

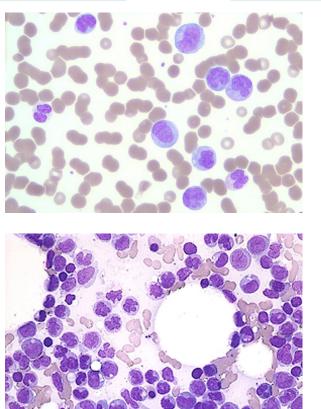
# Convegno della Fondazione Italiana Sindromi Mielodisplastiche

30 giugno 2025

# Nuovi parametri molecolari per la diagnosi: la stratificazione prognostica dei pazienti con CMML

Dott.ssa Alessia Campagna

Humanitas Research Hospital


### **Disclosures of Name Surname**

| Company name | Research<br>support | Employee | Consultant | Stockholder | Speakers<br>bureau | Advisory<br>board | Other |
|--------------|---------------------|----------|------------|-------------|--------------------|-------------------|-------|
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |
|              |                     |          |            |             |                    |                   |       |

FONDAZIONE ITALIANA SINDROMI MIELODISPLASTICHE

Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem and progenitor cell disorder characterized by the presence of:

- Sustained (>3 months) peripheral blood (PB) monocytosis (≥0.5 x 10<sup>9</sup>/L; monocytes ≥10% of white blood cell count)
- bone marrow dysplasia
- risk to transform to AML: 15%–20% over 3–5 y

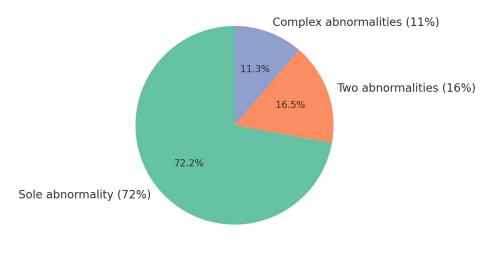


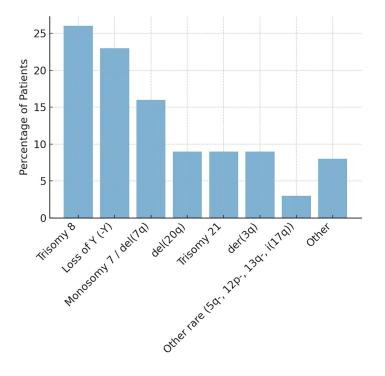


# ICC 2022 and WHO 2022 criteria for diagnosis of CMML

| Variable                                      | ICC                                                                                                                                                                                                                                                               | 5th edition of the WHO Classification                                                                                                                                                                                                                           |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Absolute monocyte count                       | AMC $\ge 0.5 \times 10^9$ /L, with monocytes being $\ge 10\%$ of the WBC differential                                                                                                                                                                             | <sup>b</sup> AMC $\ge 0.5 \times 10^{9}$ /L, with monocytes being $\ge 10\%$ of the WBC differential                                                                                                                                                            |
| Cytopenias                                    | MDS-defining cytopenias                                                                                                                                                                                                                                           | Not specified                                                                                                                                                                                                                                                   |
| Clonality                                     | Abnormal karyotype, or myeloid driver mutations with a variant allele fraction ≥10%<br>Without a clonal marker the AMC ≥ 1.0 × 10 <sup>9</sup> /L, along with ≥5% BM blasts, or BM dysplasia, or an abnormal immunophenotype                                      | <sup>c</sup> Abnormal karyotype and/or presence of a myeloid driver mutation                                                                                                                                                                                    |
| CMML categorization                           | <ul> <li><sup>a</sup>CMML-1: &lt;5% PB blasts and &lt;10% BM blasts</li> <li>CMML-2: 5%-19% PB blasts and 10%-19% BM blasts, or the presence of Auer rods</li> <li>WBC &lt; 13 × 10<sup>9</sup>/L-MD-CMML</li> <li>WBC ≥ 13 × 10<sup>9</sup>/L-MP-CMML</li> </ul> | <ul> <li><sup>a</sup>CMML-1: &lt;5% PB blasts and &lt;10% BM blasts</li> <li>CMML-2: 5%-19% PB blasts and 10%-19% BM blasts, or the presence of Auer rods</li> <li>WBC &lt; 13 × 10<sup>9</sup>/L-MD-CMML</li> <li>WBC≥13 × 10<sup>9</sup>/L-MP-CMML</li> </ul> |
| Bone marrow aspirate and biopsy               | Hypercellular marrows with increased BM monocytosis.<br>No features of AML or MPN<br><20% blasts                                                                                                                                                                  | <sup>c</sup> Dysplasia present in ≥1 cell lineage<br><sup>b</sup> < 20% blasts                                                                                                                                                                                  |
| Monocyte repartition-<br>based flow cytometry | Not included                                                                                                                                                                                                                                                      | <sup>c</sup> Presence of classical monocytes (M01) >94%                                                                                                                                                                                                         |
| Exclusionary criteria                         | BCR::ABL1<br>Myeloid/lymphoid neoplasms with tyrosine kinase fusions                                                                                                                                                                                              | <sup>b</sup> BCR::ABL1<br>MPN<br>Myeloid/lymphoid neoplasms with tyrosine<br>kinase fusions                                                                                                                                                                     |



