

Ethics of Al in Hematology Practice and Clinical Research

Gregory A. Abel, MD, MPH Dana-Farber Cancer Institute

GIMEMA International Meeting
New Frontiers in Hematologic Research:
Quality of Life and Artificial Intelligence
October 2, 2025

Disclosures

Consulting

- Geron
- Novartis
- Broad Institute
- Institute for Value Based Medicine

I am a

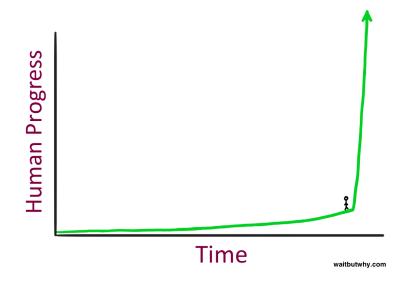
- Hematologic Oncologist
- Care Delivery Researcher
- Bioethicist

• I am not a

- Computer Scientist
- Artificial Intelligence Researcher
- Lawyer

Objectives

- Introduce AI and hematology
- Ethics of Al and health care: old and new
- Framework for ethical use of AI in hematology/oncology
- Special ethics cases: artificial empathy and patient-facing Al
- Review hematologist/oncologist views on ethics of Al



Al and Hematology

The Hematology Future, Coming Soon

- Transformative?
- Revolutionary?
- An Unstoppable Train?
- A Hematology Renaissance?
- A Mess?

"The development of AI is as fundamental as the creation of the personal computer. It will change the way people work, learn, and communicate—and transform healthcare. But it must be managed carefully to ensure its benefits outweigh the risks." – Bill Gates, 2023

Al Clinical Tools Coming to Hematology

- Clinician co-pilots
- Patient-facing clinical answer engines
- Hematopathology optimizers
- Treatment optimizers
- Clinical trial matchers
- Patient visit summarizers

Radakovich, *Curr Hem Mal Rep*, 2020 Alaoui, *J Med Int R*, 2022 El Alaoui, *JMIR*, 2022 Walter, *Blood Reviews*, 2023

Al Clinical Tools Coming to Hematology

- Prior authorization writers
- Individualized risk assessment tools
- Patient digital twins
- Hematology supportive care avatars
- Billing optimizers
- Publication plagiarism analyzers

Radakovich, *Curr Hem Mal Rep*, 2020 Alaoui, *J Med Int R*, 2022 El Alaoui, *JMIR*, 2022 Walter, *Blood Reviews*, 2023

"Living Up to the Hype" in Hematology

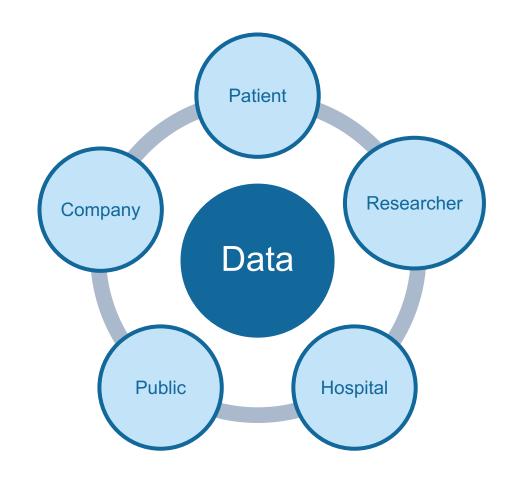
EHA Congress 2025: Image analysis, biomarker prediction, facilitate tumor boards and even prescribe treatments, with legislative developments suggesting some applications may be close.

Al-driven "ghost cytometry" enables early diagnosis of CML and prediction of treatment response.

Models show high sensitivity, specificity, and accuracy in diagnosing APML, interacting with -omics data, blood samples, and cytomorphology.

Al-based methods analyze **molecular predictors** in MDS, aiming to improve stratification and guide enrollment in clinical trials.

Mattina, AJMC, 2025



Ethics of Al and Healthcare: the Old and the New

Old: Data Ownership

The Times Sues OpenAI and Microsoft Over A.I. Use of Copyrighted Work

Millions of articles from The New York Times were used to train chatbots that now compete with it, the lawsuit said.

