CORSO EDUCAZIONALE GRUPPO LINFOMI IN PAZIENTI CON IMMUNODEFICIT

Milano, Starhotels Anderson 24 maggio 2024

PATOLOGIE KSHV/HHV8 RELATE

Luisa Verga Clinica Ematologica Fondazione IRCCS San Gerardo Monza

Sistema Socio Sanitario

Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Pfizer					1		
Eusapharma					4		

KSHV/HHV8 CARATTERISTICHE

TAXONOMY AND CLASSIFICATION:

ORDER: Herpesvirales FAMILY: Herpesviridae SUBFAMILY: Gammaherpesvirinae GENUS: Rhadinovirus SPECIES: Human Gammaherpesvirus 8

- KAPOSI SARCOMA ASSOCIATED HERPESVIRUS (KSHV)
 o human gammaherpesvirus 8 (HHV-8) è un virus
 oncogenico a DNA a doppio filamento di circa 165
 kilobasi, con capside a simmetria icosaedrica, rivestito,
 appartenente alla famiglia Herpesviridae e alla
 sottofamiglia dei gamma herpes virus.
- HHV-8 è capace di infettare diversi tipi di cellule: cellule B, cellule endoteliali, macrofagi, cellule epiteliali, attraverso un meccanismo di fusione di membrana mediato da GP.

KSHV EPIDEMIOLOGY

TRANSMISSION

Presence of k	(SHV in potentially infectious body HSHV+					
	KS+	KS-HIV+	KS- HIV-			
saliva	22	20-35	10-20			
semen	6	<]	<]			
Vaginal fluid	NA	٦	7			
feces	Ο	NA	<]			

REGULATION OH KSHV LATENCY AND LYTIC REACTIVATION

L. Yan et al.: KSHV: From Transcription and Posttranscriptional Regulations to Pathogenesis

TRANSCRIPTION REGULATION OF GENES

Only a <u>small portion of the latent KSHV genome is transcribed</u>, and the major latency locus in latently infected cells include:

01

ORF 7 LANA

02

ORF72 (v-Cyclin)

regulates the cell cycle and cell proliferation by constitutive activation of cellular cyclindependent kinase 6 (CDK6)

)4

Kaposins (K12)

Viral miRNA

a group of noncoding single stranded RNAs (20ncts) regulate gene expression by binding to the seed-matched regions of target mRNAs

03

ORF71 (K13, v-FLIP)

activates NF-kB pathway→ facilitates cell survival, proliferation and cell type-specific induced growth arrest and apoptosis during latency

LYTIC GENES

ORF74, K14, vIL-6 and ORF59, are transcribed at low
→ leaky expression of viral lytic genes during latent infection.

KSHV LIFE CYCLE AND ONCOGENESIS

close association of KSHV with some human malignancies (KS, PEL and MCD) has caused virologists to consider KSHV as a human oncovirus.

The highlights of KSHV infection are:

- o higher cell growth rate with an extended lifespan,
- o altered cell morphology,
- o deregulated angiogenesis,
- o elevated inflammation and
- o immune evasion to support tumor growth

ONCOGENIC VIRUSES and hematology

EBV

HTLV-1

HHV8 KSHV

WHO	2022
-----	------

KSHV/HHV8-associated B-cell lymphoid proliferations and lymphomas	ID (hiv)	EBV
Primary effusion lymphoma	80% hiv+	80%
KSHV/HHV8-positive diffuse large B-cell lymphoma	>90% hiv+	
KSHV/HHV8-positive germinotropic lymphoproliferative disorder	Very few cases	
Tumour-like lesions with B-cell predominance		
Reactive B-cell-rich lymphoid proliferations that can mimic lymphoma IgG4-related disease Unicentric Castleman disease Idiopathic multicentric Castleman disease		
KSHV/HHV8-associated multicentric Castleman disease	50-75%	

PEL/EC-PEL and KSHV/HHV8-DLBCL s

The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms

KSHV/HHV8-GLPD, KSHV/HHV8-MCD

elderly patients without overt immunodeficiency

Immunodeficiency setting

HIV+pts

VIRAL COOPERATION

HIV infection and immunosuppression play an important role in the pathogenesis of both EBV and KSHV-associated cancers