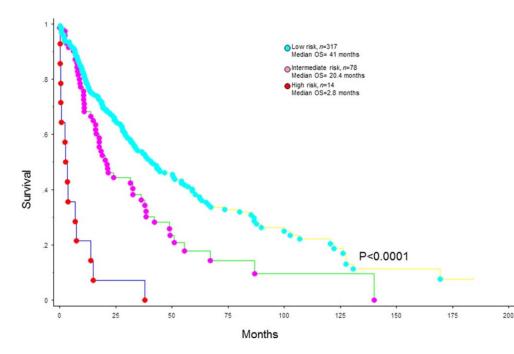

## ICC 2022 and WHO 2022 criteria for diagnosis of CMML


| Variable                                      | ICC                                                                                                                                                                                                                                                                   | 5th edition of the WHO Classification                                                                                                                                                                                    |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Absolute monocyte count                       | AMC $\ge$ 0.5 $\times$ 10 <sup>9</sup> /L, with monocytes being $\ge$ 10% of the WBC differential                                                                                                                                                                     | <sup>b</sup> AMC $\ge 0.5 \times 10^{9}$ /L, with monocytes being $\ge 10\%$ of the WBC differential                                                                                                                     |
| Cytopenias                                    | MDS-defining cytopenias                                                                                                                                                                                                                                               | Not specified                                                                                                                                                                                                            |
| Clonality                                     | Abnormal karyotype, or myeloid driver mutations with a<br>variant allele fraction ≥10%<br>Without a clonal marker the AMC ≥ 1.0 × 10 <sup>9</sup> /L, along<br>with ≥5% BM blasts, or BM dysplasia, or an abnormal<br>immunophenotype                                 | <sup>c</sup> Abnormal karyotype and/or presence of a myeloid driver mutation                                                                                                                                             |
| CMML categorization                           | <ul> <li><sup>a</sup>CMML-1: &lt;5% PB blasts and &lt;10% BM blasts</li> <li>CMML-2: 5%-19% PB blasts and 10%-19% BM blasts, or<br/>the presence of Auer rods</li> <li>WBC &lt; 13 × 10<sup>9</sup>/L-MD-CMML</li> <li>WBC ≥ 13 × 10<sup>9</sup>/L-MP-CMML</li> </ul> | <sup>a</sup> CMML-1: <5% PB blasts and <10% BM blasts<br>CMML-2: 5%-19% PB blasts and 10%-19% BM<br>blasts, or the presence of Auer rods<br>WBC < 13 × 10 <sup>9</sup> /L-MD-CMML<br>WBC≥13 × 10 <sup>9</sup> /L-MP-CMML |
| Bone marrow aspirate and biopsy               | Hypercellular marrows with increased BM monocytosis.<br>No features of AML or MPN<br><20% blasts                                                                                                                                                                      | <sup>c</sup> Dysplasia present in ≥1 cell lineage<br><sup>b</sup> < 20% blasts                                                                                                                                           |
| Monocyte repartition-<br>based flow cytometry | Not included                                                                                                                                                                                                                                                          | <sup>c</sup> Presence of classical monocytes (M01) >94%                                                                                                                                                                  |
| Exclusionary criteria                         | BCR::ABL1<br>Myeloid/lymphoid neoplasms with tyrosine kinase fusions                                                                                                                                                                                                  | <sup>b</sup> BCR::ABL1<br>MPN<br>Myeloid/lymphoid neoplasms with tyrosine<br>kinase fusions                                                                                                                              |

Patnaik, Am J Hematol. 2024;99:1142–1165.



