

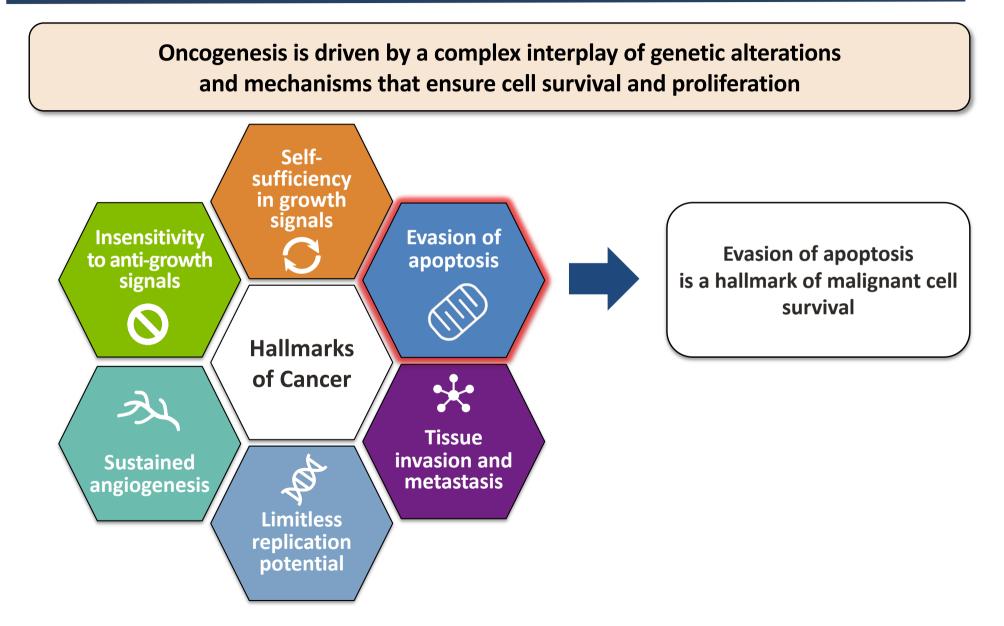


Sistema Socio Sanitario Regione

Lombardia



## 7 Novembre, 2020

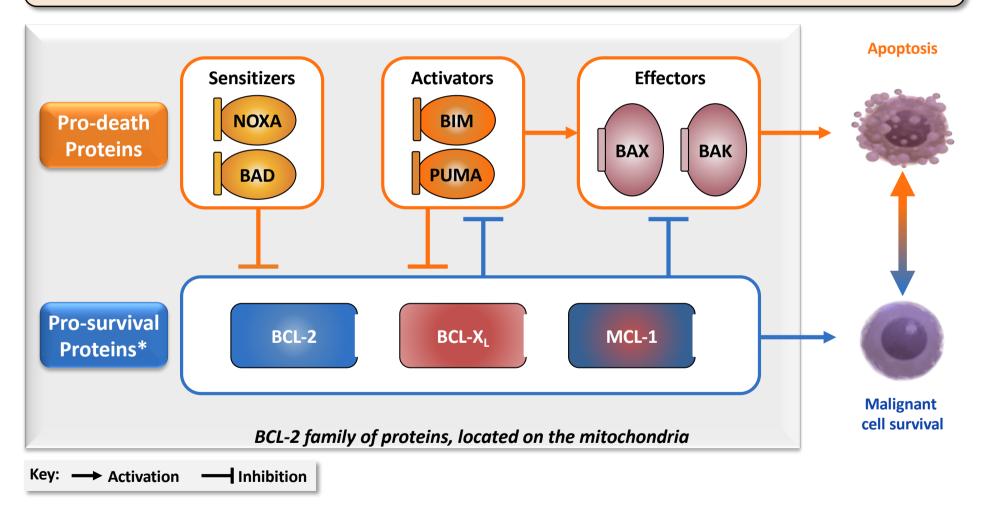

# La terapia con anti-BCL2: nuovi target INTRODUZIONE

Marco Montillo Ematologia Niguarda Cancer Center Grande Ospedale Metropolitano Niguarda Milano