DEFINITION: a mechanism by which different viruses coinfecting human tissus, have synerigstic or regulatory effects on carcinogenesis

 detection of different viruses in the same neoplastic cells

proof that

 immunodeficiency and/or
 chronic antigenic
 stimulation act in an
 indirect way in promoting
 tumor outgrowth

 the demonstration of viral-dependent molecular alterations induc-ing neoplastic transformation

VIRAL COOPERATION

VIRAL COOPERATION: PEL MODEL

the immune escape and increased risk for the development of gammaherpesvirus-associated diseases

PRIMARY EFFUSION LYMPHOMA

DEFINITION

- Effusion-based, usually without a solid component 0
- Male, HIV + (md age 43) or elderly pts (md age 73) Ο
- Association with MCD and/or KS 0
- **EBV+cases**→ severely immunocompromised HIV+ Ο
- EBV- cases \rightarrow HIV- elderly men 0
- Post-transplant PEL \rightarrow EBV -0

MORPHOLOOGY and IP

- Large cells with plasmablastic/immunoblastic/anaplastic cytology; Ο
- Terminal B lineage; IP: CD30 CD38 CD138 EMA MUM1 HLA DR +; CD45+ 0

(lack markers of b cell differ.: PAX5, CD19, CD20, CD79a CD45 expression of T/NL markers may occur Post GC profile

- CD10/BCL6 neg
 - IGH gene \rightarrow clonally rearranged and hypermutated/TCR only occasionally express Ig with some lamda liht chain+ cases

Thoracentesis sample of

 Flow cytometry Molecular analyses

pleural fluid Cytology

- NO MYC rearrangement Ο
- Mutations in BCL6, MYC, pax5 RhoH/ITF 0

Caso 1

- Uomo di 30 anni con HIV di primo riscontro e ascite tesa.
- Cd4 alla diagnosi: 8/mmc
- Esame citologico su liquido peritoneale: numerosi elementi linfoidi ad abito plasmablastico di immunofenotipo MUM1+, HHV8+, EBER+, CD30+,CD79a+ focale, CD138-, CD20-, ALK-.
- Reperto compatibile con localizzazione sierosa di linfoma a cellule B mature CD30+ HHV8-EBV driven, tipo PEL.

Fondazione IRCCS San Gerardo dei Tintori

10X

Fondazione IRCCS San Gerardo dei Tintori

Sistema Socio Sanitario

40X

Sistema Socio Sanitario Regione Lombardia

CAVITY BASED LYMPHOMAs

REL

DISTRIBUTION OVER TIME

Histotype	1986-1995; London (158 patients)	1996-2005; London (200 patients)	2006-2015; London (257 patients)	1996-2000; CNICS (132 patients)	2001-2005; CNICS (201 patients)	2006-2010; CNICS (143 patients)
BL	3%	10%	20% ↑	7.6%	10.9%	16.8% ↑
DLBCL	63%	59%	37% ↓	43.9%	45.8%	35.7% ↓
HL	4%	11%	26% ↑	15.2%	15.4%	19.6% ↑
PCNSL				14.4%	10.4%	9.8% ↓
PBL	0	2%	6% ↑			
PEL	2%	1%	5% ↑			
Other				18.9%	17.4%	18.2%

DISTRIBUTION OVER TIME

Human Immunodeficiency Virus-Associated Lymphoma in the Antiretroviral Therapy Era: Analysis of the National Cancer Data Base *Cancer, 201*6

359,731 lymphomas between 2004 and 3.4% (10,769) were HIV-positive Evolution of HIV-Associated Lymphoma Over 3 Decades J Acquir Immune def Syndr,2016

615 pts; 158 with lymphomain the pre-cART decade (1986–1995), 200 pts in the earlycART era (1996–2005), and 257 patients in the late-cART era (2006–2015).

CLINICAL MANIFESTATIONS

neoplastic effusions in body cavities without extracavitary tumor masses, and the most common sites are the pleural (60-90%), peritoneal (30-60%) and pericardial cavities(till 30%). Typically, only a single cavity is involved.

o Often concomitant KSHVdiseases (KS -75%- and KSHV-MCD 33%)

Shortness of breath, abdominal distension, chest pain

 KSHV can also cause immune dysregulation, inducing elevations of hulL-10, hulL-6, and vlL-6, which can result in many of the constitutional and laboratory abnormalities, including fever, cachexia, edema, and anemia

