

Convegno della Fondazione Italiana Sindromi Mielodisplastiche

30 giugno 2025

Indicazioni e gestione clinica del trapianto allogenico nelle MDS e CMML: indicazioni EBMT

Francesco Onida

ASST Fatebenefratelli-Sacco

Università degli Studi di Milano

Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Menarini StemLine					٧		
Takeda					V	V	
Kyowa Kirin					V	V	
Johnson & Johnson					٧		

Background

- Allogeneic SCT represents the only curative treatment option for patients with MDS and CMML
- Morbidity and mortality risks still represent major limits of allo-SCT
- Reduced-intensity and reduced-toxicity regimens have widened eligibility
- Risk-benefit ratio of allo-SCT is strongly determined by the selection of patients and optimal timing of transplantation
- Who to transplant and when to transplant are the key questions

Best results with transplantation

- ✓ Transplant-related mortality # 15%
 ✓ Relapse rate # 15%
- ✓ Relapse rate # 15%
 ✓ Overall survival # 70%

» In young, low risk and standard transplantation

Usual results with transplantation

✓ Transplant-related mortality # 30%
 ✓ Relapse rate # 30%
 ✓ Overall survival # 40%

» In older, high risk and "current" transplantation

→ in the majority of patients with MDS and CMML...

FONDAZIONE ITALIANA SINDROMI MIELODISPLASTICHE

Immediate vs delayed transplantation: yesterday

Patients should be transplanted before AML transformation

Blood 2004 Cutler

Convegno della Fondazione Italiana Sindromi Mielodisplastiche

©Clinical and Genomic-Based Decision Support System to Define the Optimal Timing of Allogeneic Hematopoietic Stem-Cell Transplantation in Patients With Myelodysplastic Syndromes

Cristina Astrid Tentori, MD¹²; Caterina Gregorio, PhD^{3,4,5} (); Marie Robin, MD⁶; Nico Gagelmann, MD⁷ (); Carmelo Gurnari, MD⁸ (); Somedeb Ball, MD⁹, Juan Carlos Caballero Berrocal, MD¹⁰ (); Luca Lanino, MD¹² (); Saverio D'Amico, MEng⁶ (); Marta Spreafico, PhD¹¹ (); Giulia Maggioni, MD¹²; Erica Travaglino, BsC¹²; Elisabetta Sauta, PhD¹³ (); Manja Meggendorfer, PhD¹³; Lin-Pierre Zhao, MD⁶ (); Alessia Campagna, MD¹²; GenoMed4All, Synthema, GESMD, FISIM, and EuroBloodNET; Victor Savevski, MEng¹; Armando Santoro, MD¹² (); Najla Al Ali, MD¹⁴; David Sallman, MD¹⁴ (); Francesc Sole, PhD¹⁵ (); Guillermo Garcia-Manero, MD¹⁶ (); Ulrich Germing, MD¹⁷; Nicolaus Kroger, MD⁷ (); Shahram Kordasti, PhD¹³⁺¹⁹ (); Valeria Santini, MD²⁰ (); Guillermo Sanz, MD²¹ (); Wolfgang Kern, MD¹³ (); Uwe Platzbecker, MD²² (); Maria Diez-Campelo, MD¹⁶ (); Gastone Castellani, PhD^{22,50} (); Rami Komrokji, MD¹⁴ (); Francesca Ieva, PhD^{3,27}; and Matteo Giovanni Della Porta, MD¹² ()

	No HSCT	HSCT
Training	3502	1878
validation	1125	613

HSCT Time Since MDS Diagnosis (months)

Tentori CA et al. JCO 2024 c

🔇 blooď

Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel

Theo de Witte,¹ David Bowen,² Marie Robin,³ Luca Malcovati,⁴ Dietger Niederwieser,⁵ Ibrahim Yakoub-Agha,⁶ Ghulam J. Mufti,⁷ Pierre Fenaux,⁸ Guillermo Sanz,⁹ Rodrigo Martino,¹⁰ Emilio Paolo Alessandrino,¹¹ Francesco Onida,¹² Argiris Symeonidis,¹³ Jakob Passweg,¹⁴ Guido Kobbe,¹⁵ Arnold Ganser,¹⁶ Uwe Platzbecker,¹⁷ Jürgen Finke,¹⁸ Michel van Gelder,¹⁹ Arjan A. van de Loosdrecht,²⁰ Per Ljungman,²¹ Reinhard Stauder,²² Liisa Volin,²³ H. Joachim Deeg,^{24,25} Corey Cutler,²⁶ Wael Saber,²⁷ Richard Champlin,²⁸ Sergio Giralt,²⁹ Claudio Anasetti,³⁰ and Nicolaus Kröger³¹