# Marco Montillo Conflict of Interest

- Abbvie
- Acerta/Astra Zeneca
- Gilead
- Janssen
- Roche
- Verastem

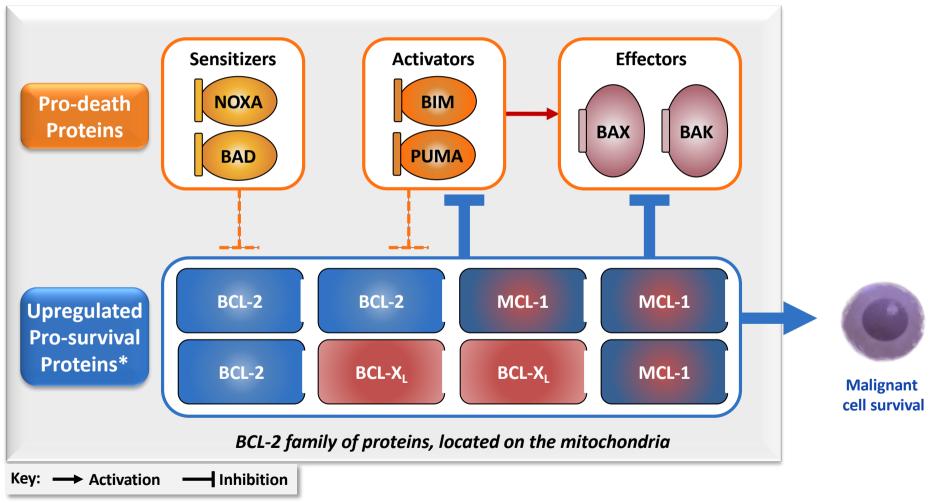
## Cancer Pathogenesis Is Dependent on Numerous Mechanisms




# **BCL2 family proteins**

- Bcl2 was the first discovered regulator of apoptosis when it was found as translocated in patients suffering from follicular B cell lymphoma, 30 years ago.
- Nineteen proteins of the human 'Bcl-2 family' have been described.
- Seven members of this family (Bcl-2, Bcl-XL, Mcl-1, Bcl-B, Bcl-w and A1/Bfl1) are anti-apoptotic proteins while the rest (Bax, Bak, Bok, Bim, Bmf, Puma, Noxa, Bad, Bid, Bcl-XS, BiNP3 and Hrk) have a pro-apoptotic function.
- The balance between protein anti-apoptotic and pro-apoptotic proteins defines the fate of cell

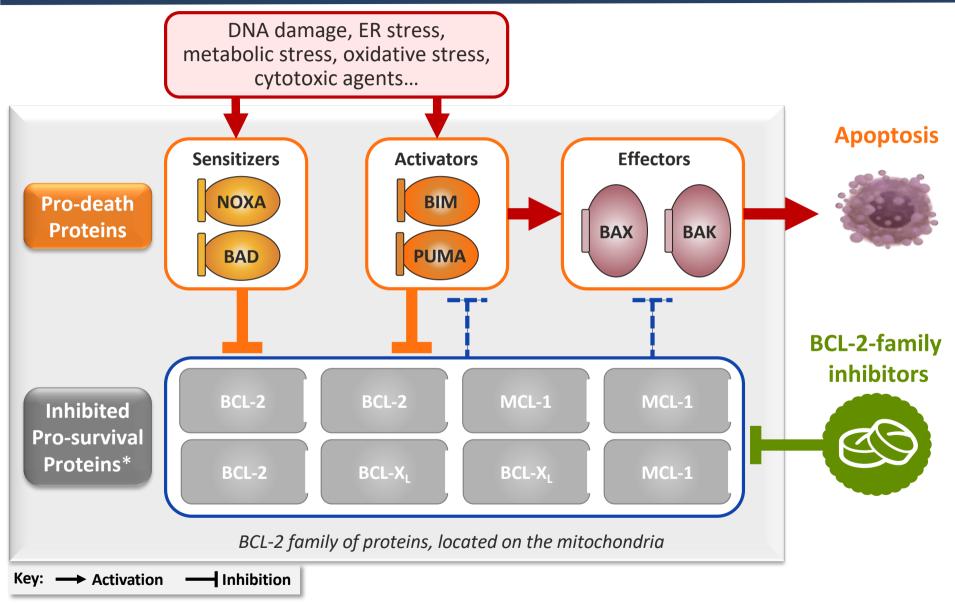
# Apoptosis Is Regulated by the BCL-2 Family of Proteins


BCL-2 family proteins include both pro-survival (anti-apoptotic) and pro-death (pro-apoptotic) proteins with opposing functions<sup>1–4</sup>



\* Also includes: BCL-w and BFL-1/BCL2-A1. BCL-2, B-cell lymphoma 2.