EC-PEL

PEL

Common sites: lymphnodes and GE tract
 Rare: skin presentation

			HERA	PY				
No. of patients	301	51	28	11	8	20	7	6
Year of study	2001-2012	1996-2013	1993-2003	1987-2002	1987-2001	2000-2013	2010-2017	2020
PEL, %	100	67	100	100	0	18	100	67
Solid PEL, %	24	33	0	0	100	1	0	33
Median age, y	55	45	44	41	40	44	NA	38
HⅣ, %	67	100	100	100	100	100	100	100
ART, %		100	78	NA	20	100	100	100
Median (range) CD4 ⁺ T-cell count, cells per μL	NA	204 (90-370)	133 (5-756)		NA*	125 (53- 389)	NA	231 (3-403)
EBV, %	50	66	71	NA	NA	73	60	
KS, %	28	49	67	27	25	75	NA	66
MCD, %	4	35	32	NA		30	NA	17
Receiving chemotherapy, %	86	88†	79	73	75	95‡	100	100
Chemotherapy backbone	Various	CHOP-like	CHOP-like	CHOP	СНОР	DA-EPOCH	DA-EPOCH	DA- EPOCHR
CR, %	NA	62 classic, 41 solid	41	42	NA	53	71	50
Median OS, mo	6	10.2	6.2	6	11	22	NA	Data not mature
OS rate, %	NA	43 (classic) and 39 (EC) at 5y	39 at 1y	NA	40 at 5y	47 cancer- specific survival at 3y	NA	67 at 2y
EFS rate, %	NA	71 (classic) and 100% (EC) DFS at 2y	NA	NA	NA	NA	71 3y EFS	NA

Classic and extracavitary primary effusion lymphoma in 51 HIV-infected patients from a single institution RETROSPECTIVE study

OS:doubled compared with CHOP-like treatment studies in the pre-ART/early ART era where ART was inconsistently or not administered either before or during treatment.

Outcome

haracteristics	All patients ($n = 51$)	Classic group (n = 34)	Extracavitary group (n = 17)
emographic characteristics			
Sex male, n (%)	47 (92)	31 (91)	16 (94)
Median age, years (IQR)	45 (39-53)	45 (40-54)	41 (36-48)
IV characteristics			
Mode of HIV transmission, n (%)			
Sexual	45 (88)	30 (88)	15 (88)
IVDU	5 (10)	3 (9)	2 (12)
Unknown	1 (2)	1 (3)	0
Median HIV duration, years (IQR)	8 (1.5-15.7)	4 (1-12)	10 (8–16)
Drior AIDS o (%)	22 (647)	24 (70.6)	0 (52)
cART at diagnosis, n (%)	35 (68.6)	24 (70.6)	11 (64.7)
Median cART duration, months (IQR)	40 (18-63.4)	30 (12.3-52.6)	62 (49.3-123)
Undetectable plasma HIV-RNA, n (%)	25 (49)	16 (47)	9 (53)
CD4 cell count			
Median, ×10° L ¹ , median (IQR)	204 (90-370)	185 (90–343)	207 (103-377)
Nadir, $\times 10^{6}$ mL ⁻¹ , median (IQR)	99 (45-180)	99 (56-145)	159 (35–228)
KS, n (%)	25 (49)	19 (56)	6 (35.3)
Castleman disease, n (%)	18 (35.3)	11 (32.3)	7 (41)
EL characteristics			
IPI>2, n (%)	34 (67)	25 (80)	9 (53)
P3>2, 11 (10)	29 (57)	10 (00)	(co) II
LDH > normal, n (%)	26 (52)	16 (48.5)	10 (59)
ICU stay, n (%)	14 (29)	10 (32)	4 (23.5)
EBV + PEL, n (%)	34 (66.6)	24 (70.6)	10 (59)
CR, n (%)	28 (56)	21 (63.6)	7 (41)
reatment			
Standard chemo, n (%)	45 (88.2)	28 (82.3)	17 (100)
With HD-MTX, n (%)	32 (62.7)	23 (67.6)	9 (53)
Without HD-MTX, n (%)	13 (25.5)	5 (14.7)	8 (47)
Low dose/no chemo, n (%)	6 (11.7)	6 (17.6)	0 (0)
Low dose/no chemo, n (%)	6 (11.7)	6 (17.6)	0 (0)

CR : 21 pts (62%) in the classic group 7(41%) in the extracavitary variant group

5-year OS:43% in the classic group 39% in the extracavitary group All but two of the 13 patients who relapsed died with a 2-year

OS: 8.5%.

median follow-up of 10 years: 34 pts have died median OS: 10.2 months.

