

Progetto Ematologia Romagna

NOVITÀ NEI LINFOMI A BASSO GRADO I linfomi della zona marginale Faenza, 19 settembre 2020

Luca Arcaini Divisione di Ematologia, Fondazione IRCCS Policlinico San Matteo e Dipartimento di Medicina Molecolare, Università di Pavia Posizione di dipendente in aziende con interessi commerciali in campo sanitario NIENTE DA DICHIARARE

• Consulenza ad aziende con interessi commerciali in campo sanitario Roche, Celgene, Janssen-Cilag, Gilead

Sciences, Verastem, Sandoz

- Fondi per la ricerca da aziende con interessi commerciali in campo sanitario GILEAD
- Partecipazione ad Advisory Board CELGENE, JANSSEN-CILAG, VERASTEM
- Titolarietà di brevetti in compartecipazione ad aziende con interessi commerciali in campo sanitario NIENTE DA

DICHIARARE

- Partecipazioni azionarie in aziende con interessi commerciali in campo sanitario NIENTE DA DICHIARARE
- Altro

Marginal-Zone B-Cell lymphomas: WHO 2017 subtypes

MZL WHO Subtypes

Extranodal MZL of *Mucosa-Associated Lymphoid Tissue* (MALT-Lymphoma)

Nodal MZL (NMZL)

Splenic MZL (SMZL)

% of all lymphomas in SEER registries

5%

2.4%

0.7%

Olszewski and Castillo, Cancer 2013

Epidemiology of MZL

SPLENIC MARGINAL ZONE LYMPHOMA

Epidemiology

- NHL in the SEER: 763/116411 cases (0.7%) SMZL
- Median age at dg 69 years
- The overall age-adj incidence 0.13 per 100 000 persons per y
- Increasing trends among white, male, or age >70 years
- International Lymphoma Epidemiology Consortium NHL Subtypes Project (20 case-control studies, 17471 NHL cases, 23 096 controls): association with B-cell activating autoimmune conditions, asthma, and use of hair dye

Liu et al. Leukemia and Lymphoma 2013 Morton et al. J Natl Cancer Inst Monogr. 2014 Bracci et al. J Natl Cancer Inst Monogr. 2014

Minimal diagnostic criteria

1- Splenic histology + CLL score ≤2 in absence of spleen histology

2- Typical morphology (PB and BM) + FC+ CD20+ intrasinusal infiltrate

Matutes et al. Leukemia 2008

Flow cytometry

	SMZL	CLL	MCL	HCL	HCL-v
slg	Strong	Weak	Strong	Strong	Strong
CD5	+	+ + +	+ + +	—	_
CD23	+	+ + +	—	—	—
FMC7	+ + +	+	+++	+ + +	+++
CD11c	++	_	—	+ + +	+++
CD103	—	_	—	+ + +	++
CD123	—	_	—	+ + +	_
CD25	+	_	_	+ + +	_
CD27	++	+++	+++	_	++
CD200	—	+++	_	+ + +	_

SMZL: IgM+/IgD+, SIg +, CD20+, CD22+,CD24+, CD27+, FMC7+, CD79b+, CD103-, CD123-, CD10-, DBA44 + (75%), CD11c + (50%), CD23+ (30%), CD5 + (20%)

Arcaini et al. Blood 2016

SMZL: IgM+/IgD+, SIg +, CD20+, CD22+, CD24+, CD27+, FMC7+, CD79b+, CD103-, CD123-, CD10-, DBA44 + (75%), CD11c + (50%), CD23+ (30%), CD5 + (20%)

	SMZL	CLL	MCL	FL	HCL	HCL-v	MALT
Flow cytometry							
Strong SigM	+++	+/-	+++	+++	+++	+++	+++
CD5	+	+++	+++	-	-	-	-
CD23	+	+++	-	+	-	-	-
FMC7	+++	-	+++	+++	+++	+++	+++
CD11c	++	-	-	-	+++	+++	-
CD103	-	-	-	-	+++	++	-
CD123	-	-	-	-	+++	-	-
CD25	+	-	-	-	+++	-	-
CD27	++	+++	+++	+++	-	++	+
Immunohistochemistry						-	
DBA44	++	+	-	-	+++	+++	-
lgM, lgD	+++	+++	-	+	+++	+	+
CD10	-	-	-	+++	-	-	-
BCL6	-	-	-	+++	-	-	-
CCND1	-	-	+++	-	+	-	-
CD5	+	+++	+++	-	-	-	-
CD43	+	+++	+++	-	-	-	+
CD23	-	+++	-	+	-	-	-
CD27	++	+++	+++	+++	-	++	+
Annexin A1	-	-	-	-	+++	-	-

WES in SMZL

CLL:~ 10 lesions/exome SMZL:~ 30 lesions/exome DLBCL:~ 90 lesions/exome

Rossi et al, JEM 2012

Mutations of NOTCH genes show a mutually exclusive pattern and account for 32% SMZL

Mutations of MZ genes show a mutually exclusive pattern and account for 60% SMZL

SMZL (n=117)

NOTCH2 mutations are selectively restricted to SMZL across mature B-cell tumors

Key molecular alterations in SMZL

SMZL prognostic score (IIL)