Old: Privacy, Security, Accountability

Non-Health ← **Health**

Re-Identifiability (e.g., genetics)

Old: Patient Safety (Non-Maleficence)

Processes of Safety

Recognition of AI/ML safety issues

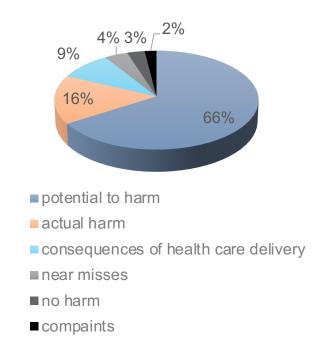
Reporting of AI/ML safety issues

Managing AI/ML safety issues

Categories of Safety

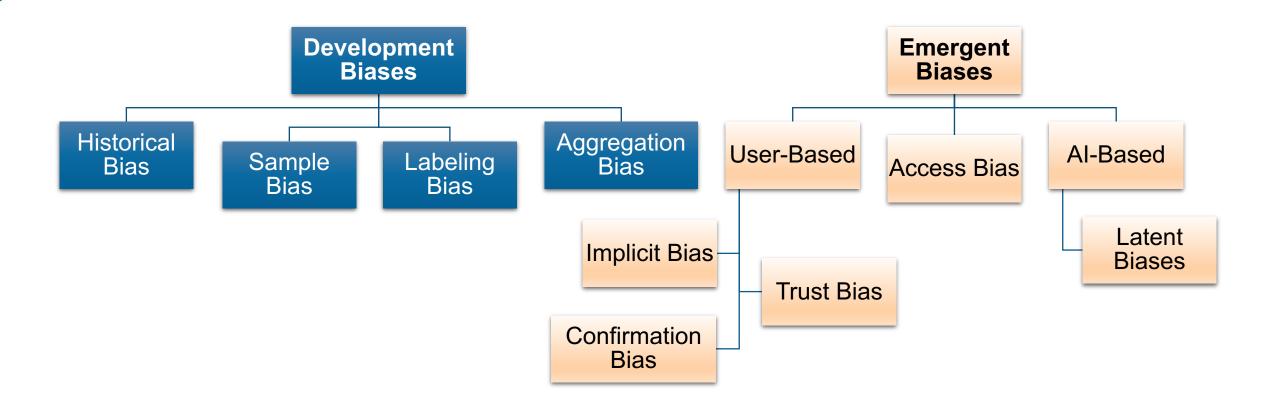
Intrinsic vs extrinsic safety

Development vs implementation safety



Lyell, JAMIA 2022

Old: Patient Safety (Non-Maleficence)

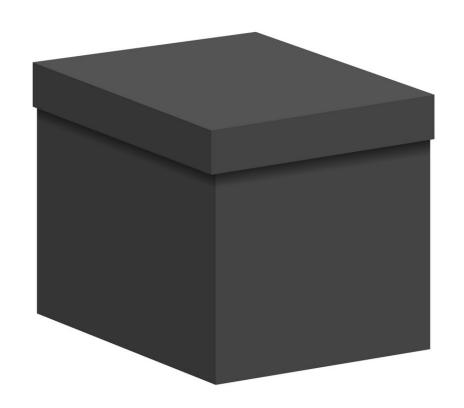

- Lyell and colleagues evaluated 266
 safety events involving approved
 machine-learning medical devices
 reported to the US FDA's Manufacture
 and User Device Experience (MAUDE)
 program between 2015 and 2021.
- While most events involved device problems (93%), use problems (7%) were four times more likely to harm (relative risk 4.2; 95% CI 2.5–7).
 Problems with data input were the top contributor to events (82%).