			HERA	PY				
No. of patients	301	51	28	11	8	20	7	6
Year of study	2001-2012	1996-2013	1993-2003	1987-2002	1987-2001	2000-2013	2010-2017	2020
PEL, %	100	67	100	100	0	18	100	67
Solid PEL, %	24	33	0	0	100	1	0	33
Median age, y	55	45	44	41	40	44	NA	38
HⅣ, %	67	100	100	100	100	100	100	100
ART, %		100	78	NA	20	100	100	100
Median (range) CD4 ⁺ T-cell count, cells per μL	NA	204 (90-370)	133 (5-756)		NA*	125 (53- 389)	NA	231 (3-403)
EBV, %	50	66	71	NA	NA	73	60	
KS, %	28	49	67	27	25	75	NA	66
MCD, %	4	35	32	NA		30	NA	17
Receiving chemotherapy, %	86	88†	79	73	75	95‡	100	100
Chemotherapy backbone	Various	CHOP-like	CHOP-like	CHOP	СНОР	DA-EPOCH	DA-EPOCH	DA- EPOCHR
CR, %	NA	62 classic, 41 solid	41	42	NA	53	71	50
Median OS, mo	6	10.2	6.2	6	11	22	NA	Data not mature
OS rate, %	NA	43 (classic) and 39 (EC) at 5y	39 at 1y	NA	40 at 5y	47 cancer- specific survival at 3y	NA	67 at 2y
EFS rate, %	NA	71 (classic) and 100% (EC) DFS at 2y	NA	NA	NA	NA	71 3y EFS	NA

IMMUNOTHERAPY FOR KSHV-ASSOCIATED DISEASES

KSHV-MCD

Excisional lymph node biopsy

HETEROGENEITY of CASTLEMAN DISEASE

RA/JIA lgG4

Intection

Cynarome

Autoimmune

kSHV-MCD EPIDEMIOLOGY

- The estimated incidence of CD is 6500 to 7700 cases/year in the United States, with ~ 1650 cases of MCD
- ITALY: Expected annual incidence: 204 cases; Expected prevalence: 414 cases
 KSHV-MCD
- MCD cases are thought to be divided almost evenly betweenKSHV-MCD and iMCD lack of data in Italy

o nadir CD4 count >200/mm3,

- o increased age,
- o no previous HAART exposure and

o non-Caucasian ethnicity associated with an increased risk of MCD.

CONSENSUS DIAGNOSTIC CRITERIA for iMCD

A patient must fulfil the major, minor, and exclusion criteria

Major criteria Both features must be present

Histopathological lymph node features consistent with the iMCD Enlarged lymph nodes (≥1 cm in short-axis diameter) in ≥2 lymph node stations

Minor Criteria:

≥2 of the following 11 features (including ≥1 laboratory condition) must be present

LABORATORY (6 FEATURES) CLINICAL (5 FEATURES)

Exclusion criteria Each of the following diseases/disorders must be ruled out:

Infection-related disorders

Malignant/ ymphoproliferative disorders

Autoimmune diseases

MINOR CRITERIA for iMCD

≥2 of the following 11 features (including ≥1 laboratory condition) must be present:

PATHOGENESIS iMCD

AUTOIMMUNE HYPOTESIS AUTOINFLAMMATORY HYPOTESIS NEOPLASTIC HYPOTESIS PATHOGEN HYPOTESIS

Proinflammatory cytokine(s)

IL-6

PATHOGENESIS

PATHOGENESIS, THE ROLE OF IL-6

drive disease progression.

cyte sedimentation rate; IgG, immunoglobulin G; IL-6, interleukin 6; iMCD, idiopathic multicentric Castleman disease; Th2, T helper type 2; VEGF, vascular endothelial growth factor. 1. Dispenzieri A *et al. Blood* 2020; 135 (16): 1353–1364. 2. van Rhee F *et al. Clin Adv Hematol Oncol* 2010; 8 (7): 486–498.

Cytokine storm. Clinical presentation

Symptoms may be due

 directly to cytokine induced tissue damage

or

 may result from immune cellmediated responses.

HLH

Progressione to disseminated intravascular coagulation

vascular occlusion catastrophich emorrhages dyspnea

hypoxemia

hypotension

takotsubo-like cardiomyopathy vasodilatory shock, and death.