HPLL/ABC prognostic score

Risk factors HPLL/ABC score		HPLL/ABC	score
Hb < 9.5 g/dl	Α	0	36%
Plt <80000/mmc	В	1-2	56%
high LDH	С	3-4	8%

extra-hylar Lymphoadenopathy

Montalban et al, Leuk Lymph 2014

IELSG-46: molecular profiling in SMZL

- N=404 fresh spleen samples (splenectomy before 2010)
- SMZL diagnosis confirmed by pathologic revision
- Targeted deep NGS

• mutations (CAPP-seq)

•CNA

- Gene Expression Profiling (global and targeted mRNA seq)
- IGHV sequencing
- Clinical data (>8 years of follow-up)
- Machine-learning \rightarrow molecular clusters

IELSG-46: SMZL relative survival

•SMZL: -23% survival with respect to matched general population

Bruscaggin A et al ICML 2019

IELSG-46: SMZL mutational landscape

•N=404 fresh spleen samples (splenectomy before 2010)

• Targeted deep NGS, GEP, IGHV sequencing, machine-learning

IELSG-46: 3 molecular clusters

IELSG-46: molecular clusters survival

NODAL MARGINAL ZONE LYMPHOMA

Nodal marginal zone lymphoma

Definition: a primary nodal B-cell neoplasm that

morphologically resembles lymph nodes involved

by MZL of extranodal or splenic types, but without

evidence of extranodal or splenic disease

PTPRD mutations are enriched in NMZL across mature B-cell tumors (n=619)

Genes mutated in <a>>15% of NMZL and/or SMZL

Series of nodal marginal zone lymphomas

	N	Extranodal disease except BM
ILSG Blood 1997	25	NA
Armitage et al JCO 1998	20	25%> 1 extran. site, 5% GI
Nathwani et al. (USA) JCO 1999	20	spleen 25%, 13% liver
Berger et al. (FR) Blood 2000	37	25%> 1 extran. site, 5% liver
Camacho et al. (E) AJSP 2003	27	0
Traverse-Glehen et al. (FR) Histopathology	21	0
2006		
Oh et al. (Korea) Ann Hematol 2006	36	NA
Arcaini et al. (IT) Br J Haematol 2007	47	0
Kojima et al. (JPN) Cancer Science 2007	65	0

Presenting features (I)

	M/F	Median age (yrs)	Stage I/II (%)	BM+ (%)
ILSG Blood 1997	1:1.4	58	18	41
Armitage et al. JCO 1998	1:1.4	58	26	32
Nathwani et al. (USA) JCO 1999	1:1.3	59	29	28
Berger et al. (FR) Blood 2000	1:1.3	35% > 60 yrs	32	43
Camacho et al. (E) AJSP 2003	1:2.1	62	59	29
Traverse-G. et al. (FR) Histopathology 2006	2:1	57	24	62
Oh et al. (Korea) Ann Hematol 2006	2.6:1	50	50	19
Arcaini et al. (IT) Br J Haematol 2007	1:1.7	63	33	45
Kojima et al. (JPN) Cancer Science 2007	1:1.3	64	77	0

Outcome

	5-yrs OS	5-yrs PFS
ILSG Blood 1997	57	29
Armitage et al. JCO 1998	57	29
Nathwani et al. (USA) JCO 1999	56	28
Berger et al. (FR) Blood 2000	55	29
Camacho et al. (E) AJSP 2003	79	22
Traverse-G. et al. (FR) Histopathology 2006	70	35
Oh et al. (Korea) Ann Hematol 2006	83	47
Arcaini et al. (IT) Br J Haematol 2007	69	29
Kojima et al. (JPN) Cancer Science 2007	85	65

FLIPI score

Arcaini et al, BJH 2007

EXTRANODAL MARGINAL ZONE LYMPHOMA OF MALT

Array-CGH identifes both common or subtype-specific aberrations in MZL

- MZLs share 3q and 18q gains
- NMZL are more similar to EMZL than SMZL
- Extracopies of chr 3 and 18 are the same as in DLBCL
- EMZL and SMZL profiles show differences
 - 3p, 6p and 18p gains in EMZL
 - 6q losses in EMZL (A20/TNFAIP3)
 - 7q, 8p, 14q and 17p losses in SMZL *Rinaldi et al, Blood 2011*

MALT lymphoma: sites

- Gastrointestinal tract 50%
 - stomach 34%
 - intestine (inc IPSID) 5-8%
- Salivary gland 26%
- Respiratory tract
 - lung <mark>9%</mark>
 - pharynx, larynx, trachea
- Thyroid 4-6%
- Ocular adnexa 10-17%
 - conjunctiva
 - lacrimal gland
 - orbit*

- Thymus
- Liver 3%
- Genitourinary tract 3%
 - bladder
 - prostate
 - kidney
- Breast 3%
- Skin* 10-12%
- Dura*
- Rare sites
- *not mucosal

Zucca et al. 2003, Thieblement & Coiffier 2004

Diagnosis of MALT lymphoma

HISTOLOGICAL FEATURES

- Centrocyte-like cells (usually)
- Lymphoepithelial lesions
- Plasma cell differentiation
- Scattered transformed blasts
- Admixed reactive T-cell
- Follicular colonisation