# Malignant Cells Can Evade Apoptosis by Upregulating BCL-2 and Other Pro-survival Proteins


Malignant cells often evade apoptosis by upregulation of pro-survival proteins, such as BCL-2, MCL-1, and BCL-X<sub>L</sub>

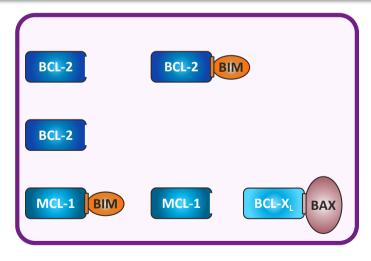


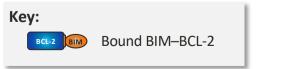
\* Also includes: BCL-w and BFL-1/BCL2-A1.

1. Leverson JD, *et al. Cancer Discov* 2017; **7**:1376–1393; 2. Czabotar PE, *et al. Nat Rev Mol Cell Biol* 2014; **15**:49–63; 3. Adams JM & Cory S. *Oncogene* 2007; **26**:1324–1337; 4. Letai A, *et al. Cancer Cell* 2002; **2**:183–192; 5. Certo M, *et al. Cancer Cell* 2006; **9**:351–365.

# Agents that Inhibit Pro-survival Proteins Can Promote Apoptosis in Malignant Cells

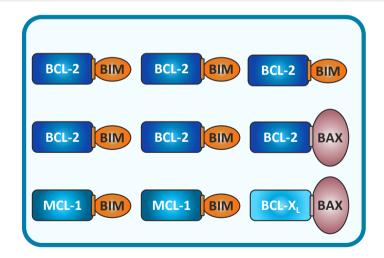



\* Also includes: BCL-w and BFL-1/BCL2-A1.

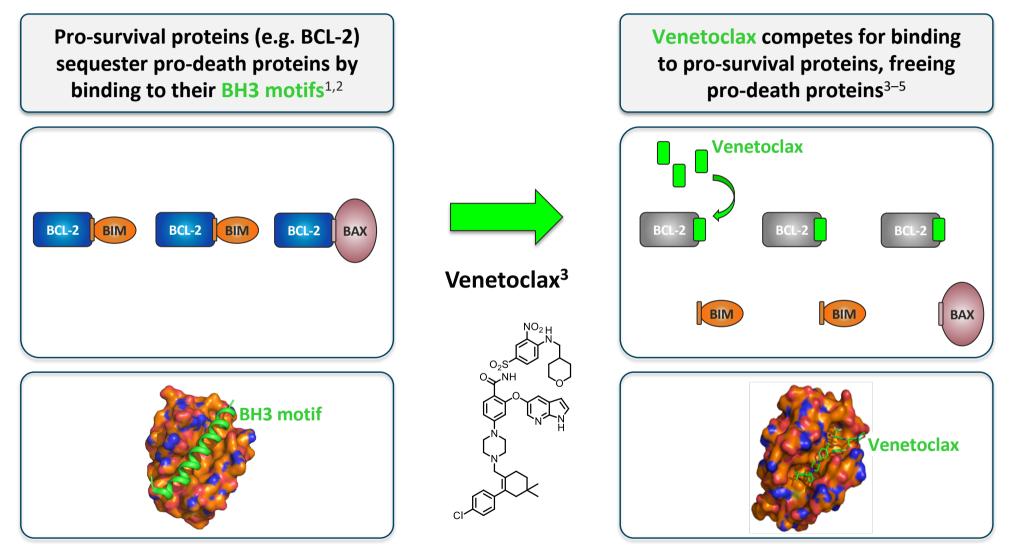

1. Leverson JD, *et al. Cancer Discov* 2017; **7**:1376–1393; 2. Czabotar PE, *et al. Nat Rev Mol Cell Biol* 2014; **15**:49–63; 3. Adams JM & Cory S. *Oncogene* 2007; **26**:1324–1337; 4. Letai A, *et al. Cancer Cell* 2002; **2**:183–192; 5. Certo M, *et al. Cancer Cell* 2006; **9**:351–365.

