

Mieloma Multiplo: lunghi sopravviventi o guariti

Paola Tacchetti

Azienda Ospedaliero-Universitaria di Bologna; Istituto di Ematologia "Seràgnoli"; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale; Università degli Studi di Bologna

Disclosures of Paola Tacchetti

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Bristol-Myers Squibb/Celgene						х	honoraria
Janssen						x	honoraria
Amgen						x	honoraria
Takeda						x	honoraria
Abbvie							honoraria
Oncopeptides							honoraria

Treating myeloma – The changing landscape

Is MM "curable"?

Image adapted from Morgan G et al. Nat Cancer Revs 2012;12:335-348

Clinical predictors of long-term survival in NDTE MM An IMWG Research Project

7291 pts enrolled in clinical trials involving ASCT

The **statistical cure fraction** for the whole group appears to be **14.3%**, which signifies the overall proportion of MM pts in this cohort who were able to achieve or exceed expected survival compared to matched general population.

IMWG Research Project: OS and PFS by CR status

IMWG Research Project: Logistic regression, 10-yr survival vs 2-yr death

	Factors differentiating 10-year survival vs. 2-year death					
Variable	N	Survival less than 2 years	Survival more than 10 years	OR (95% CI)	<i>P</i> -value	
Multivariate (stratified by country)						
Age at registration $>$ = 65 yr	1230	98/144 (68%)	525/1086 (48%)	1.87 (1.26, 2.79)	0.002	
IgA	1230	180/298 (60%)	443/932 (48%)	1.53 (1.15, 2.04)	0.004	
Albumin < 3.5 g/dL	1230	294/474 (62%)	329/756 (44%)	1.36 (1.04, 1.78)	0.023	
B2M > = 3.5 mg/L	1230	376/569 (66%)	247/661 (37%)	1.86 (1.41, 2.45)	< 0.001	
Creatinine $>$ = 2 mg/dL	1230	130/174 (75%)	493/1056 (47%)	1.77 (1.18, 2.65)	0.005	
HGB < 10 g/dL	1230	288/429 (67%)	335/801 (42%)	1.55 (1.16, 2.06)	0.003	
Platelet Count < 150 × 10^9/L	1230	163/218 (75%)	460/1012 (45%)	2.26 (1.59, 3.22)	< 0.001	

It is important to note that **over 90% of the pts** in the dataset were from the **pre-novel therapy induction era** and ~10% did received thalidomide as part of their upfront therapy (Total Therapy 2 thalidomide arm, GMMG-HD3 thalidomide arm and BO2002).

Usmani SZ, et al. Blood Cancer Journal 2018;8:123

HOVON65MM/GMMG-HD41

Sonneveld et al. JCO 2012;30:2946-55

RANDOM n=827

INDUCTION (3x 28-d cycles)

INDUCTION PAD

INDUCTION VAD

MOBILIZATION

TRANSPLANTATION *

- MEL 200 (ASCT-1)
- MEL 200 (ASCT-2)

* HOVON single / GMMG double ASCT

MAINTENANCE V (2 years) MAINTENANCE T (2 years)

PETHEMA/GEM Rosinol et al. Blood 2012;120:1589-96 RANDOM n=386 INDUCTION (6x 28-d cycles) VBMCP/ VTD TD VBAD/B **MOBILIZATION TRANSPLANTATION MEL 200 (ASCT-1) RANDOM MAINTENANCE (3 years)** IFN-α2b **VT**

PROGETTO EMATOLOGIA - ROMAGNA

7 Novembre 2020

HOVON-65/GMMG-HD4 study: long-term analysis (98-mo follow-up)

Goldschmidt H. et al., Leukemia 2018;32:383-390

PETHEMA/GEM study: long-term analysis (10-yr follow-up)

	Median PFS (mos)	10-yr PFS (%)
QT+V	32	13
TD	28	17
VTD	52	24 🚛

	Median OS (mos)	10-yr OS (%)
QT+V	93	33
TD	99	40
VTD	128	51 🛑

Rosinol L. et al., ASH 2018

GIMEMA-MMY-3006 study: long-term analysis (10-yr follow-up)

HR, hazard ratio; PFS, progression-free survival; OS, overall survival; TD, thalidomide + dexamethasone; VTD, bortezomib + thalidomide + dexamethasone.

HOVON65MM/GMMG-HD41

Sonneveld et al. JCO 2012;30:2946-55

RANDOM n=827

INDUCTION (3x 28-d cycles)

INDUCTION PAD

INDUCTION VAD

MOBILIZATION

TRANSPLANTATION *

- MEL 200 (ASCT-1)
- MEL 200 (ASCT-2)

* HOVON single / GMMG double ASCT

MAINTENANCE V (2 years) MAINTENANCE T (2 years)

PETHEMA/GEM Rosinol et al. Blood 2012;120:1589-96 RANDOM n=386 INDUCTION (6x 28-d cycles) VBMCP/ VTD TD VBAD/B **MOBILIZATION TRANSPLANTATION MEL 200 (ASCT-1) RANDOM MAINTENANCE (3 years)** IFN-α2b **VT**