IMMUNOPHENOTYPE

- CD5, CD10, CD23, IgD negative
- CD20, CD21, CD35, IgM, IRTA1 positive

Staging of MALT Lymphoma

- Multifocal disease in ≥25% of cases
- PET use is controversial and has uncertain clinical utility (ESMO Guidelines)
- Variable FDG-avidity (higher in non-gastric lesions!)
- Pooled PET/CT detection rate 71% (95% CI: 61-80%) in a literature meta-analysis

Treglia et al. Hematol Oncol. 2014

Evidence of antigen-driven growth in MALT lymphomas

- Histological features of MALT lymphoma
- Somatic hypermutation of immunoglobulin gene (and intraclonal variation)
- Association with chronic infectious conditions and auto-immune processes
- Therapeutic efficacy of antibiotics or antivirals
Antigen-driven lymphoma development

- Helicobacter pylori in gastric MZL
- Borrelia burgdorferi in cutaneous MZL
- Chlamydophila psittaci in some OALs
- **Campylobacter jejuni** in IPSID
- HCV association with some non-MALT MZL
- Achromobacter (Alcaligenes) Xylosoxidans in BALT-Lymphoma
- Nevertheless, lymphoma cell are usually "autoreactive"

IELSG MALT lymphoma score : LDH, Age, Stage MALT score : 0 factor / 1 F / ≥ 2

0 factor, n=167 1 factor, n= 164 2-3 factors, n=68

PFS by MALT prognostic score

gastric MALT

Non-gastric MALT

Thieblemont et al ICML 2015

High risk Marginal Zone Lymphomas

- 6-9% of all NHLs
- Splenic, Nodal and Extranodal subtypes (SMZL, NMZL, EMZL)
- Indolent course improved in the Rituximab era
- Missing standard treatment but immunochemotherapy is generally used for symptomatic patients (R-Chl, R-Bendamustine)
- Subtype-specific prognostic scores (MALT-IPI, HPLL)
 - 1. Zucca E, JCO 2017 2. Salar A, Blood 2017 3. Iannitto, BJH 2018 4. Montalban, BJH 2012
 - 5. Thieblemont, Blood 2018

Early progressors in follicular lymphoma

Casulo et al JCO 2015 Casulo et al Blood 2017

NF10 study by Fondazione Italiana Linfomi

- Prospective observational study to

 investigate the prognosis of Indolent Non Follicular B-Cell Lymphomas (INFL)
- Adult patients with biopsy-proven INFL
- SMZL (bone marrow and/or splenic histology)
- ENMZL (tissue biopsy)
- **NMZL** (lymph node biopsy)
- Lymphocytic lymphoma (lymph node biopsy)
- Lymphoplasmacytic lymphoma (bone marrow histology or lymph node biopsy)
- CD5- lymphoproliferative disorder (BM histology)
- No exclusion criteria

- Started in 2010
- 47 active centers in Europe and South America
- <u>1325 pts</u> eligible based on local pathology report

Overall Survival by POD24

Overall Survival by POD24 and MZL Subtypes

FONDAZIONE ITALIANA LINFOMI

Overall Survival by POD24 – W&W (n=286)

Histologic Transformation (HT) in MZL

TREATMENT

Splenectomy

Arcaini et al. Blood 2006

Splenectomy

- 100 HCV- SMZL

treated by splenectomy

- Median PFS 8.25 yrs
- 5-y OS 84%
- 10-y OS 67%
- Hist. transformation in 11%

Lenglet et al, Leuk Lymph 2014

Splenectomy: series of SMZL

	Year	Ν		Response		Deaths due to surgery
Reference			ORR (%)	Duration	OS	
Mulligan et al ⁶⁸	1991	20	95	Median DOR 4 y	NR	1
Troussard et al ⁵⁹	1996	28	75	NR	71% at 5 y	1
Chacon et al ⁶¹	2002	60*	93.3	Median FFS 40 mo	65% at 5 y	NR
Thieblemont et al ¹	2002	48†	100	PFS 48% at 5 y	NR	NR
Parry-Jones et al ⁶⁰	2003	33	NR	NR	LSS 95% at 10 y	NR
lannitto et al ⁶⁹	2004	21	91	Median DOR 4 y	NR	NR
Tsimberidou et al ⁷⁰	2006	10	60	FFS 80% at 3 y	89% at 3 y	0
Olszewski et al ⁷¹	2012	652	NR	NR	67.8% at 5 y‡	NR
Kalpadakis et al ⁷³	2013	27	85	PFS 58% at 5 y	77% at 5 y	1
Lenglet et al ⁷	2014	100	97	PFS 61% at 5 y	84% at 5 y	0
Xing et al ⁶²	2015	52§	NR	FFS 39% at 10 y	61% at 10 y	0
Pata et al ⁸⁹	2015	41	90	PFS 35% at 5 y	75% at 5 y	0

DOR, duration of response; FFS, failure-free survival; LSS, lymphoma-specific survival; NR, not reported; ORR, overall response rate; OS, overall survival; PFS, progression-free survival.

*Splenectomy alone in 29 patients.

†Splenectomy alone in 25 patients.

\$Survival of entire series of 1251 patients with no impact of splenectomy on OS.

§Splenectomy alone in 42 patients.