Lyell, JAMIA 2022

Old and New: Representativeness and Bias

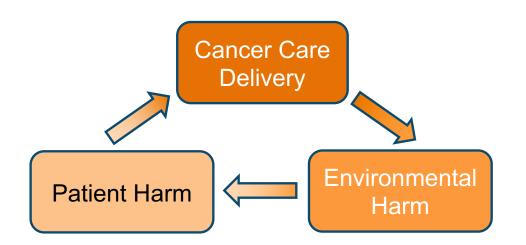
Old and New: Informed Consent

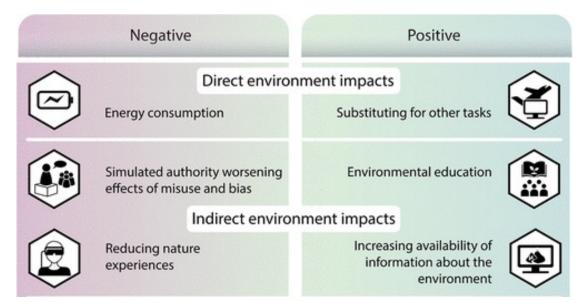
Consent to the use of AI in decision-making


Consent to the use of data to power Al tools

Consent to a study that assesses AI in clinical care

Consent to a study that does not assess AI decisionmaking, but AI is used




New: Inexplicability of Al Models

New: Environmental Impact

Ethical Use of Al in Hematology/Oncology

Process Framework

A Process Framework for Ethically **Deploying Artificial Intelligence in Oncology**

Andrew Hantel, MD1; Dillon D. Clancy, BA1; Kenneth L. Kehl, MD, MPH1; Jonathan M. Marron, MD, MPH1; Eliezer M. Van Allen, MD1; and Gregory A. Abel, MD, MPH

Artificial Intelligence (AI) is an emerging technology that AI-based imaging diagnostics were acceptable to alsearch of the term cross-referenced with cancer breast cancer). 14

uses complex algorithms to arrive at an outcome over a most twice as many respondents as Al-based clinical range of circumstances, leveraging the ability of computer systems to perform tasks that would usually re-recall past enthusiasm for promising treatments 12 that quire human levels of intelligence.¹⁻³ The use of Al in have yet to deliver (eg, cancer vaccination)¹³ or led to cancer care is rapidly expanding: a May 2022 PubMed adverse outcomes (eg, stem-cell transplantation for

- **Autonomy** in hematology care is interwoven with equity and privacy.
- Lack of defined **processes** for evaluating and disclosing how an Al tool's underlying dataset represents a given population—and what extrapolation is necessary for deriving an outcome or applying it—can magnify even small biases during hematology care.

Process Framework

- Hematology Al that minimizes bias while maximizing privacy and autonomy rests upon knowing whose data is intentionally included or excluded and patients consenting to that data use.
- Process-focused ethical decision frameworks are useful structures for addressing challenging issues in biomedicine when it is difficult to reach agreement regarding acceptable outcomes.
- They are frequently used for priority-setting during scarce resource allocation—such as drug shortages—where there are competing ethically acceptable outcomes such as treating the youngest or sickest first.

Process Framework

A widely-utilized framework is "**Accountability for Reasonableness**" (A4R), five principles to establish legitimacy of decisions for stakeholders.

- Relevance: decisions should be based on reasons that fair-minded people can agree are relevant under the circumstances;
- <u>Publicity</u>: decisions and their rationales should be publicly accessible;
- <u>Revision</u>: there should be opportunities to revisit and revise decisions and mechanisms to resolve disagreements;
- <u>Empowerment</u>: power differences should be minimized to ensure effective stakeholder participation;
- <u>Enforcement</u>: there should be voluntary or public regulation to ensure the other conditions are met.

Artificial Empathy

"Artificial Empathy"

The ability of nonhuman models to predict a person's internal state given the signals they emit or to predict a person's reaction when they are exposed to a given set of stimuli

Decreasing Social Isolation

Improving Patient-Doctor Relationships

Role Modeling for Humans

Inauthentic Relationship Substitution

Furthering of Social Isolation

Should (Can) Empathy Be Effortless?

