 (r = 0)	enefit	4.0% S Outweic		ding overdiagnosis (38%).

Retter lung nodule management is mandatory

Benefits and Harms of Lung Cancer Screening by Low Dose CT in the HIV Population Major Studies on Lung Cancer Screening

- **Simulation model-** For HIV-infected patients with CD4 count at least 500/µL and 100% cART adherence, lung cancer screening using the old criteria (age 55-80 yrs,30 pack-year of smoking, current smokers or quit within 15 years) would reduce lung cancer mortality by 19%, similar to the mortality reduction on the general population. (*Kong CY et al AIDS 2018*)
- **Baltimore study** (2006-2013): Elegibilty criteria: age at least 25 yrs, 20 packyear of smoking, current smokers or quit within 15 years). Low adherence: only 1 TC scan:8%, 2 TC:46%, 3 TC:20%, 4 TC:17%, 5 TC 9%-(Hulbert A J Thorac Oncol 2014)

ANRS Study (2011-2012)- Elegibilty criteria: at least 40 yrs, 20 pack-year of smoking, current smokers or quit within 3 years) and CD4 count at least 100.Lung cancer:10/442 (2%) patients; false positive rate 21% (*Makinson A AIDS 2016*)

Programmi di screening per la popolazione generale.

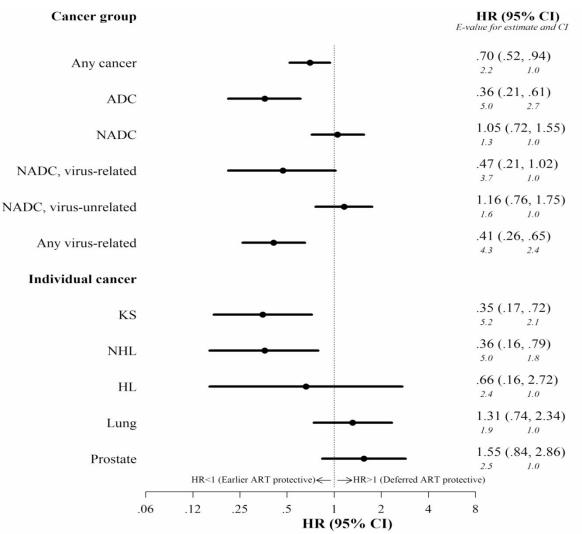
Tumore	Popolazione	Procedure di screening	Tempistiche dello screening	commenti
Mammella	Donne 50-70 aa (E) Donne <u>></u> 40 aa (A)	Mammografia	1-2 aa (E) Annuale (A)	Autopalpazione dopo i 20 aa Esame clinico fra 20-30 aa, minimo ogni 3 aa
Colon-retto	Tutti tra 50-75 aa (E) >50 aa (A)	°Ricerca sangue occulto feci °°Rettosigmoidosco pia §Rettocolonscopia	°ogni 2 aa °°ogni 5 aa §ogni 10 aa	Particolare attenzione nel monitoraggio dei pazienti a rischio (familiarità per ca colonretto, poliposi intestinale e malattie infiammatorie del grosso intestino).
Prostata	Uomini ≥ 50 aa	Esame rettale + PSA test	Annuale	 Beneficio ancora controverso Candidati se spettanza di vita ≥10 aa

E: linee guida europee; A: linee guida americane

Major Cancer Preventive Strategies in the cART era

- •Early Initiation of cART
- Treatment of HCV/HBV Infections
 - Stop Smoking and/or alchool use
 - •HPV Vaccination (age ≤26 yrs)

Estimated Hazard Ratio for serious Events in Immediate-Initiation vs Deferred-Initiation Groups- (The INSIGHT START Study Group)


Serious Endpoints	Hazard Ratio	(95 % CI)
AIDS events	0.28	(0.15-0.50)°
Non-AIDS events	0.61	(0.38-0.97)°
Kaposi Sarcoma	0.09	(0.01-0.71)*
Infectious-related Cancers	0.26	(.1164)•
Infectious-unrelated Cancers	0.49	(0.21-1.15) ••

[°]p>0.001,*p=0.05; •0.003 ••0.10

The initiation of cART in HIV-Infected adults with CD4>500/µL provided net benefits over starting therapy after the CD4 had declined to 350/µL

Risk of Cancer among 119.543 HIV-infected Patients (baseline CD4 350-500/μL): Adjusted hazard ratios of earlier versus deferred antiretroviral therapy (USA 1996-2014)

Silverberg MJ et al CID 2020

Earlier cART initiation has potential to reduce the burden of virus-related cancers but non-AIDS-defining Cancers (NADCs) without known or suspected viral etiology

HPV Vaccination in HIV Infection

Although the evidence base to support the immunogenicity of HPV vaccines in HIV-infected persons is high, the evidence base to support the efficacy of HPV vaccines in all HIV-infected individuals is a controversial issue.

In one recent study, 18-26-yrs old HIV-positive MSM naïve to HPV vaccine types were protected against incident HPV16 associated LSILs/HSILs compared with those previously exposed to HPV.

Therefore, there is an urgent need to vaccinate young individuals, before exposure to HPV vaccine-type, before initiating sexual activity.

Several studies in HIV-infected individuals have shown superior immunogenicity of Bivalent Vaccines (which uses a TLR4 agonist adjuvant) compared to 4-valent vaccines. Therefore, questions remain as to optimal HPV vaccine regimens in HIV and further clinical trials are urgently needed