Splenectomy: complications

Perioperative complications in 41 splenectomized pts (*Pata et al, 2015*):

- Pulmonary dysfunction 20%
- Deep vein thrombosis 2%
- Portal vein thrombosis 2%
- Major bleeding 22%

Infections caused by encapsulated bacteria

In 2 recent series from France and British Columbia, about 5% of splenectomized patients died of infectious complications (*Langlet et al, 2014; Xing et al, 2015*)

Rituximab

Author	No. of patients	ORR, %	CR, %	PFS, % (at <i>n</i> years)	OS, % (at <i>n</i> years)
Bennett, 2005 [34]	11	91	NR	80 (6)	60 (4)
Tsimberidou, 2006 [26]	25	88	31	86 (3)	95 (3)
Kalpadakis, 2008 [36]	16	100	69	92 (2.4)	100(2.1)
Else, 2012 [28]	10	100	90	89 (3)	98 (3)
Kalpadakis, 2013 [27]	58	95	45	73 (5)	92 (5)

Kalpadakis et al, Oncologist, 2013

R-COMP05

CR = 31 (64%)

PR = 10 (20%)

6-year PFS 54%

Grade >3 neutropenia 26%

Grade >3 infections 8%

2 deaths as a result of infection

Iannitto et al, Leuk Lymphoma 2015

BR as 1st line tp in SMZL: BRISMA

•56 pts, SMZL, symptomatic, diagnosis prospectively confirmed

BRISMA: 1st MRD analysis in SMZL

Ferrero S et al, ICML 2019

EXTRANODAL MARGINAL ZONE LYMPHOMA OF MALT

IELSG-19 randomized study in MALT MZL

•401 pts: Chlorambucil (Arm A) vs R-Chlorambucil (B) vs Rituximab (C)

BR as 1st-line therapy in MALT MZL

- •GELTAMO phase 2 study (MALT-2008-01)
- R-Bendamustine as 1st-line response-adapted therapy (4 to 6 cycles)

•No differences between gastric and non-gastric MALT MZL

7-y PFS: 92.8% **7-y OS:** 96.5%

Salar A et al, Blood 2017

Toxicity beyond the first 2 years of follow-up

- 3 opportunistic infections:
 - 1 herpes zoster
 - 1 citomegalovirus
 - 1 lung infection by Nocardia
- No myelodysplastic syndrome or acute leukemia
- 3 neoplasia:
 - 1 epidermoid carcinoma of the tongue
 - 1 GIST
 - 1 granular lymphoproliferative disorder of NK-cells
- 3 non-melanoma skin cancers

R-bendamustine in MZL

- 65 MZL ts (28 EMZL, 23 SMZL, 14 nodal NMZL)
- 38 CR (58.5%)
- ORR 89.2%
- With a median f-up time of 44.6 mo estimated
 6-year PFS 71.8%
- All toxicities quickly resolved and no treatment-related death occurred.

Morigi et al, Hematol Oncol 2020

Biological rationale for innovative approach in MZL

Pathways in the SMZL and NMZL signatures MZ B cell NOTCH2 signals **NF-kB** signals Migration to and retention in MZ **Transitional B cell** Naive B cell Trøen G, et al. J Mol Diag 2004 Ruiz-Ballesteros E, et al. Blood 2005 **GC B cell**

Pillai et al. Nat Rev Immunol 2009

Molecular pathogenesis of MZL

GA101 glycoengineered, type II anti-CD20 monoclonal antibody (obinutuzumab)

Recognises a type II epitope – Favour different CD20 conformations that are associated with different protein complexes and different mechanisms of action

Fc region of GA101 is glycoengineered to confer improved antibody-dependent cell-mediated cytotoxicity

Mössner et al Blood 2010 Niederfellner et al Blood 2011 Alduaij et al Blood 2011

GADOLIN: PFS by subgroup

	Total	G-B	(n=194)	В	(n=202)	Hazard ratio	Favors	Favors
Subgroup	n	n	Events	n	Events	(95%CI)	G-B	В
Follicular lymphoma								
Yes	321	155	54	166	90	0.49 (0.35–0.68)		
No	75	39	17	36	14	0.94 (0.46–1.90)		, , , , , , , , , , , , , , , , , , ,
No. of prior therapies							1 . 🚽 .	
≤2	312	154	51	158	83	0.49 (0.34–0.69)		1.
>2	84	40	20	44	21	0.80 (0.43–1.48)		† -1
Refractory type								
Rituximab + chemotherapy	313	156	57	157	82	0.55 (0.39–0.77)		4
Rituximab monotherapy	83	38	14	45	22	0.55 (0.28–1.08)		
Sex							⊢∎ -4	
Male	228	110	41	118	57	0.58 (0.39–0.87)		
Female	168	84	30	84	47	0.52 (0.33–0.83)		
Bulky disease at BL							1 <u>– – – – – – – – – – – – – – – – – – –</u>	4
Yes (>6 cm)	136	66	27	70	37	0.63 (0.38–1.04)		
No (≤6 cm)	257	128	44	129	67	0.51 (0.35–0.75)		
B symptoms at BL								
Yes	58	30	12	28	16	0.57 (0.27–1.22)		Γ
No	335	163	59	172	87	0.55 (0.40–0.77)		
Double refractory status								
Yes	311	147	55	164	87	0.56 (0.40–0.78)	┝╺╇╾┥	
No	85	47	16	38	17	0.55 (0.28–1.10)	⊢	1
						0.0	0.0 0.1 0.2 0.0	

Hazard ratio (95%CI)

GALLIUM study design (MZL)

International study with open-label, randomised design

Exploratory endpoints

- PFS (INV-assessed)
- PFS (IRC-assessed)