# Malignant Cells with High Dependence on the BCL-2 Protein for Survival Are "Primed for Death"

#### Unprimed healthy cell: High apoptotic threshold

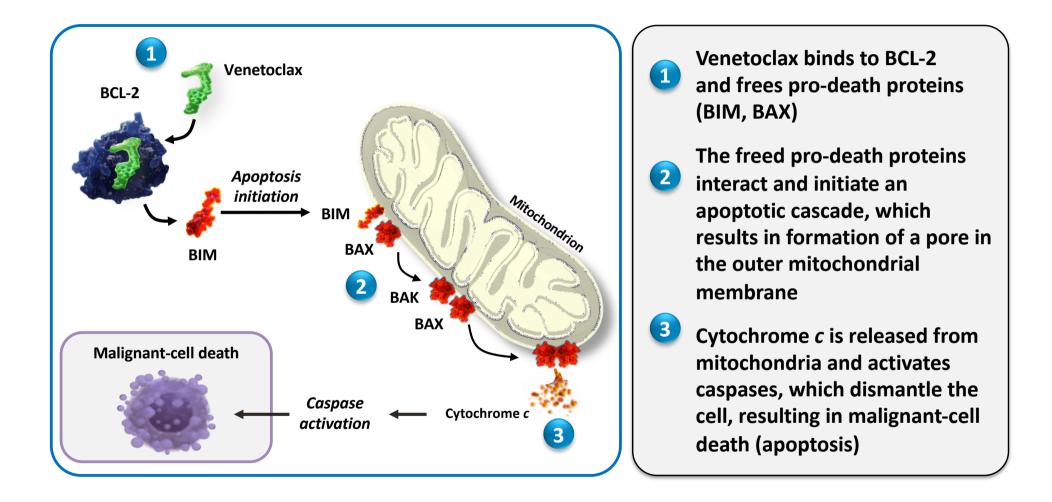

- Low level of sequestered pro-death proteins
- Released pro-death proteins may be re-captured by available pro-survival proteins and may not be sufficient to trigger apoptosis





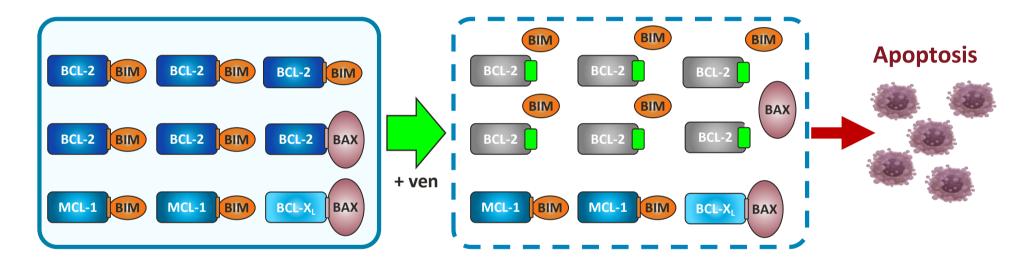

#### Primed malignant cell: Low apoptotic threshold

- High levels of pro-survival proteins and high levels of sequestered pro-death proteins
- Sufficient release of pro-death proteins is likely to initiate apoptosis
- "BCL-2 primed": primed due to high levels of BCL-2 relative to other pro-survival proteins

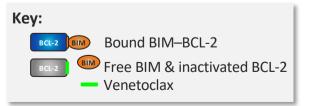



# Venetoclax Is a Highly Selective, Potent, Oral BCL-2 Inhibitor Designed to Induce Apoptosis in Malignant Cells




1. Plati J, *et al. Integr Biol (Camb)* 2011; **3:**279–296; 2. Czabotar PE, *et al. Nat Rev Mol Cell Biol* 2014; **15:**49–63; 3. Souers AJ, *et al. Nat Med* 2013; **19:**202–208 (incl. suppl.); 4. Oltersdorf T, *et al. Nature* 2005; **435:**677–681; 5. Tse C, *et al. Cancer Res* 2008; **68:**3421–3428.