Cytokine storm and cytokine release syndrome are life-threatening systemic inflammatory syndromes involving elevated levels of circulating cytokines and immune-cell hyperactivation

Capillary leak syndro
 Vasodilatory shock

Vascular and lymp

Cytopenia, anemia,
Coagulopathy

 Hyperferritinemia, ir acute-phase reactar

interleukin-6, interfe

factors (e.g., VEGF)

Endothelial damage

permeability

D-dimer)
 Elevated cytokines

- Spontaneous hemorrhage
- Lymphadenopathy

Rash
 Edema

THERAPY

Prospective Study of Rituximab in Chemotherapy- Dependent HIV-ass-MCD: ANRS 117 CastlemaB Trial

AIM: To evaluate the efficacy of <u>four weekly</u> <u>rituximab infusions (375 mg/m2)</u> after discontinuation of chemotherapy in HIVassociated MCD, WHO: 24 pts Prospective open-label trial.

Patient No.	Delay From MCD Diagnosis (months)	Associated KS	No. of Previous Different Chemotherapy Regimens	Splenectomy	MCD Treatment at Entry	Outcome at Day 365
1	7	No	1	No	Vinblastine	Alive, SR
2	20	No	2	No	Vinblastine	Alive, SR
3	8	No	2	No	Etoposide	Alive, SR
4	76	Yes	5	No	Etoposide	Death, day 15
5	7	Yes	5	Yes	Etoposide	Alive, SR
6	7	No	3	No	Etoposide	Failure, day 23
7	31	Yes	2	No	Liposomal doxorubicin	Alive, SR
8	42	Yes	5	Yes	Etoposide	Relapse, day 271
9	8	Yes	2	Yes	Etoposide	Alive, SR
10	4	No	4	No	Etoposide	Alive, SR
11	107	Yes	4	Yes	Etoposide	Alive, SR
12	52	Yes	4	Yes	Etoposide	Death, day 112
13	29	Yes	5	Yes	Liposomal doxorubicin	Alive, SR
14	5	No	1	No	Vinblastine	Alive, SR
15	84	No	5	Yes	Etoposide	Relapse, day 299
16	5	No	3	No	Etoposide	Alive, SR
17	109	No	3	Yes	Etoposide	Alive, SR
18	3	No	2	No	Etoposide	Alive, SR
19	9	No	1	Yes	Etoposide	Relapse, day 76
20	142	Yes	2	Yes	Vinblastine	Alive, SR
21	7	No	2	No	Etoposide	Alive, SR
22	22	Yes	1	No	Etoposide	Alive, SR
23	73	Yes	5	Yes	Etoposide	Relapse, day 173
24	26	Yes	2	No	Etoposide	Alive, SR

In another cohort study of 61 patients with HIV1MCD

OS of 46 pts treated with rituximab-based treatment

90% at 5 yrs vrs 33% before the introduction of rituximab

Annals of Oncology 20: 775–779, 2009

THERAPY

Prospective Study of Rituximab in Chemotherapy- Dependent HIV-ass-MCD: ANRS 117 CastlemaB Trial

D+60: 22 pts alive and free of MCD-related symptoms after discontinuation of chemotherapy \rightarrow SR rate of 92%

WARNING 2 Exacerbation of KS lesions was noted in eight of 12 patients who had a previous history of KS

in the rituximab studies, worsening KS was observed in 35% to 67% of pts with baseline KS. v

Annals of Oncology 20: 775–779, 2009

Relapse of HHV8-positive multicentric Castleman disease following rituximab-based therapy in HIV-positive patients

THERAPY

- o With a median follow-up of 6.9 years, **5-year OS for the entire cohort is 88%**
- Four patients died of progressive refractory MCD before completing
 the 4-week course oF treatment and only 1 other patient died of MCD following 5 relapses
- 5 patients developed HHV8-associated lymphoma. The relapse rate at 5 years following first remission is 18%, and all achieved a second remission
- o the median time to first relapse is 30 months; all pts with detectable viremia
- **The risk of relapse** of HIVIMCD was not significantly influenced by patient characteristics,² ⁴ use of <u>cART</u>, plasma HIV viral load, or <u>lymphocyte subset counts</u>
- Retreatment of patients with **histologically confirmed** HIV1MCD relapse with rituximab-based therapy achieved second remissions