### Clonal cytogenetic abnormalities are seen in ~30% of CMML



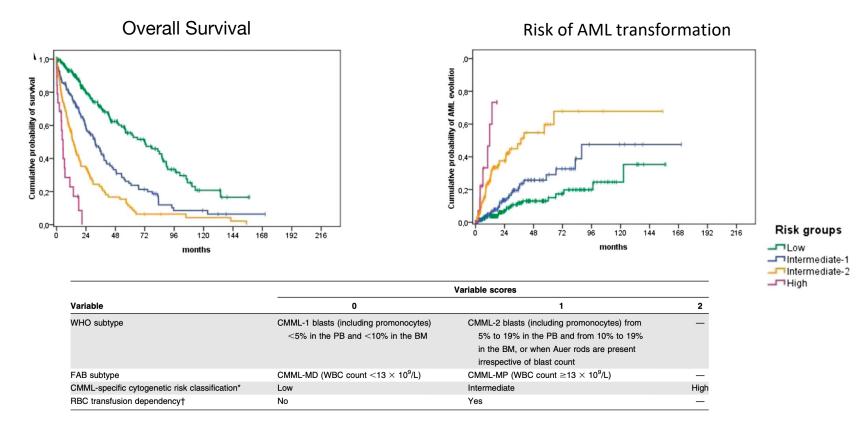



30 giugno 2025



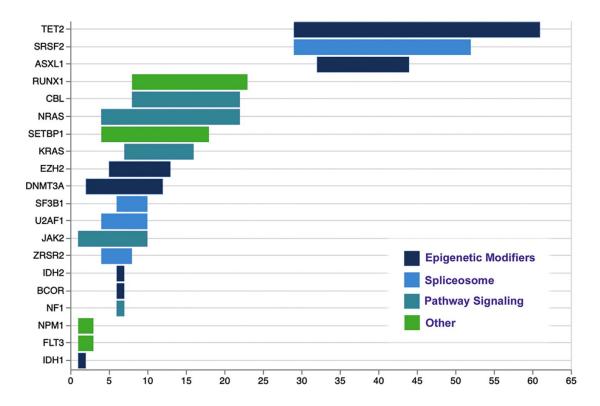
### CMML-specific cytogenetic risk classification




**Low risk:** normal karyotype, loss of Y chromosome, Isolated 3q rearrangements

**Intermediate risk:** all other abnormalities (e.g., +8, -7/7q-, del(20q), +21, etc.)

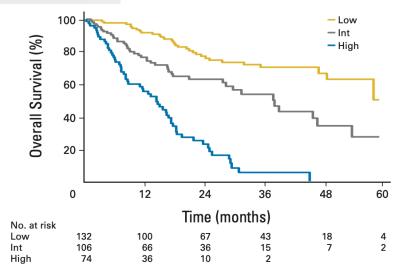
**High risk:** Complex karyotype, Monosomal karyotype




## CMML-specific prognostic scoring system (CPSS)






### Relative frequencies of somatic mutations in patients with CMML



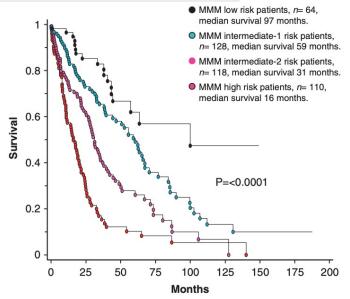


## GFM score





## Mayo Molecular Model


1. Increased absolute monocyte count >10  $\times$  10<sup>9</sup>/L

2. Presence of circulating blasts

3. Hemoglobin <10 g/dL

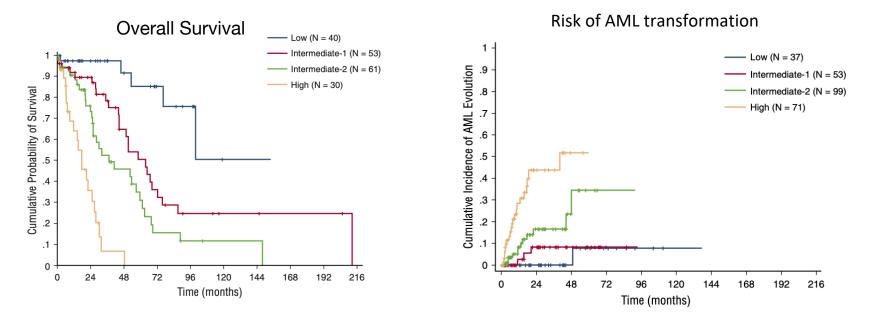
4. Platelet count <100  $\times$  10<sup>9</sup>/L