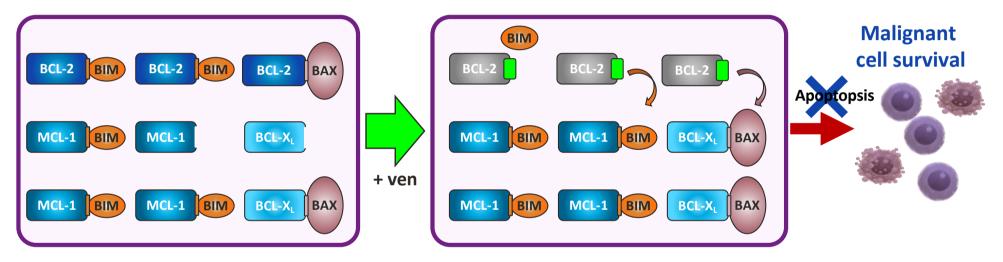
## Venetoclax Induces Apoptosis in Malignant Cells



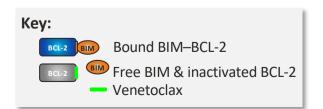

### Malignant Cells with High Dependence on the BCL-2 Protein for Survival Are Inherently Sensitive to Venetoclax

**Highly dependent on BCL-2** (increased levels of BCL-2 relative to other pro-survival proteins, including MCL-1 and BCL-X<sub>L</sub>)




#### Inhibition of BCL-2 can free enough BIM and BAX to trigger apoptosis

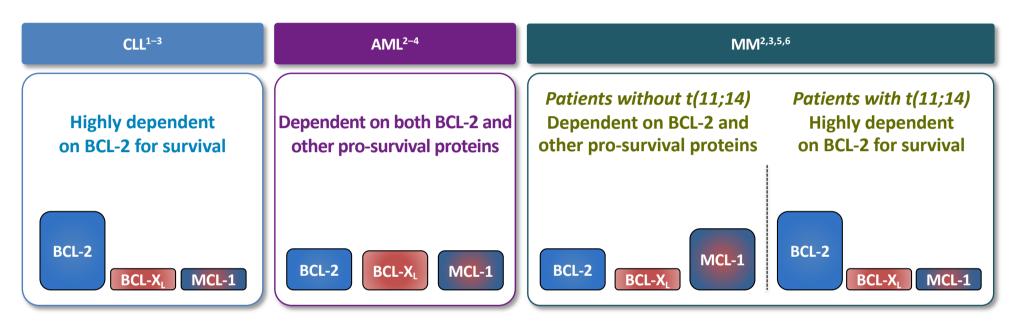



1. Certo M, *et al. Cancer Cell* 2006; **9:**351–365; 2. Souers AJ, *et al. Nat Med* 2013; **19:**202–208 (incl. suppl.); 3. Punnoose EA, *et al. Mol Cancer Ther* 2016; **15:**1132–1144; 4. Leverson JD, *et al. Cancer Discov* 2017; **7:**1376–1393.

### Malignant Cells That Are Co-dependent on Other Pro-survival Proteins May Be Less Sensitive to BCL-2 Inhibition Alone

**Co-dependent** on pro-survival proteins (increased levels of other pro-survival proteins, MCL-1 and BCL-X<sub>L</sub>)




#### Inhibition of BCL-2 may not free enough BIM and BAX to trigger apoptosis in all malignant cells



# Patterns of expression of BCL2 family in selected lymphoid malignancies

|                        | Major                   | Level of bcl2<br>expression             | Variability                           | Comment on mechanism                                                                                                                                   |
|------------------------|-------------------------|-----------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLL                    | BCL2> MCL>><br>BCLxL    | High                                    | Some variability but always high      | BCL2: loss of repression by miRNA15/16<br>MCL1 and BCLxL induced by CD40 ligation<br>and microenviromental stimuli                                     |
| Follicular<br>Lymphoma | BCL2,<br>MCL1,<br>BCLxL | High                                    | Rare to not be expressed              | T(14;18) leads to constitutive expression.<br>CD40L stimulates BCLxL expression MCL1<br>in centroblasts                                                |
| DLBCL                  | BCL2><br>MCL1           | High GC type<br>low in many<br>ABC type | High where MYC<br>driven<br>MCL1>BCL2 | Varies including gene apmplification<br>t(14;18) in double hit lymphoma,<br>conseuqences of MYC dysregualtion                                          |
| MCL                    | BCL2><br>MCL1           | High                                    | Minor                                 | Consequence of cyclin D1 dysregualtion<br>MCL1 high in blastoid                                                                                        |
| Myeloma                | BCL2,<br>MCL1,<br>BCLxL | High<br>Especially<br>t(11;14)          | Moderate                              | BCL2 consequence of cyclin dysregulation<br>MCL1 constitutively expressed in plasma<br>cells<br>BCLXL increased through<br>microenviroment stimulation |
| ALL                    | BCL2,<br>MCL1,<br>BCLxL | variable                                | Significant                           | Appears to mimic expression pattern of<br>precursor cell<br>Patterned by oncogenic driver                                                              |