- OS
- TTNT

- ORR/CR at EOI (+/- FDG-PET)
- Safety

¹Pts with stable disease (SD) at EOI entered observation for up to 2 years or until progressive disease (PD) if earlier CR, complete response; IPI, International Prognostic Index; ORR, overall response rate; PR, partial response; TTNT, time to next treatment

^{*}CHOP q3w × 6 cycles, CVP q3w × 8 cycles, bendamustine q4w × 6 cycles

Other time-to-event endpoints*

IRC-assessed PFS

OS

TTNT

Grade 5 (fatal) AEs*

• Respiratory, thoracic and mediastinal disorders

Note: no patient had PD or had started new anti-lymphoma treatment at the time of the grade 5 AE

*Safety population (all randomised pts who received at least one dose of study drug; note: 3 pts randomised to R-chemo received G [n=2] or no antibody [n=1])

NFkB - targeted therapies

IELSG-25 and Austrian phase II trials of bortezomib for MALT Lymphoma

- 1.3 mg/m² days 1, 4, 8, 11 q21
- 21 pts with **R/R** MALT lymphoma,
- 52% stage IV
- 52% primary gastric
- Median follow up 17 mos
- CR 27%, PR 37%
- Toxicity similar to that observed in multiple myeloma and other NHL (peripheral neuropathy and fatigue)
- 3 deaths, non-related to treatment, observed during the early follow up.

Conconi et al Ann Oncol 2010

- 1.5 mg/m² days 1,4,8,11 q21
- 16 pts **front-line**, 4 primary gastric
- median follow up 23 mos
- ORR 80%, CR 43%
- Fifteen patients required dose reductions due to either neuropathy (7 patients) or diarrhea (8 patients).

Trosch et al Haematologica 2010

Phase II study of bortezomib in relapsed/refractory MALT lymphomas

Conconi et al Ann Oncol 2011
PI3K inhibitors

Study 101-09: single-group open-label Phase II study

Key endpoints

Primary: ORR Secondary: DoR, PFS, OS and safety Refractory was defined as less than partial response or progression of disease within 6 months after completion of a prior therapy

Gopal et al NEJM 2014

Clinical features

Baseline characteristics	Patients (N=125)
Median age (range), y	64 (33–87)
Subtype of iNHL, n (%)	
Follicular lymphoma	
Small lymphocytic lymphoma	28 (22)
Marginal zone lymphoma	15 (12)
Lymphoplasmacytic lymphoma with/without Waldenström's macroglobulinaemia	10 (8)
Disease status, n (%)	
Stage III or IV	111 (89)
Elevated LDH	38 (30)
Bulky disease (≥7 cm in one dimension)	33 (26)

Gopal et al NEJM 2014

Clinical features

Prior therapy exposure ^{1,2}	Patients (N=125)
Median (range) prior regimens, n	4 (2–12)
Prior therapy, n (%)	
Rituximab	125 (100)
Alkylating agent	125 (100)
R + alkylating agent	114 (91)
Bendamustine	81 (65)
Anthracycline	79 (63)
Purine analogue	42 (34)
Stem cell transplantation	14 (11)
Median time from last regimen to study entry, months	3.9

Prior therapy refractoriness, n/n (%) ^{1,2}	Patients (N=125)
Rituximab	125/125 (100)
Alkylating agent	124/125 (99)ª
R + alkylating agent	108/114 (95)
R-CVP	29/36 (81)
R-bendamustine	47/60 (78)
Bendamustine	61/81 (75)
R-CHOP	40/56 (71)
Refractory to ≥2 regimens	99/125 (79)
Refractory to last regimen	112/125 (90)

^a Refractoriness to two cycles required to meet definition but one patient received only one cycle, with no response after that cycle. CHOP: cyclophosphamide, vincristine, doxorubicin and prednisone; CVP: cyclophosphamide, vincristine and prednisone; R: rituximab

Gopal et al NEJM 2014

Response

Overall Response Rate By Disease Subgroups: 2014

Gopal et al NEJM 2014 Gopal et al ASH 2014

ORR across double-refractory iNHL subgroups

Idelalisib in double-refractory iNHL

PR

ORR 47%

CR

Gopal et al NEJM 2014 Gopal et al ASH 2014

PD

SD

Duvelisib in double refractory MZL

- DYNAMO: Phase 2 study in iNHL
- Duvelisib dual PI3Ki ($\gamma\delta$)
- •18 MZL pts (9 MALT, 4 NMZL, 5 SMZL)
- •2 median prior tp (1-8)
- •Median exposure: 8.4 months

Toxicity, n (%)				
	All Gr.	Gr>3		
Diarrhea	9 (50)	3 (17)		
Colitis	3 (17)	2 (11)		
Neutropenia	6 (33)	5 (28)		
Cough	6 (33)	0		

ORR per IRC, n (%)	
ORR	7 (39)
CR	1
PR	6
95% CI	(17, 64)
Time to response per IRC, months	
Median (min, max)	3.7 (1.8, 8.4)
Duration of response per IRC, month	าร
Median (50th percentile)	NE (1.3, NE)
M arginal	Zone B-Cell Lymphoma
1.0 - +	
0.9 -	
0.8	
0.8	
0.8	
0.8	
0.8	
0.8	
0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 - DEC	
0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 - PFS	
0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 - 0.0 - PFS	