5. Frameshift and nonsense ASXL1 mutations



**ASXL1** was the only mutation independently associated with adverse prognosis

FONDAZIONE ITALIANA SINDROMI MIELODISPLASTICHE

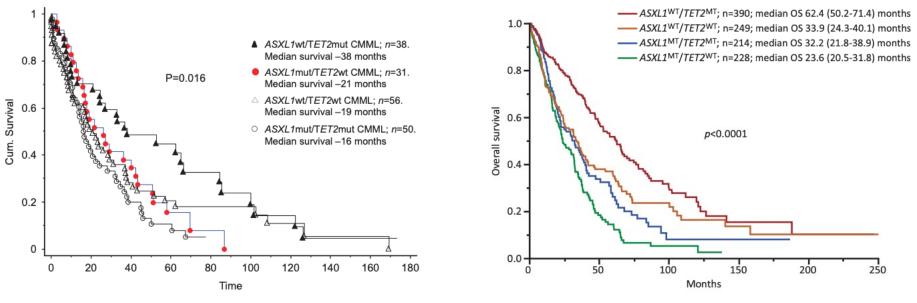

1.Genetic risk groups as defined by CPSS cytogenetic risk stratification and gene mutations involving ASXL1, NRAS, SETBP1 and RUNX1.

2.Bone marrow blasts ≥5%.

3.WBC count  $\geq$ 13 × 10?/L

4.Red blood cell transfusion dependancy



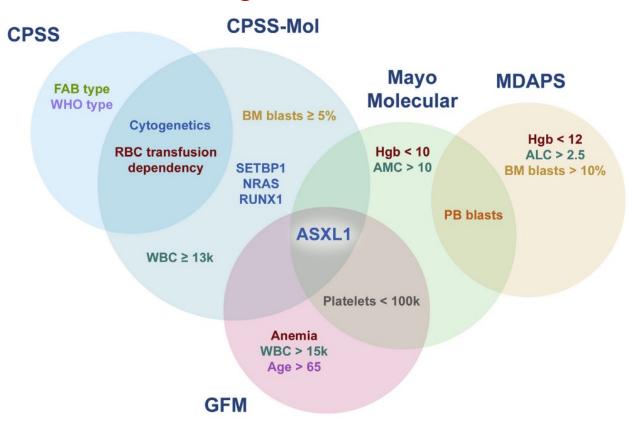



Mutations involving ASXL1, NRAS, SETBP1 and RUNX1

### Elena C et al. Blood. 2016 Sep 8;128(10):1408-17

### Prognostic impact of somatic mutations depends on co-mutational status

TET2 mutations confer favorable prognosis only in the absence of ASXL1

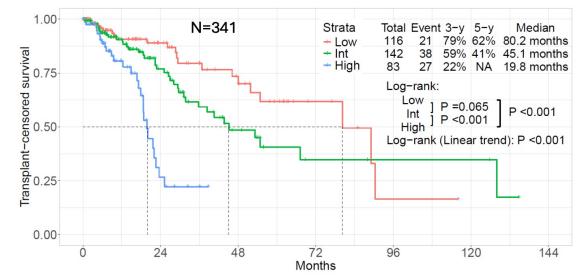



Patnaik MM et al. Blood Cancer J. 2016;6:e385.

Coltro G et al. Leukemia. 2020 May;34(5):1407-1421.



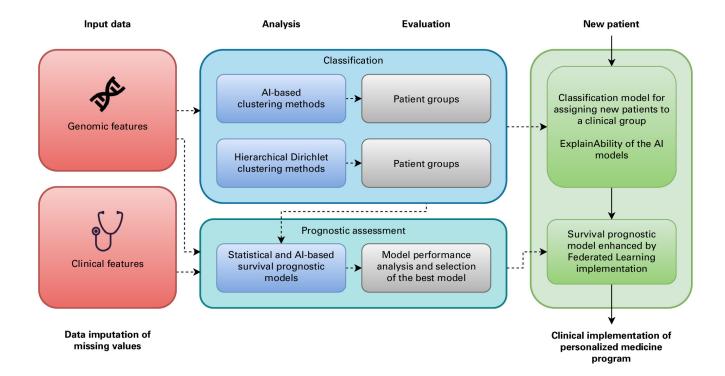
## **Overview of Prognostic Models in CMML**




Best Practice & Research Clinical Haematology 33 (2020) 101131



### **BLAST and BLAST-mol score**

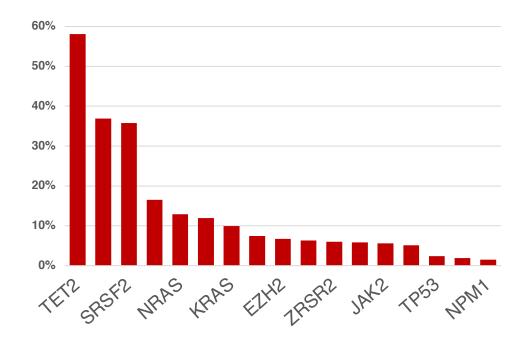

Circulating blasts  $\ge 2\%$ Leukocytes  $\ge 13 \times 10^{9}/L$ Anemia



**Favorable genetic risk factors:** TET2<sup>MUT</sup>; PHF6<sup>MUT</sup> wo unfavorable mutations **Unfavorable genetic risk factors:** DNMT3A<sup>MUT</sup>; U2AF1<sup>MUT</sup>; BCOR<sup>MUT</sup>; SETBP1<sup>MUT</sup>; PTPN11<sup>MUT</sup>; NRASMUT; RUNX1<sup>MUT</sup>; TP53<sup>MUT</sup>; ASXL1<sup>MUT</sup>; and adverse karyotype defined by cytogenetic abnormalities (-Y or +8) **Intermediate genetic risk factors:** all other