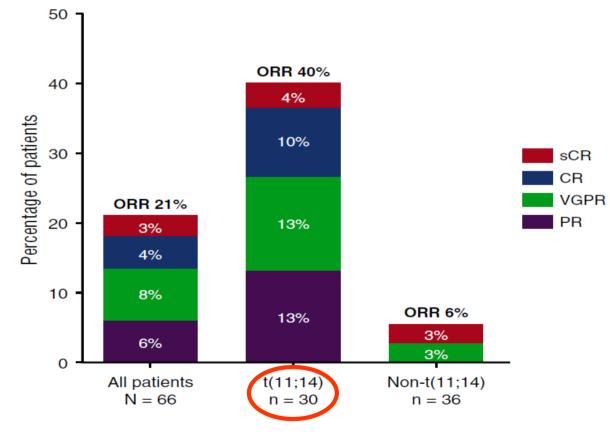
# Malignant Cell Dependence on BCL-2 for Survival Has Been Shown across Several Hematologic Malignancies



Size of rectangles indicates relative dependency on specific protein for survival

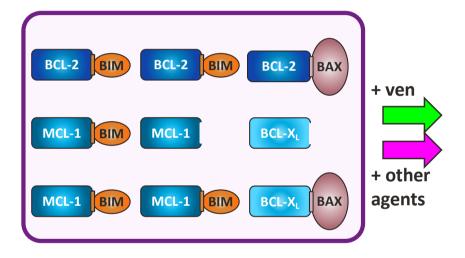
# Malignant cells' dependence on pro-survival proteins makes the BCL-2 family members rational targets for anticancer therapies

Del Gaizo Moore V, et al. J Clin Invest 2007; 117:112–121; 2. Leverson JD, et al. Cancer Discov 2017; 7:1376–1393;
 Valentin R, et al. Blood 2018; 132:1248–1264; 4. Pan R, et al. Cancer Discov 2014; 4:362–375;
 Touzeau C, et al. Leukemia 2018; 32:1899–1907; 6. Gomez-Bougie P, et al. Blood 2018; 132:2656–2669.


# Rationale for anti-BCL2 agents use in multiple myeloma

- Gene-expression profiling (GEP) has shown that MM harboring t(11;14) has a specific pattern, characterized by CCND1 overexpression.
- GEP profile of t(11;14) plasma cells share similarities with GEP profile of lymphoma cells.
- Interestingly, t(11;14) plasma cells frequently express CD20, unlike all other myeloma subgroups.
- Plasma cells harboring t(11;14) are associated with increased dependency upon BCL2 for myeloma cell survival.

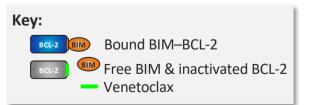
Bersagel et al. JCO 2005 Zhan et al, Blood 2006 Cleyen et al, Blood 2018