Patient Selection

- Use IPSS-R and HCT-CI to assess eligibility: fit, higher-risk patients should be considered
- Lower-risk patients: only if poor-risk genetics, severe cytopenias, or high transfusion burden
- Very-high-risk: poor outcomes with standard HSCT; favor clinical trials

Transplant indications in MDS patients

**poor-risk cytogenetic characteristics, persistent blast increase [>50% or with >15% BM blasts], life-threatening cytopenias, high transfusion intensity

Factors relevant for the selection of cytoreductive treatment prior to HCT

- The percentage of bone marrow (BM) blasts at HSCT strongly influences outcomes
 patients with ≥10% blasts tend to do worse without cytoreduction.
- HMAs and ICT are the main options to reduce tumor burden before conditioning. There's no definitive evidence favoring one approach outside of clinical trials.
- Some evidence suggests HMAs may be less toxic than ICT with comparable post-HSCT outcomes. Patients with stable disease after ≥6 cycles of HMA can proceed to HSCT.
- ICT → significant toxicity (TRM up to 16%). Higher-risk MDS with poor-risk CGs may be transplanted in CR after ICT (preferably within investigational protocols).

Factors relevant for the selection of cytoreductive treatment prior to HCT

- For fit higher-risk MDS patients with >10% blasts and normal cytogenetics: reduce tumor load, but no clear preference between HMA and ICT.
- For patients with **complex karyotypes**: choice is more controversial; HCT recommended but **optimal cytoreduction approach is unclear**.
- Randomized trials (e.g., comparing HMA vs ICT) are needed to clarify best strategies
- Current recommendations emphasize proceeding to HCT once disease burden is acceptable rather than delaying for further consolidation.

Convegno della Fondazione Italiana Sindromi Mielodisplastiche

Clinical-genomic profiling of MDS to inform allo-HCT: recommendations from an international panel on behalf of the EBMT

Carmelo Gurnari,^{1,2} Marie Robin,³ Lionel Adès,³ Mahmoud Aljurf,⁴ Antonio Almeida,⁵ Femando Barroso Duarte,⁶ Elsa Bernard,⁷ Corey Cutler,⁸ Matteo Giovanni Della Porta,⁹ Theo De Witte,¹⁰ Amy DeZern,¹¹ Joanna Drozd-Sokolowska,¹² Eric Duncavage,¹³ Pierre Fenaux,³ Nico Gagelmann,¹⁴ Guillermo Garcia-Manero,¹⁵ Claudia Haferlach,¹⁶ Torsten Haferlach,¹⁶ Robert Hasserjian,¹⁷ Eva Hellström-Lindberg,¹⁸ Meagan Jacoby,¹⁹ Austin Kulasekararaj,²⁰ R. Coleman Lindsley,⁸ Jaroslaw P. Maciejewski,² Hideki Makishima,²¹ Luca Malcovati,²² Moshe Mittelman,²³ Anders E. Myhre,²⁴ Seishi Ogawa,²⁵ Francesco Onida,²⁶ Elli Papaemmanuil,²⁷ Jakob Passweg,²⁸ Uwe Platzbecker,^{29,30} Lisa Pleyer,³¹ Kavita Raj,³² Valeria Santini,³³ Anna Sureda,³⁴ Magnus Tobiasson,¹⁸ Maria Teresa Voso,¹ Ibrahim Yakoub-Agha,³⁵ Amer Zeidan,³⁶ Matthew Walter,¹⁹ Nicolaus Kröger,¹⁴ Donal P. McLornan,^{32,*} and Mario Cazzola^{22,*}