30 giugno 2025

# An innovative framework for multi-modal analysis, classification and personalized prognostic assessment in hematology



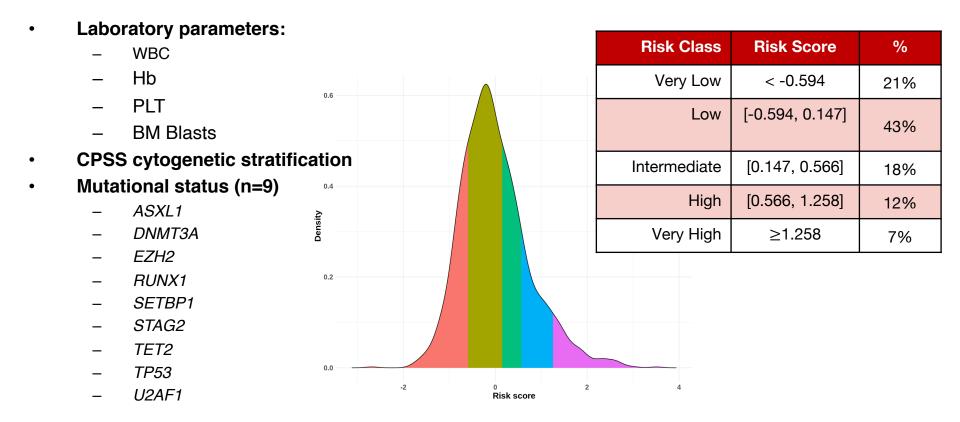



# Retrospective Study Population (N = 3,565)

| WHO 2016                                                                      |                                                                                     |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                                                               |                                                                                     |
| Classification                                                                |                                                                                     |
| CMML-0                                                                        | 1,470 (41.2)                                                                        |
| CMML-1                                                                        | 1,138 (31.9)                                                                        |
| CMML-2                                                                        | 620 (17.4)                                                                          |
| Oligo-CMML                                                                    | 337 (9.5)                                                                           |
| WHO 2022                                                                      |                                                                                     |
| Classification                                                                |                                                                                     |
| CMML-1                                                                        | 2,905 (81.5)                                                                        |
| CMML-2                                                                        | 660 (18.5)                                                                          |
| Age                                                                           | 70.8 (63-77)                                                                        |
| Sex                                                                           |                                                                                     |
|                                                                               |                                                                                     |
| Female                                                                        | 1,153 (32.3)                                                                        |
| Female<br>Male                                                                | 1,153 (32.3)<br>2,412 (67.7)                                                        |
|                                                                               |                                                                                     |
| Male                                                                          |                                                                                     |
| Male Laboratory Parameters                                                    | 2,412 (67.7)                                                                        |
| Male Laboratory Parameters White Blood Cells                                  | 2,412 (67.7)<br>9.2 (5.4-18.3)                                                      |
| Male Laboratory Parameters White Blood Cells Neutrophils                      | 2,412 (67.7)<br>9.2 (5.4-18.3)<br>4.5 (2.2-9.6)                                     |
| Male Laboratory Parameters White Blood Cells Neutrophils Monocytes            | 2,412 (67.7)<br>9.2 (5.4-18.3)<br>4.5 (2.2-9.6)<br>1.9 (1.2-3.9)                    |
| Male Laboratory Parameters White Blood Cells Neutrophils Monocytes Hemoglobin | 2,412 (67.7)<br>9.2 (5.4-18.3)<br>4.5 (2.2-9.6)<br>1.9 (1.2-3.9)<br>11.0 (9.2-12.7) |