# Venetoclax for t(11;14) MM

## ORR rate by t(11;14) status

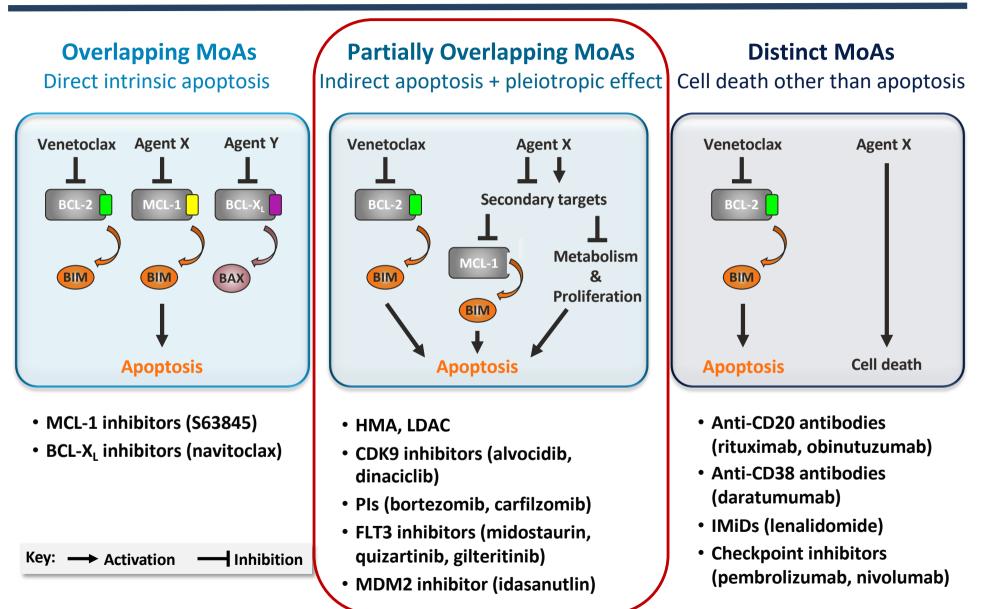


Venetoclax Can Combine with Agents That Increase BCL-2 Dependency or Target Other Pro-survival Proteins


**Co-dependent** on pro-survival proteins (increased levels of other pro-survival proteins, MCL-1 and BCL-X<sub>L</sub>)



Sensitivity to BCL-2 inhibition can be promoted by increasing BCL-2 dependency (upregulation of BIM and BCL-2)\*


#### and/or

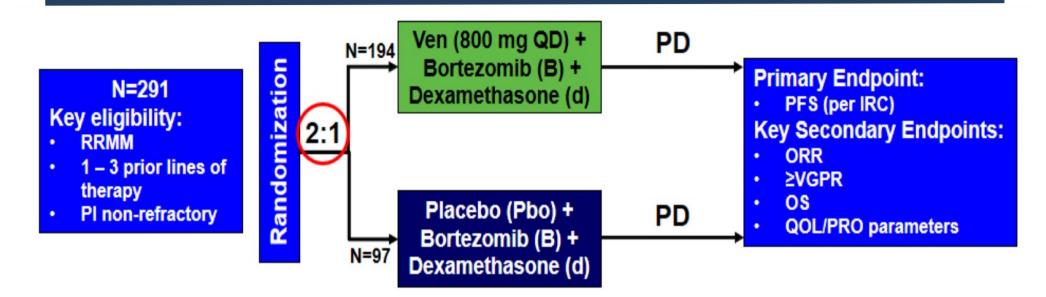
Sensitivity to BCL-2 inhibition can be promoted by directly or indirectly downregulating or neutralizing other pro-survival proteins<sup>†</sup>



\* e.g. dexamethasone; <sup>+</sup> e.g. proteasome inhibitors, HMAs, or LDAC. HMA, hypomethylating agent; LDAC, low-dose cytarabine.