Gurnari C et al. Blood 2024

FONDAZIONE ITALIANA SINDROMI MIELODISPLASTICHE

Allo-HCT in MDS: Contemporary practice in Europe

Allo-HCT in MDS: Contemporary practice in Europe

Table 3. IPSS-M risk score, risk categories, and clinical outcomes

Risk category	IPSS-M score	Median leukemia-free survival (y)	Median OS (y)	AML transformation by 1 y (%)
Six-category risk schema				
Very low (14% of all patients)	Less than or equal to -1.5	9.7	10.6	0
Low (33%)	More than -1.5 to -0.5	5.9	6.0	1.7
Moderate low (11%)	More than -0.5 to 0	4.5	4.6	4.9
Moderate high (11%)	>0 to 0.5	2.3	2.8	9.5
High (14%)	>0.5 to 1.5	1.5	1.7	14.3
Very high (17%)	>1.5	0.7	1.0	28.2
Lower-risk vs higher-risk MDS				
Lower-risk MDS (58%)	≤0 (negative value)	6.0 (95% CI, 5.7-6.7)	6.3 (95% CI, 5.8-7.2)	2.0
Higher-risk MDS (42%)	>0 (positive value)	1.2 (95% CI, 1.1-1.3)	1.5 (95% CI, 1.4-1.6)	18.9

Risk-Based Timing

- Higher-risk IPSS-M \rightarrow immediate transplant if eligible
- Lower-risk IPSS-M \rightarrow consider early transplant if:
 - ✓ Transfusion-dependent & unresponsive
 - ✓ Germline predisposition
 - ✓ Therapy-related MDS
 - ✓ VEXAS with severe inflammation

Patient Fitness

- Favor age <80 years
- Karnofsky score ≥80%
- HCT-CI: 0-2 (low/intermediate risk)
- Frailty index <0.3
- Consider biological vs chronological age

Cytoreduction & Conditioning

- \geq 10% BM blasts \rightarrow cytoreductive therapy may help
- No clear consensus on optimal regimen
- Conditioning intensity:
 - ✓ MAC for fit, high-risk patients
 - ✓ RIC for older/comorbid patients

Donor selection

- HLA-matched related or unrelated preferred
- Haploidentical donors with PTCy acceptable
- Younger donor age favored
- Match donor type to GVHD prophylaxis strategy

MRD Monitoring & Relapse

- Use genomic profiling for MRD post-HCT
- Positive MRD \rightarrow consider DLI, HMAs, or tapering IS
- Second HCT possible for select relapsed patients
- Maintenance strategies under investigation

Shared Decision-Making

- Discuss disease course, transplant risks, and benefits
- Explain donor options & conditioning plan
- Cover psychosocial support & QoL impact
- Ensure patient-centered, informed consent

CMML: a disease with largely unmet medical needs

Table 1. Recently completed CMML-specific clinical trials

Therapeutic agent	Mechanism	Phase	Patient population	Subjects enrolled (n)	Outcome	References
Decitabine (vs Hydroxyurea)	HMA	3	Untreated, advanced proliferative CMML	170 (decitabine, 84)	EFS HR, 0.83, (95% Cl, 0.59-1.16), OS HR 1.08 (95% Cl, 0.76-1.54)	DACOTA study ¹³
Ruxolitinib	JAK 1/2 inhibitor	1/2	CMML (prior therapy allowed, not required)	50	ORR, 38%*	16
Lenzilumab	Recombinant anti- GM-CSF monoclonal antibody	1	CMML; R/R, intolerant, or ineligible for prior treatment	15	ORR, 33%*	17
Tipifarnib	Farnesyltransferase inhibitor	2	CMML and MDS/MPN	44 (CMML, 37)	ORR, 21.9%* in patients with CMML	18
Tagraxofusp	CD123-directed cytotoxin (IL-3 fused to diphtheria toxin)	1/2	CMML; R/R and 1L	36	11% bone marrow morphologic CR; 42% spleen response†	19

Table 2. Key considerations for drug development in $\ensuremath{\mathsf{CMML}}$

•	Clinical trials specifically targeting the patient population with CMML are the gold standard. Increased commitment to preclinical research investigating CMML is required to identify biologically rationale therapies for clinical investigation in this unique disease. All patients with CMML should be treated in clinical trials, when possible.
•	and selection of the target population. Studies should be simple and enroll as broad of a population. Studies should be currently accrual. Early phase studies should use adaptive study designs. Early phase studies should use adaptive study designs. Early phase studies should identify the optimal biologic dose. MDS/MPN-specific response criteria should be used to assess officaer
•	PRO measures should be incorporated into all studies. The use of HMAs in the clinical trial setting is complex given the lack of data supporting a disease-modifying effect in CMML. Thoughtful consideration is required regarding the role of HMA in requirements for prior therapy, backbones for combination therapy, and selection of comparator arms, and should not be considered paradigmatic.
•	in executing clinical trials and collecting real-world data.