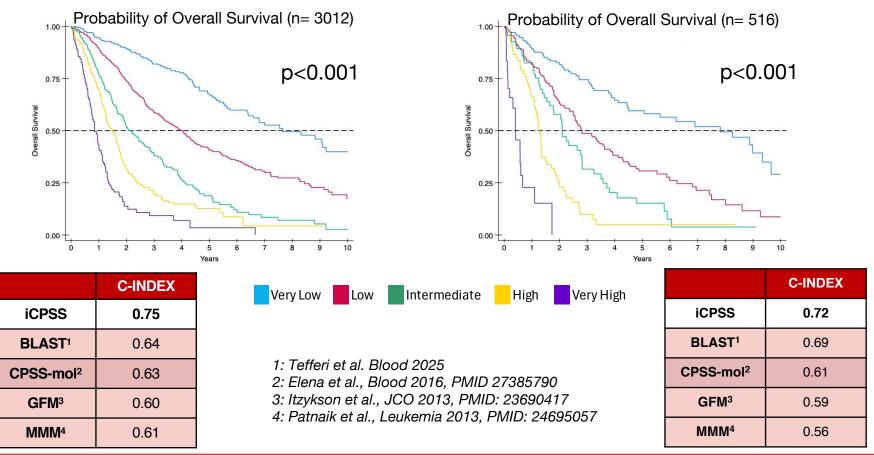
- Cytogenetic and mutational information were collected locally
- P/LP variants (VAF >2%) were included in the analysis




### Mutation-Based Clustering Enhances Prognostic Stratification

| Subgroup                                         | Cluster-defining abnormalities | Assigned<br>patients | Median OS, years (95%<br>C.I.) | Median LFS, years (95% C.I.) |
|--------------------------------------------------|--------------------------------|----------------------|--------------------------------|------------------------------|
| Spliging mashingry                               | SRSF2 + TET2                   | 7.9%                 | 4.5 (3.4-7.5)                  | 4.5 (3.3-7.5)                |
| Splicing machinery                               | ZRSR2 + TET2                   | 3.1%                 | 8.2 (4.3- NR)                  | 8.0 (4.1-NR)                 |
| Splicing and additional<br>higher-risk mutations | SRSF2 + TET2 + ASXL1/RUNX1     | 22.2%                | 3.2 (2.8-3.5)                  | 2.4 (2.1-3.0)                |
|                                                  | ZRSR2 + TET2 + EZH2/ASXL1      | 8.9%                 | 1.9 (1.7-2.5)                  | 1.6 (1.1-2.3)                |
| Isolated SF3B1                                   | SF3B1                          | 6.6%                 | 4.2 (3.7-4.8)                  | 3.3 (2.9-4.1)                |
|                                                  | CBL                            | 7.1%                 | 3.9 (2.6-5.6)                  | 3.8 (2.3-5.4)                |
| Signal transduction and tyrosine-kinase pathways | NRAS/KRAS                      | 11.7%                | 3.7 (2.6-4.5)                  | 3.4 (2.3-4.0)                |
|                                                  | SETBP1                         | 5.3%                 | 2.4 (2.1-3.5)                  | 2.0 (1.4-2.7)                |
|                                                  | JAK2                           | 3.7%                 | 4.9 (2.9-8.3)                  | 4.3 (2.5-6.8)                |
| High-risk signatures                             | TP53 + Complex Karyotype       | 2.1%                 | 0.9 (0.7-1.3)                  | 0.7 (0.6-1.1)                |
|                                                  | NPM1, FLT3                     | 2.5%                 | 1.7 (1.0-2.6)                  | 0.7 (0.5-1.2)                |

- 20% of patients could not be assigned to a specific genomic signature




### International CMML Prognostic Score (iCPSS)



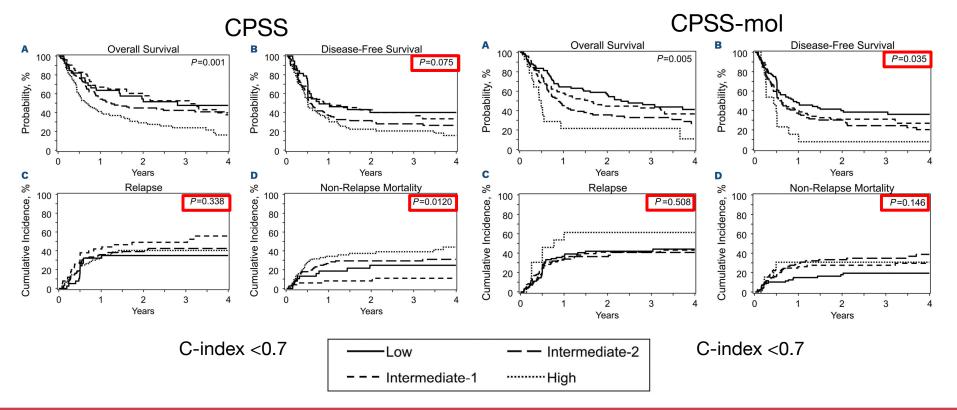


### iCPSS and clinical outcomes in CMML



30 giugno 2025

Lanino L, Blood 144 (2024) 1003-1008




## Prognostic scores and transplant

- CMML is characterized by an increased rate of leukemic evolution and shorter survival.
- Allogeneic HSCT remains the only potential curative treatment for CMML. The toxicity associated with HSCT warrants a careful and personalized selection of potential candidates for the procedure.
- The optimal timing of HSCT in CMML patients remains an active area of research.
- Prognostic scores in CMML integrate minimal molecular information and offer poor predictive performances in the transplantation setting