THERAPY

Rituximab plus liposomal doxorubicin in HIV-infected patients with KSHV-aMCD

RESPONSE

NCI-KSHV-MC	D Response Criteria	
Response category	Response	n(%)
Clinical response	Complete response	15 (88)
	Symptom-free disease	1 (6)
	Progressive disease§	1 (6)
	Major clinical response*	16 (94)
Biochemical response	Complete response	13 (76)
	Partial response	2 (12)
	Major biochemical response†	15 (88)
	Stable disease	1 (6)
	Progressive disease§	1 (6)
Radiographic response	Complete response	
	Nodes	13 (76)
	Spleen	8 (47)
	Partial response	
	Nodes	4 (24)
	Spleen	7 (41)
	Major radiographic response‡	15 (88)
	Stable disease (spleen)	1 (6)
	Progressive disease§ (spleen)	1 (6)
Overall response	Complete response	5 (29)
	Partial response	9 (53)
	Stable disease	2 (12)
	Progressive disease§	1 (6)
KSHV-MCD Clinical Benefic Criteria	Complete response	14 (82)
	Partial response	1 (6)
	Stable disease	1 (6)
	Progressive disease	1 (6)

recurrent symptomatic KSHV-MCD

requiring therapy developed in 4 patients. Improved predictive factors for recurrence are needed

 The roles of consolidation or maintenance therapy as well as optimal management of patients with residual radiographic findings or elevated KSHV viral load remain areas of clinical uncertainty

Patient	Previous	Baseline	Baseline	Response	Response	Consolidation	Response long-	Months	Respon
	cutaneous	cutaneous	lymph	end R-Dox	criteria	(months)	term follow-up	follow-up	criteri
	KS	KS	node KS	(# cycles)					
1 (BK)	N	T ₁	Y	PR (5)	A	LD (14)	PR *	60	А
2 (ML)	N	Tt	Y	CI (6)	С	None	CW	3.5	С
3 (TK)	N	To	Y	CI (5)	С	IFN (10)	PR/cCR ¹	85	А
4 (CC)	N	T ₀	N	CI (7)	С	IFN (1)	CW/PR [‡]	55	A
3 (RP)	N	Τ1	Y	SD (5)	А	AZT/VGC (4)	PD ⁵	42	А
6 (DW)	N	T ₀	N	PR (3)	А	IFN (4)	SD	6	А
7 (GB)	N	N	Y	NED (3)	-	IFN (10)	NED	91	А
8 (MC)	Y	N	Y	NED (3)	-	IFN (10)	NED	91	А
9 (MA)	N	N	Y	PD/PR ¹¹ (3)	A	None	Lost to follow up	5	
10 (KW)	N	N	Y	NED (5)	-	IFN (0.5)	NED	36	А
11 (JG)	Y	N	N	NED (3)	-	IFN (10)	NED	69	А
12 (RD)	Y	N	N	NED (4)		AZT/VGC (7)	NED	57	A

KSHVaMCD, THERAPY

L-DOXOR CART RITUXIMAB ETOPOSIDE X X 1 **HIVaMCD ECOG 0-1** Cut KS Y/N HIVaMCD ECOG>2; EOD Cut KS Y/N **HIVaMCD ECOG 0-1** Visc KS Y Multidisciplinary HIVaMCD ECOG ≥2 1 approach Visc KS Y

- o Att.ne! Un numero non indifferente di pazienti muore durante le prime fasi del trattamento!
- o Att.ne!! A monitoraggio delle lesioni cutanee!
- o Non dimenticarsi delle recidive anche dopo anni!
- o Manteniamo monitoraggio per possibilità di avere linfomi HHV8 relati!

KSHV INFLAMMATORY CYTOKINE SYNDROME (KICS)

First described 2010

DEFINITION:

- o clinical symptoms and systemic inflammation, but without KSHV-MCD
- High KSHV viremia and levels of hIL-6, vIL-6, and IL-10 comparable to those seen in active KSHVMCD, significantly elevated compared with controls with KS only
- Mortality is high despite therapies directed at KSHV replication (including valganciclovir) or at KSHV-related tumors (including liposomal doxorubicin).