Investigators should consult with the FDA early in study development.

...currently ~ 70 trials are ongoing and recruiting (clinicaltrials.gov, June 2025)

Hunter AM et al. Blood 2024

ALLO-HCT in CMML

Reference	N	Median age (range)	Stage	Donor	Conditioning	RR & TRM	Survival outcomes
Kroger (2002)	50	44 (19-61)	CMML-1: 62% CMML-2: 38%	MRD 86% MUD 14%	MAC 100%	RR 28% TRM 52%	5-yr OS: 21% 5-yr DFS: 18%
Eissa (2011)	85	51 (1-69)	CMML-1: 50% CMML-2: 50%	MRD 45% MUD 55%	MAC 68% RIC 32%	RR 27% TRM 35%	10-yr OS: 40% 10-yr DFS: 40%
Park (2013)	73	53 (27-66)	CMML-1: 58% CMML-2: 42%	MRD 56% MUD 44%	MAC 41% RIC 59%	RR: 35%	3-yr OS: 32% 3-yr DFS: 29%
Itonaga (2016)	141	49 (NR)	NR	MRD 48% MUD 38% / Cord 14%	MAC 72% RIC 28%	NR	3-yr OS: 47%
Symeonidis (2015)	513	53 (18-75)	CMML-1: 41% CMML-2: 15% 7 - sAML: 44%	MRD 56% MUD 44%	MAC 52% RIC 48%	RR 32% TRM 41%	4-yr OS: 33% 4-yr DFS: 27%
Liu HD (2017)	209	57 (23-74)	CMML-1: 67% CMML-2: 25%	MRD 36% MUD 47% 7/ mMUD 17%	MAC 51% RIC 49%	RR 52% TRM 28%	5-yr OS: 30%
Pophali (2020)	70	58 (18-73)	Chronic phase 66% Blastic transf 34%	MRD 40% MUD 45% mMUD/haplo 9%	MAC 46% RIC 54%	RR 27% TRM 28%	5-yr OS: 51% (CP) 19% (BT)
Rovó (AJH 2024)	1466	60.5 (IQR 54-65)	CMML-1: 52% CMML-2: 48% Missing in 68%	MRD 28% MUD/mMUD 63% haplo 8%	MAC 36% RIC 64%	RR 38% TRM 31%	5-yr OS: 37% 5-yr PFS: 31%

Allo-HCT: CMML vs MDS

EBMT 2010-2018: **1466 CMML pts / 9366 MDS pts** (transformed to AML excluded)

Rovò A et al. Am J Hematol 2024

Prognostic scoring systems in CMML

Prognostic score	Variables	Risk-gr LOW	oup media INT-1	an surv. (n INT-2	nonths) HIGH
MDAPS (2002)	Hb, ALC, IMC, BM-blast%	24	15	8	5
MDASC (2008)	PS, Age, Hb, PLT, WBC, BM-blast%, CGs, previous transfusions	54	25	14	6
Mayo Score (2013)	AMC, IMC, Hb, PLT	32	18	3.5	10
GFM Score (2013)	Age, WBC, PLT, Hb, ASXL1 mut.	NR	38	3.5	14.4
CPSS (2013)	FAB-subtype, WHO-subtype, CGs transfusional requirement	72	31	13	5
Molecular Mayo Score (2014)	AMC, IMC, Hb, PLT, ASXL-1 mut.	97	59	31	16
CPSS-Mol (2016)	FAB-subtype, WHO-subtype, Genetics, transfusional requirement	NR	64	37	18
BLAST±mol (2025))	Circulating blast, Leukocyte count, Anemia + molecular (high and intermediate-risk)	74	2	3	12