Jacobsen E et al, SOHO 2019

Umbralisib phase 2 study in r/r MZL

- •Unity-NHL, MZL cohort
- •Umbralisib: next gen PI3K δ inh, 800 mg QD
- •72 pts, 2 median prior tp

	All Grades		Grade	e 3/4
	N	%	N	%
Diarrhea	10	24%	2	5%
ALT increased	1	2%	-	-
AST increased	-	-	-	-
Pneumonitis	1	2%	1	2%
Pneumonia	-	-	-	-

Zinzani P et al, ICML 2019

Ibrutinib in r/r MZL, phase 2 study

Toxicity

- Rates of discontinuation and dose reductions due to AEs were 17% and 10%, respectively
- Median duration of exposure 11.6 mo
- At a median f-up of 19.4 mo for the all treated population (n=63), 38% continue study treatment

Toxicity

- Fatigue (44%)
- Diarrhea (43%)
- Anemia (35%)
- Nausea and thrombocytopenia (25%)
- Grade \geq 3 AEs occurred in 40 pts (63%)
- AF occurred in 4 pts (6%; all grade 1/2)
- Any-grade bleeding events occurred in 57% of pts, with
- 1 grade 3 event of hematemesis and 1 grade 5 cerebral hemorrhage

MALIBU study: Ibrutinib + R as 1st-line tp in MZL

MALT-MZL 120 pts

- MALT-IPI≥1
- need of therapy
- not eligible for local tp
- de novo or relapsed after local tp or antibiotics

NMZL 15 pts

SMZL 15 pts

Primary endpoints

- CR 12 months
- PFS 5 years

Lenalidomide

Lenalidomide + Rituximab as Initial Therapy in Indolent NHL (R²)

- Treatment
 - Lenalidomide 20 mg/day on days 1-21
 - Rituximab 375 mg/m² on Day 1 of each 28-day cycle for 6 cycles; up to 12 cycles if clinical benefit observed
 - Restaging at 4, 6, 9, 12 mos
- Primary endpoint: ORR
- Secondary endpoints
 - Rates of PR and CR, PFS, OS, safety, tolerability in previously untreated patients, effect on tumor and immune microenvironment

R-Lenalidomide in MZL: Response Rates and PFS

n (%)	SLL (N=30)	MZL (N=27)*	FL (N=46)*	
ORR	24 (80)	24(89)	45(98)	-08 -08 -08
CR/Cru	8(27)	18(67)	40(87)	s 40-
PR	16(53)	6(22)	5(11)	[¯] 20− N=27 36 mo PFS: 89%
SD	4(13)	3(11)	1(2)	0 12 24 36
PD	2(7)	0	0	PFS

*7 pts not evaluable for response:

- 5 due to adverse event in cycle 1
- 1 due to non-compliance
- 1 due to withdrawal of consent

MZL – Nodal and Extranodal

Fowler et al Lancet Oncology 2014

Phase III randomized, open-label, multicenter study of R² induction therapy followed by R² maintenance vs. rituximab (R) maintenance in patients with R/R NHL, including MZL - NHL-008 study (MAGNIFY)

Primary endpoint: PFS (maintenance; 2-sided test a=0.05 and HR=0.67)⁺ **Secondary endpoints:** OS, IOR, ORR, CR, DOR, DOCR, TTNLT, TTHT, safety⁺ **Exploratory:** subgroup analysis of efficacy and safety by histology and QOL

Coleman et al ICML 2017

MAGNIFY: MZL Patients

• As of January 9, 2017, 234 patients with indolent NHL were enrolled and received treatment, including 38 (16%) patients with MZL

Baseline Characteristics and Prior Treatment

Characteristic, n (%)		All MZL (n=38)	Characteristic, n (%)	
Median age, years (rar	nge)	66 (58-72)	Median number of prior systemic anti- cancer therapies	
Age ≥65 years		20 (53)	Number of prior systemic anti-cancer therar	
Male		23 (61)		
ECOG PS*	0	17 (48)	1 2	
	1	21 (52)	3 ≥4	
Disease stage*	I	1 (3)	Prior rituximab-containing therapy	
	II	4 (11)	Rituximab-refractory	
	ш	7 (18)	Most common prior treatment regimens	
	IV	26 (68)	Rituximab	
Positive bone marrow involvement		21 (55)	BR R-CHOP-like	

• 34% were refractory to rituximab (defined as SD/PD to or PR/CR lasting fewer than 6 months following the last rituximab dose)

MAGNIFY: Best Response During R² treatment (32 pts)

	Nodal MZL (n=14)	Splenic MZL (n=8)	MALT (n=10)	Evaluable MZL (n=32)		
Best Response, n (%)						
ORR (CR+CRu+PR)	8 (57)	5 (63)	8 (80)	21 (66)		
[95% CI]*	[29%-82%]	[25%-92%]	[44%-98%]	[47%-81%]		
CR/CRu	8 (57)	2 (25)	4 (40)	14 (44)		
PR	0	3 (38)	4 (40)	7 (22)		
SD	5 (36)	3 (38)	1 (10)	9 (28)		
PD [†]	1 (7)	0	1 (10)	2 (6)		
Median treatment duration, mo (range)	8.3 (1.3-20.4)	9.7 (0.2-25.8)	11.8 (3.5-25.8)	9.4 (0.2-25.8)		
Median TTR, mo (range)	2.9 (2-11)	2.7 (2-11)	3.4 (3-11)	3.1 (2-11)		
Median follow-up of 13.8 mo						

- Median treatment duration was 9.4 mo and median TTR was 3.1 mo
- Median DOR has not been reached for any subgroup

Efficacy

Median f-up: 33 mo

29 (53%) pts remain progression-free No cases of high-grade transformation.