FONDAZIONE ITALIANA SINDROMI MIELODISPLASTICHE

# CPSS-Mol does not improve prognostic accuracy over CPSS after allogeneic transplant in CMML (n=313)













# EHA2025 Congress

June 12 - 15, 2025 Milan, Italy

A Decision Support System for Personalized Optimization of Hematopoietic Stem Cell Transplantation Timing in Chronic Myelomonocytic Leukemia

### A Decision support system for personalized optimization of HSCT in CMML

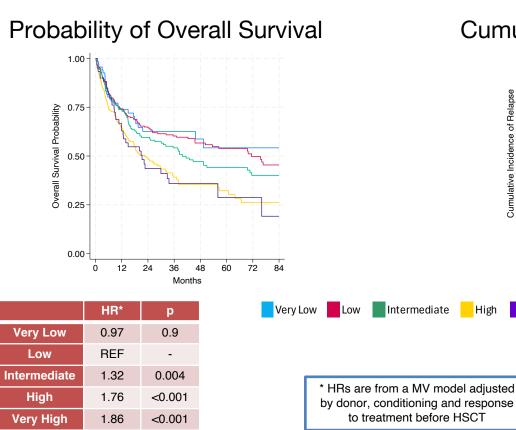
# Study population

|                                   | Disease Natural History | Transplanted    |
|-----------------------------------|-------------------------|-----------------|
|                                   | N = 2,184               | N = 829         |
| Male sex                          | 1,479 (68%)             | 545 (66%)       |
| Age                               | 73 (67-79)              | 61 (55-65)      |
| WHO 2016                          |                         |                 |
| CMML-0                            | 1,185 (54%)             | 326 (39%)       |
| CMML-1                            | 644 (29%)               | 273 (33%)       |
| CMML-2                            | 355 (16%)               | 230 (28%)       |
| WBC [x10 <sup>3</sup> /mmc]       | 10 (6-19)               | 12 (6-24)       |
| Hb [g/dl]                         | 11.1 (9.3-12.8)         | 10.5 (8.9-12.5) |
| Platelets [x10 <sup>3</sup> /mmc] | 112 (63-196)            | 93 (51-176)     |
| Bone Marrow Blasts [%]            | 4.0 (2.0-7.0)           | 6.0 (2.0-10.0)  |
| CPSS-mol Risk Class               |                         |                 |
| Low                               | 396 (18%)               | 56 (6.8%)       |
| Intermediate-1                    | 549 (25%)               | 176 (21%)       |
| Intermediate-2                    | 788 (36%)               | 363 (44%)       |
| High                              | 451 (21%)               | 234 (28%)       |
| CPSS Risk Class                   |                         |                 |
| Very Low                          | 435 (20%)               | 69 (8.3%)       |
| Low                               | 951 (44%)               | 298 (36%)       |
| Intermediat                       | 335 (15%)               | 193 (23%)       |
| High                              | 301 (14%)               | 207 (25%)       |
| Very High                         | 162 (7.4%)              | 61 (7.4%)       |
| Conditioning                      |                         |                 |
| Myeloablative                     |                         | 374 (45%)       |
| Non-myeloablative                 |                         | 455 (55%)       |
| Disease at HSCT                   |                         |                 |
| AML                               |                         | 68 (8.2%)       |
| CMML                              |                         | 761 (92%)       |