VIEWPOINT

Compassionate Machines The Ethics of "Artificial Empathy" in Cancer Care

Erica Koranteng MBChB, MBE Sciences, Department Massachusetts- and Harvard Medical School, Boston, Massachusotts

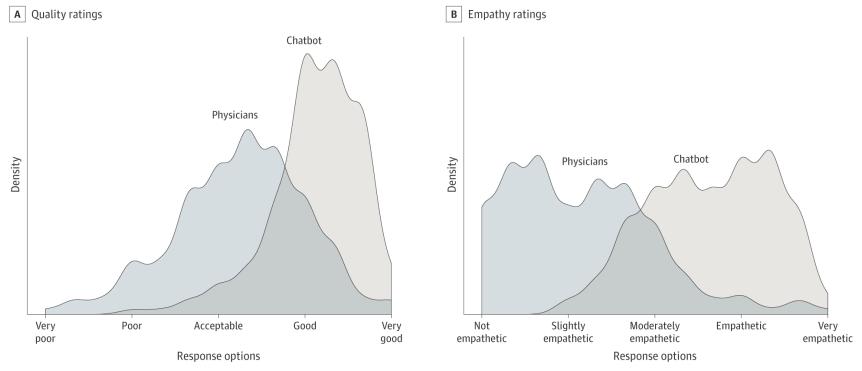
put from artificial intelligence (AI), is increasingly prevalent in health care. The term can appear contradictory and may even be inappropriate because human-tohuman interaction seems foundational to empathy. Particularly in oncology, the idea of artificial empathy can evoke discomfort and even disgust because true empathy is a core component of the oncologist-patient relationship. Moreover, the potential of AI to perform

"Artificial empathy," or seemingly compassionate out- like responses geared toward improving a patient's experience.1 Another is in pediatrics, in which avatars programmed with empathy-like language have been used to reduce perceived pain and fear associated with the placement of intravenous lines.3 For these patientfacing applications, reinforcement learning results in even more "empathetic" output over time.

Artificial empathy has the potential to strengthen cancer care, with support during diagnosis, treatment,

- "Artificial empathy" may inadvertently result in less human empathy in the hematologist-patient relationship. Genuine empathy requires emotional effort on the part of clinicians.
- Risk of **furthering inequities** in hematology care, as the use of artificial empathy will likely be less costly than human empathy.

Korenteng, JAMA Onc 2024



- The use of artificial empathy risks alienating patients; replacing opportunities for human with artificial empathy may promote loneliness or make patients feel undeserving of real human interaction.
- Artificial empathy may influence the behavior of patients with blood diseases in ways not aligned with their needs. Emotions are recognized heuristics and are known to bias decision-making (e.g.: "nudging").
- Artificial empathy may reduce the intrinsic value of empathy, posing a distinct moral concern.

Cross-sectional study: a database of questions from a public social media forum (Reddit's r/AskDocs) was used to randomly draw 195 exchanges where a verified physician responded to a public question. Chatbot responses were generated by entering the original question into a fresh session, and empathy compared by a team of <u>licensed health care professionals</u>.

Patient-Facing AI (PF-AI)

Patient-Facing Al

- Examples of PF-Al: enhanced telehealth, remote monitoring, virtual health coaching.
- The transformative potential of PF-AI technologies in hematology is undeniable. These applications can facilitate access, personalize care, improve treatment adherence, and enhance patient engagement.

Kelkar, JCO OP, 2023

Patient-Facing Al

- PF-Al technologies risk violating nonmaleficence because of lack of regulatory oversight, risk for error, and lack of transparency in training data sets and algorithms.
- These models may also disrupt the bioethical principle of justice. Al
 decision making is trained on historical data often generated within
 structurally inequitable societies: a problem know as data absenteeism.
- PF-Al may lead to impersonal care and diminished human touch, eroding
 patient dignity and therapeutic relationships. As we venture further along
 the Al gradient of algorithmic autonomy, such threats to dignity increase.

Patient-Facing Al

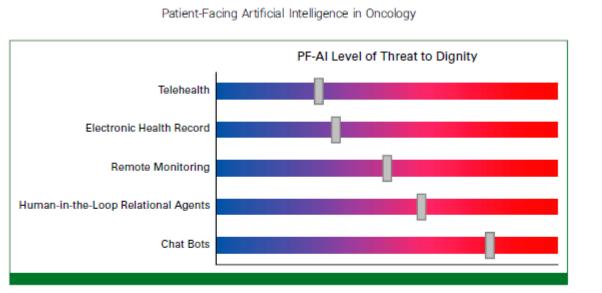


FIG 1. Gradient of algorithmic autonomy of PF-AI health technologies on the basis of threat to dignity. This gradient is a heuristic for interpreting risk of harm to human dignity from PF-AI and is based on interpretation of anecdotal evidence from the literature. The blue end of the spectrum represents low risk of harm to human dignity because of high human oversight of PF-AI. The red end of the spectrum represents high risk of harm to human dignity because of increased algorithmic autonomy from automation and use of generative PF-AI, lacking human oversight and empathy. PF-AI, patient-facing artificial intelligence.