52 pts are alive ; no pt died of

lymphoma

3-year OS of 96% (95%CI=91-100%).

Deaths: HCV-related cirrhosis, stroke,

NSCLC.

Rituximab + Lenalidomide vs Rituximab + Placebo for R/R Indolent NHL (AUGMENT)

Multicenter, double-blind, placebo-controlled, randomized phase III trial

*Anticoagulation or antiplatelet therapy recommended for patients at risk. Growth factor use in line with ASCO/ESMO guideline permitted. †10 mg if CrCl is 30-59 mL/min.

- Primary endpoint: IRC-assessed PFS in ITT population
- Secondary endpoints: ORR, OS, histologic transformation, safety

AUGMENT: IRC-Assessed PFS in ITT Population (Primary Endpoint)

Comparable results obtained by investigator assessment (HR: 0.51; P < .0001)

AUGMENT: IRC-Assessed PFS by Subgroup (ITT)

Subgroup	1	R², n/N	R-Placebo, n/N	HR (95% CI)
Number of prior systemic antilympho	ma regimens			
1	⊢●──┤	35/102	58/97	0.46 (0.31-0.71)
> 1		33/76	57/83	0.47 (0.31-0.73)
Ann Arbor stage at enrollment				
1-2		12/41	26/56	0.60 (0.30-1.20)
3-4	⊦●⊣	56/137	89/124	0.40 (0.28-0.56)
Prior rituximab-containing chemother	apy regimen			
Yes		54/130	85/129	0.53 (0.37-0.74)
No		14/48	30/51	0.31 (0.16-0.59)
Refractory to last prior regimen				
Yes	₩ 1	13/30	22/26	0.20 (0.09-0.44)
No	⊢●─┤	55/148	93/154	0.50 (0.36-0.70)
High tumor burden (GELF)				
Yes	⊢●──┤	40/97	61/86	0.40 (0.27-0.61)
No		28/81	54/94	0.50 (0.32-0.79)
Chemoresistant				
Yes	₩₩₩	9/25	21/26	0.18 (0.07-0.45)
No	⊢●→	59/153	94/154	0.51 (0.37-0.71)
Disease histology				
FL	₩	56/147	99/148	0.40 (0.29-0.56)
MZL	⊢	12/31	16/32	1.00 (0.47-2.13)
	0 1	2 3		
ard. ASH 2018. Abstr 445.	0 1	2 3 HR		Slide credit: <u>clinic</u>

• Median IRC-assessed PFS (ITT): 39.4 vs 14.1 mo (*P* < .0001)

- PFS benefit observed across subgroups, except for MZL
- ORR median DoR improved with R²
- OS improved with R² in FL

Hepatis C virus

Splenic and Nodal Marginal Zone Lymphomas Are Indolent Disorders at High Hepatitis C Virus Seroprevalence with Distinct Presenting Features but Similar Morphologic and Phenotypic Profiles

Arcaini et al Cancer 2004

Brief report

Splenic lymphoma with villous lymphocytes, associated with type II cryoglobulinemia and HCV infection: a new entity?

Saadoun et al Blood 2004

Lymphoma response

ORR 73%

SVR and histotype

157 MZL

Study Lymphoma r	espons	se Tota	I	Proportion	95%
MZL patients					
Casato et al. [17]	1	1	No	→ 1.00	[0.03; 1.
Caramaschi et al. [16]	1	1		→ 1.00	[0.03; 1.
Bauduer [15]	1	1	· · · · · · · · · · · · · · · · · · ·	1.00	[0.03; 1.
Pitini et al. [27]	2	2		1.00	[0.16; 1.
Moccia et al. [22]	2	3		- 0.67	[0.09; 0.
Hermine et al. [8]	7	9		0.78	[0.40; 0.
Kelaidi et al. [19]	5	8		0.62	[0.24; 0.
Saadoun et al. [28]	18	18		1.00	[0.81; 1.
Mazzaro et al. [21]	1	1		1.00	[0.03; 1.
Svoboda et al. [29]	1	1		1.00	[0.03; 1.
Paulli et al. [25]	2	2		1.00	[0.16; 1.
Pellicelli et al. [26]	6	7		- 0.86	[0.42: 1.
Vallisa et al. [32]	6	8		0.75	[0.35: 0.
Arcaini et al. [10]	68	80		0.85	[0.75: 0.
Coskun et al. [18]	1	1		1.00	[0.03: 1.
Michot et al. [11]	11	14		0.79	[0.49; 0.
Fixed effect model		157		0.81	[0.74: 0.
Heterogeneity: I-squared =	= 0%, tau	-square	d = 0, P = 0.9824		
Non-MZL patients					
Patriarca et al. [24]	1	1		→ 1.00	[0.03; 1.
Tursi et al. [31]	13	16		0.81	[0.54; 0.
Mazzaro et al. [21]	12	17		0.71	[0.44; 0.
Oda et al. [23]	1	1		1.00	[0.03; 1.
Mauro et al. [20]	1	1		1.00	[0.03; 1.
Pellicelli et al. [26]	1	2	•	0.50	[0.01; 0.
Vallisa et al. [32]	3	5		0.60	[0.15; 0
Arcaini et al. [10]	38	54		0.70	[0.56; 0
Fixed effect model	0.055	97		0.71	[0.61; 0.
Heterogeneity: I-squared =	= 0%, tau	-square	d = 0, P = 0.9809		
		80704		-	
				1	