1. Clinical manifestations						
a.Symptoms	b. aboratory abnormalities					
Fever	Anemia					
Fatigue	Thrombocytopenia					
Edema	Hypoalbuminemia					
Cachexia	Hyponatremia					
Respiratory symptoms	c.Radiographic abnormalities					
Gastrointestinal disturbance	Lymphadenopathy					
Athralgia and myalgia	Splenomegaly					
Altered mental state	Hepatomegaly					
Neuropathy with or without pain	Body cavity effusions					
2. Evidence of systemic inflammation						
Elevated C-reactive protein (≥3 g/dL)						
3. Evidence of KSHV viral activity						
Elevated KSHV viral load in plasma (≥1000 copies/mL) or peripheral blood mononuclear cells (≥100 copies/10 ⁶ cells)						
4. No evidence of KSHV-associated multicentric Castleman disease						
Exclusion of MCD requires histopathologic assessment of lymphadenopathy if present.						

definition of KICS: presence of at least 2 clinical manifestations drawn from at least 2 categories (la, b, and c), + each of the criteria in 2, 3, and 4.

KSHV INFLAMMATORY CYTOKINE SYNDROME (KICS)

		KSHV and HIV Coinfe	ected Subjects	HIV Infected Subjects		
	KICS Subjects (10)	HIV Uncontrolled (10)	HIV Controlled (10)	HIV Uncontrolled (10)	HIV Controlled (10)	
Male sex	10 (100%)	9 (90%)	9 (90%)	8 (80%)	9 (90%)	
Age (years)	36 (22–60)	38 (29–50)	46 (34–61)	37 (24–51)	37 (29–51)	
Receiving ART	8 (80%)	0	10 (100%)	0	10 (100%)	
HIV VL (copies/mL)	72 (<50–74 375)	61600 (12100-1190000)	<50 (<50-<50)	35 686 (1425-500 000)	<50 (<50-459)	
CD4 (cells/µL)	88 (7–1308)	324 (75–568)	568 (261–972)	375 (12–860)	307 (100–577)	

CRITICALLY IL	L PTS			KSHV and HIV Co	infected Subjects			HIV Infecte	ed Subjects	
	KICS Subjects (10)		HIV Uncontrolled (10)		HIV Controlled (10)		HIV Uncontrolled (10)		HIV Controlled (10)	
	Abnormal (N, %)	Median, Range	Abnormal (N, %)	Median, Range	Abnormal (N, %)	Median, Range	Abnormal (N, %)	Median, Range	Abnormal (N, %)	Median, Range
KSHV VL (copies/10 ⁶ PBMCs)	NA	1569 (0–90 909) ^a	NA	0 (0–1) P=.0001 ^b	NA	0 (0–1) P = .0002 ^b	NA	0 (0–1) P = .0001 ^b	NA	0 (0–1) P=.0001 ^b
C-reactive protein (g/dL)	10 (100%)	37.8 (4.9–185.0)	3 (30%)	1.2 (0.5–36.3) P=.0003 ^b	3 (30%)	1.1 (0.16–5.9) P<.0001 ^b	5 (50%)	2.0 (0.16–7.6) P<.0001 ^b	1 (10%)	1.9 (0.2–5.9) P<.0001 ^b
Hemoglobin (g/dL)	10 (100%)	9.0 (6.5–10.2)	2 (20%)	14.1 (9.5–15.4) P=.0001 ^b	3 (30%)	14.3 (9.5–15.6) P=.0001 ^b	6 (60%)	13.3 (7.4–16.1) P=.0009 ^b	4 (40%)	14.1 (11.1–15.6) P<.0001 ^b
White Cell Count	4 (40%)	5.2 (2.5–13.9)	3 (30%)	5.0 (2.5–7.8) P=.8 ^b	4 (40%)	5.2 (3.5–8.9) P=.91 ^b	4 (40%)	5.7 (1.7-6.6) P=.48 ^b	2 (20%)	5.0 (2.6–8.0) P=.85 ^b
Platelet Count	6 (60%)	138 (27–371)	0	204 (161–286) P=.22 ^b	1 (10%)	211 (156–253) P=.29 ^b	3 (30%)	194 (47–314) P=.74 ^b	1 (10%)	244 (154–291) P= .15 ^b
Albumin	10 (100%)	2.4 (1.6–3.1)	4 (40%)	3.8 (2.5–4.1) P=.0002 ^b	3 (30%)	3.9 (3.3–4.4) P<.0001 ^b	4 (40%)	3.7 (2.2-4.2) P=.0002 ^b	0	4.0 (3.7–4.3) P<.0001 ^b
Sodium	1 (10%)	136 (126–143)	0	138 (135–141) P=.58 ^b	1 (10%)	138 (133–140) P=.34 ^b	0	139 (135–144) P=.29 ^b	0	139 (135–140) P = .42 ^b