EHA/ELN 2018 Recommendations: molecular genetics

Diagnosis and Treatment of Chronic Myelomonocytic Leukemias in Adults

Recommendations From the European Hematology Association and the European LeukemiaNet

Raphael Itzykson¹, Pierre Fenaux¹, David Bowen², Nicholas C.P. Cross³, Jorge Cortes⁴, Theo De Witte⁵, Ulrich Germing⁶, Francesco Onida⁷, Eric Padron⁸, Uwe Platzbecker⁹, Valeria Santini¹⁰, Guillermo F. Sanz^{11,12}, Eric Solary^{13,14}, Arjan Van de Loosdrecht¹⁵, Luca Malcovati¹⁶, on behalf of the European Hematology Association, the European LeukemiaNet

- Analysis of 4 genes (ASXL1, NRAS, RUNX1, SETBP1) is mandatory for risk assessment according to accepted risk scoring systems in patients eligible for transplant.
- Analysis of a minimum of 20 genes is recommended for patients being considered for active treatment, including transplantation.

Recommended minimal Next Generation Sequencing panel in CMML

Gene	Frequency, %	Pathway
TET2	29-61	Epigenetic modifiers
ASXL1	32-44	
DNMT3A	2-12	
EZH2	5–13	
IDH1 ^a	1–2	
IDH2ª	6–7	
BCOR	6–7	
SRSF2	29-52	Spliceosome
U2AF1	4–10	-
SF3B1	6–10	
ZRSR2	4–8	
CBL	8–22	Signaling
KRAS	7–16	
NRAS	4-22	
NF1	6–7	
JAK2	1-10	
RUNX1	8–23	Other
SETBP1	4–18	
NPM1 ^b	1–3	
FLT3 ^{a,b}	1–3	

Itzykson E et al. HemaSphere 2018

Role of allo-SCT in CMML: an international collaborative analysis

International CMML Dataset (n=730) EBMT registry (n=384)

Time-dependent models and a multi-state model (accounting for age, sex, CMML prognostic scoring system at diagnosis, and AML transformation) were applied

> Lower-risk : CPSS low or intermediate-1 Higher-risk: CPSS intermediate-2 or high

Performing allo-HCT before AML transformation decreases life expectancy in lower risk patients but may be considered in higher risk patients.

Robin M et al. Blood 2022

Allo-HCT in CMML: current state of the art

- No prospective clinical trials for allo-HCT in CMML
- High rates of post-HCT relapse rate and NRM in retrospective studies
- Treatment guidelines for CMML are mostly extrapolated from MDS data
- An EBMT survey in 2020 demonstrated large heterogeneity among Centres unveiling the need of practice harmonisation in the field.

Convegno della Fondazione Italiana Sindromi Mielodisplastiche

Management of adult patients with CMML undergoing allo-HCT: recommendations from the EBMT PH&G Committee

Francesco Onida,^{1,2} Nico Gagelmann,³ Yves Chalandon,^{4,5} Guido Kobbe,⁶ Marie Robin,⁷ Argiris Symeonidis,⁸ Theo de Witte,⁹ Raphael Itzykson,^{10,11} Madlen Jentzsch,¹² Uwe Platzbecker,¹² Valeria Santini,¹³ Guillermo Sanz,^{14,15} Christof Scheid,¹⁶ Eric Solary,^{17,18} Peter Valent,^{19,20} Raffaela Greco,^{2,21} Isabel Sanchez-Ortega,² Ibrahim Yakoub-Agha,^{2,22} and Lisa Pleyer^{23,26}

- Who are candidates for allo-HCT?
- Do we need to pretreat patients before allo-HCT?
- How do we perform allo-HCT?
- How to manage patients post-allo-HCT?

FONDAZIONE ITALIANA SINDROMI MIELODISPLASTIC

CMML patient selection for allo-HCT – Fit for transplant?