Kelkar, JCO OP, 2023

Hematologist/Oncologist Views on Ethics of Al

- Cross-sectional survey of U.S. hematologists/oncologists for perspectives on how AI may be responsibly integrated into care and how to protect patients from hidden biases.
- Representative sample of medical hematology/oncology, surgical and radiation oncology specialists; November 2022 to July 2023.
- 204 surveys completed of 387 sent (**52.7**% response rate).

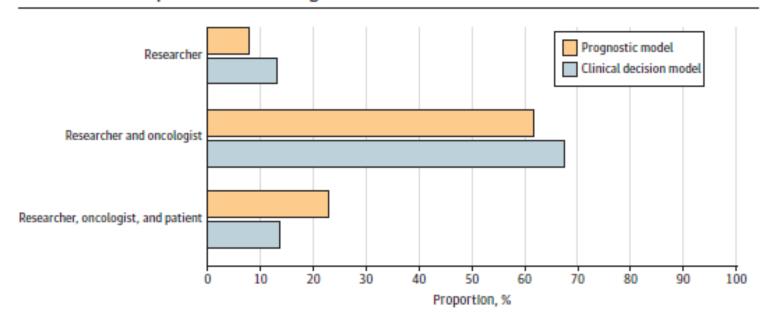
Hantel, JAMA NO, 2024

Characteristic	Respondents, No. (%)			
	All (N = 204)	Practice setting (n = 202)		
		Academic (n = 60)	Other (n = 142)	P value
Age group, y				
<40	45 (22.1)	18 (30.0)	27 (19.0)	
40-59	112 (54.9)	30 (50.0)	81 (57.0)	.12
60-80	46 (22.5)	11 (18.3)	34 (23.9)	
>80	1 (0.5)	1 (1.7)	0	
Gender				
Female	72 (35.3)	20 (33.3)	51 (35.9)	.68
Male	130 (63.7)	40 (66.7)	89 (62.7)	
Unknown	2 (1.0)	0	0	
Race and ethnicity				
Asian Indian	34 (16.7)	6 (10.0)	28 (19.7)	
Black or African American	9 (4.4)	4 (6.7)	5 (3.5)	.36
Eastern Asian or Other Pacific Islander	20 (9.8)	5 (8.3)	14 (9.9)	
White	128 (62.7)	42 (70.0)	84 (59.2)	
Other ^b	10 (4.9)	2 (3.3)	8 (5.6)	
≥1 Race	3 (1.5)	0	3 (2.1)	

	Respondents, No. (%)			
Characteristic	All (N = 204)	Practice setting (n = 202)		
		Academic (n = 60)	Other (n = 142)	P value
rears in practice				
≤5	33 (16.2)	13 (21.7)	20 (14.1)	
6-10	31 (15.2)	10 (16.7)	21 (14.8)	
11-20	74 (36.3)	20 (33.3)	53 (37.3)	.58
21-30	41 (20.1)	12 (20.0)	28 (19.7)	
≥31	25 (12.3)	5 (8.3)	20 (14.1)	
Oncology specialty				
Medical oncology	126 (61.8)	32 (53.3)	92 (64.8)	
Radiation oncology	56 (27.5)	18 (30.0)	38 (26.8)	.16
Surgical oncology	22 (10.8)	10 (16.7)	12 (8.5)	
Familiar with ≥2 AI model types				
Yes	141 (69.1)	44 (73.3)	96 (67.6)	
No	62 (30.4)	15 (25.0)	46 (32.4)	.45
Unknown	1 (0.5)	1 (1.7)	0	
Prior AI training				
Yes	95 (46.6)	44 (73.3)	50 (35.2)	<.001
No	109 (53.4)	16 (26.7)	92 (64.8)	<.001
Practice setting				
Academic	60 (29.4)	NA	NA	NA
Other	142 (69.6)	NA	NA	NA
Unknown	2 (1.0)	NA	NA	NA

Hantel, JAMA NO, 2024

- Most respondents felt AI would be helpful in hematology/oncology care.
- Al was felt to potentially help in diagnosing (95.6%), treating (89.2%), and managing side effects (60.4%).
- 84.8% reported AI needs to be "explainable" by oncologists.
- Only 23.0% reported AI needs to be "explainable" by patients.
- 76.5% reported feeling responsible for protecting patients from biased models.