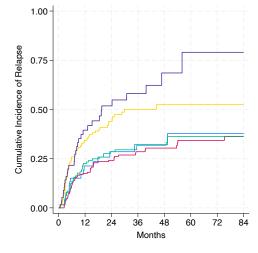
#### EHA 2025 - Abstract: S176



## iCPSS for Transplant Outcomes (N=829)


Intermediate

to treatment before HSCT


Low

High

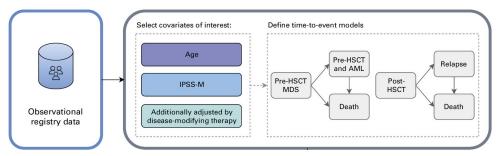
Very High



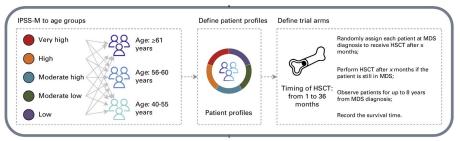
### Cumulative Incidence of Relapse



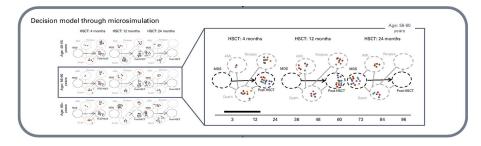
|              | HR*  | р      |
|--------------|------|--------|
| Very Low     | 1.03 | 0.9    |
| Low          | REF  | -      |
| Intermediate | 1.19 | 0.3    |
| High         | 2.01 | <0.001 |
| Very High    | 2.65 | <0.001 |


#### EHA 2025 - Abstract: S176

#### 30 giugno 2025



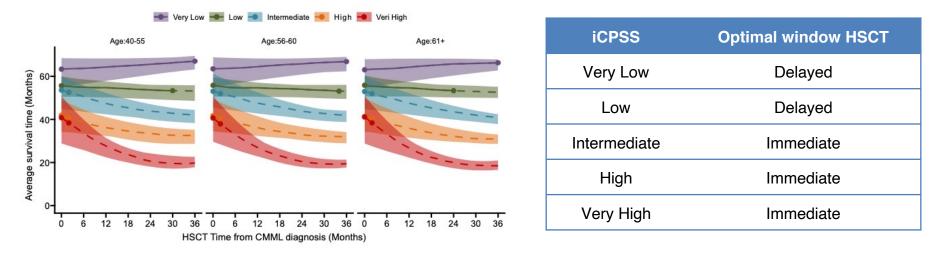

## Clinical Decision Support System (CDSS)


STEP 1 - Model of the disease natural history and the effect of treatment



### STEP 2 Simulation of the target trial

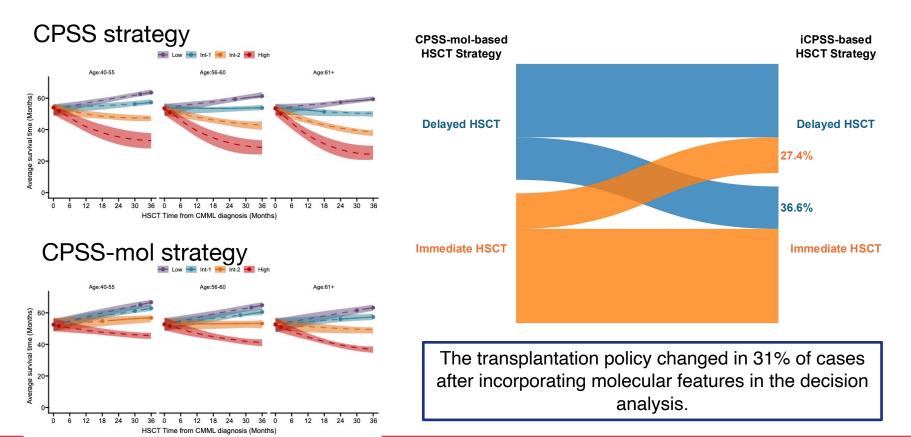



### STEP 3 Scenario analysis - microsimulation





# Survival by iCPSS Policy


### iCPSS strategy



In patients at intermediate, high, and very high iCPSS risk, early transplant procedure was associated with a longer life expectancy



# Comparison of iCPSS vs CPSS-mol transplantation policy



EHA 2025 - Abstract: S176

# Conclusion

- > CMML is a rare, biologically complex disease leading to highly variable clinical outcomes.
- Despite the availability of several prognostic models, no model fully accounts for the disease's heterogeneity, especially in different treatment settings.
- The development of integrative models like BLAST-mol and iCPSS reflects the growing effort to refine risk stratification in CMML by combining clinical, cytogenetic, and molecular information.
- Optimal CMML management requires a personalized approach, integrating multiple layers of patient-specific data to inform risk assessment, treatment decisions, and long-term planning.

### Convegno della Fondazione Italiana Sindromi Mielodisplastiche

# Acknowledgements



IRCCS HUMANITAS RESEARCH HOSPITAL

FONDAZIONE ITALIANA SINDROMI MIELODISPLASTICHE

CENTER FOR ACCELERATING LEUKEMIA/LYMPHOMA RESEARCH

M. Zampini F. Ficara L. Crisafulli M. Brindisi G. Martano E. Saba N. Pinocchio D. Ventura C. Milanesi N.Manes



L. Lanino S. D'Amico E. Sauta G. Asti G. Maggioni M. Ubezio G. Todisco A. Russo **M. Della Porta** 

30 giugno 2025