The panel considers the following factors to be required in patients deemed "fit for transplant":

- Age ≤70 years (in selected cases ≤75)
- ECOG-PS <2 or Karnofsky index ≥70%
- HCT-CI <3
- Lack of any comorbidity that the transplant specialist judges to be incompatible with IC¹

¹Ferrara F et al, Leukemia 2013, 27(5): 997-999

CMML Transplant Score

A prognostic score including mutation profile and clinical features for patients with CMML undergoing stem cell transplantation

Nico Gagelmann,¹ Anita Badbaran,¹ Dietrich W. Beelen,² Rachel B. Salit,³ Friedrich Stölzel,⁴ Christina Rautenberg,⁵ Heiko Becker,⁶ Aleksandar Radujkovic,⁷ Victoria Panagiota,⁸ Rashit Bogdanov,² Maximilian Christopeit,¹ Yong Park,³ Olivier Nibourel,⁹ Thomas Luft,⁷ Michael Koldehoff,² Maarten Corsten,¹⁰ Michael Heuser,⁸ Jürgen Finke,⁶ Guido Kobbe,⁵ Uwe Platzbecker,¹¹ Marie Robin,¹² Bart L. Scott,³ and Nicolaus Kröger¹

Total cohort = 240 pts Median age = 59 (19-74) WHO 0/1/2 = 10%/50%/40%

Table 4. Multivariate analysis

Factor	Beta	HR	95% CI	Р	Points
Continuous comorbidity index	0.15	1.16	1.07-1.25	<.001	1
>2 BM blasts, %	0.53	1.70	1.11-2.61	.02	4
Genotype					
ASXL1- and/or NRAS-mutated	0.49	1.63	1.15-2.31	.006	4

Concordance index: 0.68; corrected: 0.67.

Gagelmann et al. Blood Advances 2021

Onida F. et al, Blood 2024

Recommendations: Pt selection and best timing for allo-HCT in CMML

Role of debulking strategies in CMML

- In absence of data from RCT, remains unclear whether debulking and/or CR status is advantageous for allo-HCT outcomes
- Pre-HCT debulking strategies may result in worsening cytopenias, increased transfusion dependence with ensuing complications and/or infections that may preclude proceeding to transplant
- The primary goal should be to bring eligible patients to transplant in a good general condition, while achieving CR before transplant may be of subordinate importance
- Upfront transplantation without prior disease-modifying treatment should be preferred whenever possible irrespective of BM blast count (to maximize chances of reaching allo-HCT)

Role of pre-transplant therapy

- In the rare cases where pre-transplant treatment is unavoidable (e.g. no matching donor available; rapid disease progression), the use of HMAs is recommended, with allo-HCT performed after establishing the best possible response status
- HMAs might be an option (as bridging strategy <u>or instead</u> of allo-HCT) for selected patients >60 years, with TP53 mutations and/or with complex or monosomal karyotoypes
- All patients should be included within clinical trials whenever possible

Pre-transplant management of disease symptoms

- Pre-transplant management of (hyper)leukocytosis: HU-based cytoreduction (with an empiric target of <10.000 WBC/µL) is recommended ≤6 weeks prior to transplant
- **Pre-transplant management of iron overload**: All transplant-eligible CMML patients (ferritin >1000 µg/L) should be considered for iron chelation therapy both pre and post-transplantation
- **Pre-transplant management of massive splenomegaly:** a transplant-coordinated approach including splenectomy, splenic irradiation, or reduction of spleen size with JAK inhibitors is recommended

Recommendations for Transplant Modalities

SC Source: PB recommended for MRD and MUD; no recommendation for MMRD

Recommendations for post transplant management in CMML

PHF6 mutations in CMML: a distinct phenotype and superior prognosis

Tefferi A et al. Am J Hematol 2024

PHF6 mutations in CMML: a distinct phenotype and superior prognosis

BLAST: A Globally Applicable and Molecularly Versatile Survival Model in Chronic Myelomonocytic Leukemia (CMML)

Tefferi A et al. Blood 2025

A Molecular-Based Ecosystem to Improve Personalized Medicine in Chronic Myelomonocytic Leukemia