- **81.4%** felt patients should consent to AI for cancer treatment decisions.
- 47.1% viewed medico-legal problems from AI use as physicians' responsibility; 90.7% felt Al developers should bear this responsibility.
- Only **27.9%** reported feeling confident in their ability to protect patients from biased Al.
- 93.1% reported they would benefit from AI training but 75.0% did not know how to access appropriate resources.

Hantel, JAMA NO. 2024


Figure 1. Responses to 2 Questions Assessing Which Stakeholder Types (Researcher, Oncologist, or Patient)
Should Be Able to Explain an Artificial Intelligence Model for It to Be Used in Clinic

Hantel, JAMA NO, 2024

Figure 2. Responses to a Scenario Where a US Food and Drug Administration-Approved Artificial Intelligence (AI) Model Selects a Different Regimen Than the Oncologist Planned to Recommend

Hantel, JAMA NO, 2024

- Results highlights potential issues related to accountability and deference to AI as well as associations with practice setting.
- Findings provide a glance at where hematologist/oncologists are in thinking about the ethical implications of AI in cancer care.
- Suggest implementation of AI in the field of hemato-oncology must include rigorous assessments of its effect on care decisions and decisional responsibility when problems related to AI use arise.
- Need for training for clinicians.

Patient's View of Ethics and Al

Dana-Farber
Cancer Institute
Beth Israel Deaconess Medical Center

Patient Views on Artificial Intelligence in Cancer Care

We are seeking to better understand patients' views on artificial intelligence (AI) in cancer care. Your input will help us identify and address patients' concerns as artificial intelligence tools are used in cancer care. You do not need any prior knowledge of AI to complete this survey.

- > This one-time survey will take approximately 10 minutes to complete.
- Your participation is voluntary, and will not impact your care in any way.
- > Your answers will be kept confidential. You will only be identified by the number
- > If you do not want to complete the survey, please mail back the postcard included in this packet or call the study staff at 857-215-0131 so that we are aware.
- > If you come across a question you would rather not answer, it is okay to skip it and go on to the next question.
- ➤ If you have any questions please contact Dr. Eric Blackstone, PhD at 857-215-0131 or by email at Eric Blackstone@dfci.harvard.edu.

When you have completed the survey, please place it in the pre-stamped and addressed envelope provided and mail it back.

13. I would trust artificial intelligence to help doctors with	
Salact one response per row	

	Strongly Disagree	Disagree	Agree	Strongly Agree
predicting my risk of getting cancer.				
telling me if I need cancer screening.				
choosing the best treatment option for my cancer.				
detecting if my cancer is getting worse.				
recommending a clinical trial.				
predicting how long I will live.				

14. It is important that these people can explain how a cancer-focused artificial intelligence tool works: Select one response per row.

	Strongly Disagree	Disagree	Agree	Strongly Agree
AI Developers				
Oncologists				
Patients				

15. I would feel comfortable using the following artificial intelligence tools without a healthcare

A tool that writes a summary of my doctor's notes so I can understand them
 A tool that helps me find clinical trials for cancer treatment

A tool that gives me advice on things like exercise or nutrition

A tool that helps me make medical decisions (for example, deciding if I should have a spot on

CONTINUE TO THE NEXT PAGE

Abel Lab 2025

Andrew Hantel, MD, MPH

Clark DuMontier, MD, MPH

Amar Kelkar, MD, MPH

Erica Koranteng, MD, MBE

Eric Blackstone, PhD

Angel Cronin, MS

Oldy Bejarano, MPH

Abby Shain, MS, MPH

Sunny Rosenthal, MPH

Mark Soliman, MS

Nicholas Groblewski

Ameya Sanyal

Erin Gallagher

Jessica Santos