PROGETTO EMATOLOGIA - ROMAGNA

7 Novembre 2020

GIMEMA-MMY-3006 study: PROGNOSTIC SCORE

SPECIFIC MULTIVARIABLE REGRESSION ANALYSIS NOT INCLUDING THERAPY				
Variables adversely affecting PFS	HR	95% CI	<i>P</i> -value	
t(4;14) and/or del(17p) pos	1.857	1.452-2.375	< 0.001	
ISS stage II+III	1.384	1.099-2.743	0.006	
Failure to achieve CR* (best response)	2.006	1.593-2.526	< 0.001	

^{*}time-dependent variable

Risk group	Criteria	
Low-risk (LR)	None of the three adverse variables	
Intermediate-risk (IR)	1 adverse variable	
High-risk (HiR)	2 or 3 adverse variables	

Tacchetti P. et al., Lancet Haematology 2020, accepted

GIMEMA-MMY-3006 study: PFS and OS by risk groups within the VTD arm

GIMEMA-MMY-3006 study: 2-YRS CONDITIONAL SURVIVAL ESTIMATE FOR PFS

Conditional survival estimate for PFS was calculated as the probability of surviving without progression a further 2 years given the years already survived

Tacchetti P. et al., Lancet Haematology 2020, accepted

Depth of response correlate with survival: MRD is the best biomarker to predict outcome

PETHEMA/GEM study: Post-transplant negative MRD (1x10⁻⁴)*

	Negative MRD
Overall series (n=226)	135 (60%)
CT+V (n=85)	48 (56%)
TD (n=50)	27 (46%)
VTD (n=83)**	60 (72%)

^{*}MRD available in 226/ 284 (80%) transplanted patients

^{**} VTD vs TD, p=0.03; VTD vs CT+V, p=0.04; TD vs CT+V, p= 0.9

PETHEMA/GEM study: PFS and OS according to post-transplant MRD

(overall series)

PETHEMA/GEM study: Outcome of patients with negative post-transplant MRD according to cytogenetics

(
	Median PFS (mos)	Median OS (mos)
Standard- risk cytogenetics	54	NR
High-risk cytogenetics	33	105

Rosinol L. et al., ASH 2018

PETHEMA/GEM study: Outcome of patients with positive post-transplant MRD according to cytogenetics

	Median PFS (mos)	Median OS (mos)
Standard- risk cytogenetics	31	105
High-risk cytogenetics	15	22

Modern treatment strategies for NDTE: MRD data (10⁻⁵)

CASSIOPEIA ph3 trial

GRIFFIN ph2 trial

Moreau P, et al. The Lancet 2019;394:29-38; Avet-Loiseau H, et al. IMW 2019, Oral presentation; Voorhees PM et al., Blood. 2020;136(8):936-945

DaraKRd MASTER Trial: Best MRD response by phase of therapy

MRD response by cytogenetic subset

Costa LJ, et al., ASH 2019; oral presentation

Modern treatment strategies for ND non TE: MRD data (10⁻⁵)

MRD Median follow-up

Mateos MV et al., Lancet 2020; Facon T et al. NEJM 2019

What do we know about long-term survivors

They Have

- Low disease burden and minimal end-organ disease
- » Favorable disease biology
- » CR or better
- » Receive optimal up-front therapy (PI + IMiDs, ASCT, maintenance, mAB?)

They Do Not

- » High disease burden
- » Unfavorable disease biology (R-ISS3, HRCA, UltraHR, biallelic p53 del, EMD/PCL)
- » Suboptimal responses
- » Multiple co-morbidities

Unmet medical need: High-Risk and Ultra High-Risk Group: Double-Hit MM

Characteristic: Bi-allelic inactivation of TP53 or ISSIII +

amplification of CKS1B

Median PFS = 15.4 mths; OS 20.7 mths

Walker BA, et al., Leukemia 2018;33(1):159-170

Depth of response correlate with survival MRD is the best biomarker to predict outcome

Munshi NC, et al. JAMA Oncol 2017;3(1):28-35

Time, y

n = 178

12

10

MRD negativity is a prognostic marker for PFS and OS across the spectrum of patients with MM

20

Lahuerta JJ, et al. JCO 2017;35(25):2900-2910

Can MRD-response modulate patients' risk at diagnosis? Risk in dynamic: patients with adverse prognosis shift into a favorable one upon achieving deep responses to treatment

Progression-free survival according to FISH and NGF

The best pathway to overcome the poor prognosis of HRCA is through the achievement of MRD-negativity

Conclusions

- There are some known predictors of long-term survivors: depth or response, disease biology, tumor burden
- Not all long-term survivors can be considered effectively cured
- The combination of an extended PFS time (ie 78 months), depth of response and absence of high risk features, can be associated with survival curves potentially reaching a plateau
- MRD negativity is a strong predictor of survival, showing a higher prognostic power than CR, patients with adverse prognosis shift into a favorable one upon achieving deep responses (sustained MRD negativity) to treatment
- Ongoing clinical trials will provide further insights into the role of MRD disease-driven treatment strategies for these patients in the near future