Luca Lanino, AM Hunter, N Gagelmann, M Robin, C Sala, D Dall'Olio, C Gurnari, L Dall'Olio, YH Wang, L Pleyer, B Xicoy, G Montalban-Bravo, LY Shih, T Haque, O Abdel-Wahab, K Geissler, A Bataller, A Bazinet, M Meggendorfer, I Casetti, E Sauta, E Travaglino, L Palomo, L Zamora, D Quintela, A Jerez, E Cornejo, PG Martin, Marina Diaz-Beya, Alejandro Avendano Pita⁻ Veronica Roldan, Dolly Viviana Fiallo Suarez, Estefania Cerezo Velasco, Marisa Calabuig, Esperanza Such, Guillermo Sanz, AS Kubasch, C Castilla-Llorente, C Bulabois, L Souchet, H Awada, M Bernardi, P Chiusolo, A Curti, L Giaccone, F Onida, LM Borin, F Passamonti, E Diral, V Vucinic, GM Bergonzi, MT Voso, HA Hou, WC Chou, CY Yao, CC Lin, HF Tien, A Campagna, M Ubezio, A Russo, G Todisco, G Maggioni, CA Tentori, A Buizza, G Asti, M Zampini, E Riva, M Delleani⁻ A Consagra, F Ficara, A Santoro, L Carota, T Sanavia, C Rollo, A Kiwan, J VanOudenhove, P Fariselli, NH Al Ali, D Sallman, W Kern, G Garcia-Manero, S Thota, EA Griffiths, M Yung Follo, C Finelli, U Platzbecker, F Sole, M Diez-Campelo, J Maciejewski, R Bejar, FR Thol, N Kroger, P Fenaux, R Itzykson, TA Graubert, M Fontenay, AM Zeidan, RS Komrokji, V Santini, T Haferlach, U Germing, S D'Amico, G Castellani, MM Patnaik, E Solary, **E Padron, MG Della Porta**

An innovative <u>AI-based framework</u> for multi-modal analysis, classification and personalized prognostic assessment in hematology

Lanino L. et al. Oral Presentation @ASH 2024

Development of the International CMML Prognostic Score (iCPSS)

- Laboratory parameters:
 - WBC
 - Hb
 - PLT
 - BM Blasts
- CPSS cytogenetic stratification
- Mutational status (n=9)
 - ASXL1
 - DNMT3A
 - EZH2
 - RUNX1
 - SETBP1
 - STAG2
 - *TET*2
 - TP53
 - U2AF1

By courtesy of M. Della Porta 30 giugno 2025

Lanino L. et al. Oral Presentation @ASH 2024

iCPSS performances

Lanino L. et al. Oral Presentation @ASH 2024

Prediction scoring system for early relapse in CMML patients after allo-HCT

Variables	Multivariate regression coefficient	HR	95% CI	Р	Point
Bone marrow blasts before transplantation >10%	1.450	4.262	1.334, 13.617	0.014	1
Age >60 years	1.828	6.221	1.655, 23.390	0.007	1.5
Hemoglobin level before transplantation <100 g/L	1.307	3.695	1.512, 9.031	0.004	1
Non TET2	1.231	3.425	1.241, 9.450	0.017	1

low-risk: risk score 0–1; intermediate-risk score 1.5–2; high-risk score >2

Zhou J-Yet al. BMT 2025

Unanswered questions and further research to do

- Lack of dynamic evaluation methods for patient selection for allo-HCT
- Role of gene mutations in selecting patients and in predicting post-HCT outcomes
- Role of new drugs and combinations as pre-transplant strategies
- Impact of disease burden at allo-HCT
- Management of splenomegaly before transplantation
- Role of haplo-identical donors
- Role of TBI in conditioning
- Post-transplant MRD monitoring (NGS?)
- Management of molecular and hematological relapse
- Possible role of post-transplant prophylactic treatment

EBMT

A new proposal: Observational Non-Interventional Study on the Role of Allogeneic Hematopoietic Cell Transplantation (allo-HCT) in Chronic Myelomonocytic Leukemia (CMML)

"ChroMM-Allo Study"

F.Onida, M. Robin, D. Mc Lornan et al. EBMT-CMWP

Acknowledgements

Thanks!

Any questions?

- > FISiM
- > EBMT-CMWP
- > MDACC Leukemia Dept
- International CMML Consortium
- > MDS/MPN-IWG
- > EHA-ELN
- > International CMML Working conference

"I would rather make mistakes in kindness and compassion than work miracles in unkindness and hardness"

francesco.onida@unimi.it