## Venetoclax Can Also Combine with Agents Targeting Apoptotic and/or Non-apoptotic Complementary MoAs



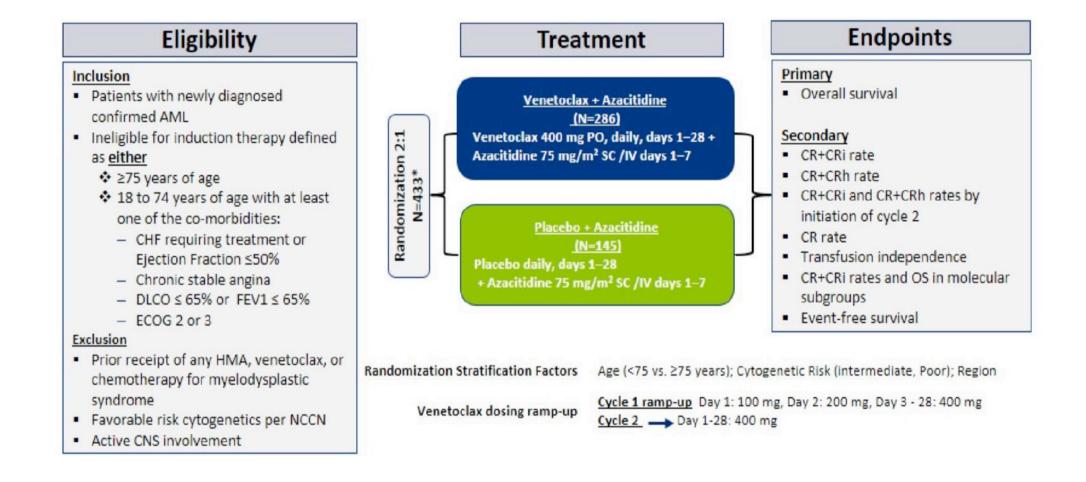

CDK9, cyclin-dependent kinase 9; FLT3, FMS-like tyrosine kinase 3; IMiD, immunomodulatory imide drug; PI, proteasome inhibitor.

#### Leverson JD, et al. Cancer Discov 2017; 7:1376–1393.

# Rational combinations with the BCL2-selective inhibitor venetoclax

|           | Mechanism                                                                            | Agent(s)                                                      | Key target             |
|-----------|--------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------|
| BCL2      | Direct inhibitor, BH3 mimetic                                                        | Venetoclax<br>S55746 (BCL201)                                 | BCL2                   |
| BCL2 BIM  | Elevated BCL2 priming–BIM stabilization/upregulation                                 | UO126, selumetinib<br>Ibrutinib<br>Dexamethasone<br>Tamoxifen | MEK<br>BTK<br>HR<br>ER |
| BCLXL     | Direct inhibitor, BH3 mimetic                                                        | Navitoclax<br>A-1331852<br>A-1155463<br>WEHI-539              | BCLXL                  |
| MCL1      | Direct inhibitor, BH3 mimetic                                                        | S63845<br>A-1210477                                           | MCL1                   |
| MCL1 NOXA | Reduced proteolysis of NOXA,<br>a BH3-only protein which can<br>bind/neutralize MCL1 | Bortezomib                                                    | Proteasome             |
| (MCL1)    | Reduced RNA POLII-mediated transcriptional elongation of <i>MCL1</i> mRNA            | Dinaciclib<br>Alvocidib                                       | CDK9                   |
| MCL1      | Inhibition of cap-dependent translation of MCL1                                      | AZD8055                                                       | mTORC1/2               |
| `·        | Unknown                                                                              | Anthracyclines<br>Hypomethylators                             | DNA/RNA<br>DNA/RNA     |

# **BELLINI Study Design**




Cycles 1 – 8: 21-day, Bortezomib 1.3 mg/m<sup>2</sup> Days 1, 4, 8, 11 and dexamethasone 20 mg Days 1, 2, 4, 5, 8, 9, 11, 12 Cycles 9+: 35-day, Bortezomib 1.3 mg/m<sup>2</sup> Days 1, 8, 15, 22 and dexamethasone 20 mg Days 1, 2, 8, 9, 15, 16, 22, 23

| Stratification factors         | <ul> <li>Bortezomib sensitive vs naïve</li> <li>Prior lines of therapy: 1 vs 2–3</li> </ul>  |  |  |
|--------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Non-ranked secondary endpoints | PFS in BCL-2 <sup>high</sup> (IHC), DOR, TTP, MRD negativity rate, other PROs (GHS, fatigue) |  |  |
| Key subgroup analyses          | t(11;14), high/standard-risk cytogenetics, and BCL2 expression (gene expression)             |  |  |

DOR, duration of response; GHS, global health status; IHC, immunohistochemistry; MRD, minimal residual disease; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PI, proteasome inhibitor; PRO, patient reported outcome; QD, daily; QOL, quality of life; RRMM, relapsed/refractory multiple myeloma; TTP, time to progression; VGPR, very good partial response.

# VIALE-A Study Design (NCT02993523)



- Malignant cell dependence on pro-survival proteins makes the BCL-2 family members rational targets for anticancer therapies
- Malignant cells with high dependence on the BCL-2 protein for survival (like CLL cells) are Inherently sensitive to BCL-2 inhibition with Venetoclax
- However, malignant cells that are co-dependent on other prosurvival proteins (like AML and MM cells) may be less sensitive to BCL-2 inhibition alone.
- For this reason, Venetoclax can combine with agents targeting apoptotic and/or non-apoptotic complementary mechanism of action in diseases like AML, MM and potentially also NHL