KSHV INFLAMMATORY CYTOKINE SYNDROME (KICS)

Systemic inflammation, KSHV activation, (IL)-6 and IL-10 elevation in patients with KIC compared with controls

Other typical characteristics (to guide the clinician):

- o HIV viremia (high)
- o advanced CD4 lymphocytopenia
- the widespread adenopathy and splenomegaly that characterize KSHV-MCD are rare

Characteristics of patients admitted to the ICU with Kaposi sarcoma herpesvirus-associated diseases

Retrospective study

WHO: Forty-seven patients with KADs admitted to the ICU at the NIH Clinical Center between 2010 and 2021 HOW: evaluate the pts at ICU entry and ICU dishcharge/death

	All patients	Alive at 60 days	Died within 60 days
Reasons for ICU admission [n (%)]			
Respiratory failure	26 (55)	17 (52)	9 (64)
Alone	9 (19)	7 (21)	2 (14)
+ Hypotension	8 (17)	3 (9)	5 (36)
+ Fever	2 (4)	2 (6)	0 (0)
+ Cardiac condition	1 (2)	1 (3)	0 (0)
+ Altered mental status (AMS)	2 (4)	1 (3)	1 (7)
+ Fever and AMS	3 (6)	3 (9)	0 (0)
+ Fever, hypotension, and AMS	1 (2)	0 (0)	1 (7)
Hypotension	10 (21)	6 (18)	4 (29)
Alone	5 (11)	2 (6)	3 (21)
+ Fever	2 (4)	1 (3)	1 (7)
+ Cardiac condition	1 (2)	1 (3)	0 (0)
+ Hemorrhage	2 (4)	2 (6)	0 (0)
Cardiac condition	4 (9)	4 (12)	0 (0)
Alone	2 (4)	2 (6)	0 (0)
+ Fever	1 (2)	1 (3)	0 (0)
+ Fever and AMS	1 (2)	1 (3)	0(0)
ICU interventions [n (%)]			
Intubation	16 (34)	7 (21)	9 (64)
CRRT/dialysis/CVVH	13 (28)	8 (24)	5 (36)
Vasopressors	24 (51)	14 (42)	10 (71)
ICH chemotherapy/KAD therapy	19 (40)	9 (27) 13 (39)	7 (50)
rece chemotherapy in a therapy	20 (43)	13 (33)	7 (50)

MCD +/- KS KICS +/- KS PEL +/- KS +/- MCD

ns

CYTOKINE STORM RELATED SIGNS AND SYMPTOMS/ CRITICALLY ILL PATIENTS

Though none of the cytokine levels were of prognostic value, the measurement of these cytokines in combination with KSHV viral load levels may aid critical care and infectious disease teams in identifying KAD as a potential cause of multiorgan dysfunction in PWH, especially when patients present with a sepsis-like clinical picture but no identifiable source of infection

WORK UP DIAGNOSTICO RAPIDO MA COMPLETO!!

High viral load of KSHV/high level of cyotkines and inflammatory markers +/- HIV+

TAKE HOME MESSAGE

- LE PATOLOGIE LINFOPROLIFERATIVE HHV8 RELATE rappresentano un gruppo di patologie rare MA estremamente complesse, e spesso sono un «continuum»;
- o Il **trattamento** di molte di queste patologie è a tutt'oggi «**aperto**», tuttavia la maggiore conoscenza della loro patogenesi ci può aiutare ad indirizzare i nostri sforzi terapeutici;
- L'approccio vincente è SICURAMENTE quello multidisciplinare. Da soli non bastiamo! E' pertanto indispensabile educare gli altri specialisti e /o internisti alla loro conoscenza perché esse spesso degenerano in situazioni «life-threatening»

o Forse è giunto il momento di abolire la definizione di «linfomi AIDS definenti e di sostituirla con «neoplasie associate ad infezione dal virus dell'HIV»

luisa.verga@irccs-sangerardo.it

THANKS TO

I miei colleghi ematologi, specializzandi compresi

Il dr Rindone, la dr Rossi, la dr Sabbatini e la dr Columpsi

I colleghi della FIL per questa opportunità

Il prof Pagni, il dr L'Imperio

Un particolare ringraziamento al Prof Carbone per il tempo dedicatomi

Tutti i pazienti, quelli che ci sono ancora e quelli che sono nel cuore

J. Pollock In my Head II