Proportion 95%-CI

1	1		1.00 [0.03; 1.00]
1	1	,	1.00 [0.03; 1.00]
1	1		1.00 [0.03; 1.00]
2	2		1.00 [0.16; 1.00]
7	7		1.00 [0.59; 1.00]
5	8		0.62 [0.24; 0.91]
11	11		1.00 [0.72; 1.00]
14	14		1.00 [0.77; 1.00]
9	9	4	1.00 [0.66; 1.00]
1	1		1.00 [0.03; 1.00]
1	1		1.00 [0.03; 1.00]
1	1		1.00 [0.03; 1.00]
2	2		1.00 [0.16; 1.00]
7	7		1.00 [0.59; 1.00]
6	8	·····	0.75 [0.35; 0.97]
84	102		0.82 [0.74; 0.89]
1	1		1.00 [0.03; 1.00]
11	11		1.00 [0.72; 1.00]
	188		0.83 [0.76; 0.88]
	1 1 2 7 5 11 14 9 1 1 2 7 6 84 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Heterogeneity: I-squared = 0%, tau-squared = 0, P = 0.9386

Antiviral response: Non-SVR

Study Lymphoma response Total

Antiviral response: SVR

Hermine et al. [8]	0	2	·	0.00 [0.00; 0.84]
Tursi et al. [31]	2	5	· · · · · · · · · · · · · · · · · · ·	0.40 [0.05; 0.85]
Saadoun et al. [28]	4	4		1.00 [0.40; 1.00]
Mazzaro et al. [21]	4	9		0.44 [0.14; 0.79]
Pellicelli et al. [26]	0	2		0.00 [0.00; 0.84]
Vallisa et al. [32]	0	3		0.00 [0.00; 0.71]
Arcaini et al. [10]	20	30		0.67 [0.47; 0.83]
Michot et al. [11]	0	3		0.00 [0.00; 0.71]
Fixed effect model		58		0.53 [0.39; 0.67]
Heterogeneity: I-squared =	= 36.1%, tai	I-squ	ared = 0.4925, P = 0.1408	

0 0.2 0.4 0.6 0.8 1

83 % vs 53%

81 % vs 71%

Antiviral therapy and risk of lymphoma

- 501 HCV+ pts never treated
- 2,708 HCV+ pts treated with IFN
- Cumulative rates at 5, 10 and 15 yrs:
- Non-IFN group: 0.6%, 2.3% and 2.6%
- IFN-group with SVR: 0%, 0% and 0%
- IFN-group with persistent infection: 0.4%, 1.5% and 2.6%

Interferon-free antiviral treatment in B-cell lymphoproliferative disorders associated with hepatitis C virus infection

Luca Arcaini,^{1,2,*} Caroline Besson,^{3,*} Marco Frigeni,¹ Hélène Fontaine,⁴ Maria Goldaniga,⁵ Milvia Casato,⁶ Marcella Visentini,⁶ Harrys A. Torres,⁷ Veronique Loustaud-Ratti,⁸ Jan Peveling-Oberhag,⁹ Paolo Fabris,¹⁰ Roberto Rossotti,¹¹ Francesco Zaja,¹² Luigi Rigacci,¹³ Sara Rattotti,² Raffaele Bruno,^{14,15} Michele Merli,¹⁶ Céline Dorival,¹⁷ Laurent Alric,¹⁸ Arnaud Jaccard,⁸ Stanislas Pol,⁴ Fabrice Carrat,^{17,19} Virginia Valeria Ferretti,¹ Carlo Visco,^{20,†} and Olivier Hermine^{21,22,†}

	CR, n	PR, n	SD, n
All (N = 46)	12	19	11
MZLs (n = 37)	11	16	6
Splenic (n = 17)	4	7	5
Nodal (n = 1)	1	0	0
Extranodal (n = 15)	5	7	0
Leukemic (n = 4)	1	2	1
Follicular lymphoma (n = 2)	0	2	0
Lymphoplasmacytic lymphoma (n = 2)	0	1	1
Low-grade B-NHL NOS (n = 1)	1	0	0
CLL/SLL (n = 4)	0	0	4

ORR 67%: 26 % CR, 41% PR - ORR in MZL 73%; no response in CLL

100 pts treated with DAAs

	CR (n)	PR (n)	SD (n)	PD (n)
All (n=100)	23	43	26	8
Marginal zone lymphomas (n=71)	21	31	13	6
Splenic (n=35)	7	20	6	2
Nodal (n=3)	2	0	1	0
Extranodal (n=25)	9	8	4	4
Leukemic (n=8)	3	3	2	0
Follicular lymphoma (n=6)	0	4	1	1
Lymphoplasmacytic lymphoma (n=7)	0	5	1	1
Low-grade B-cell NHL NOS (n=6)	2	3	1	0
CLL/SLL (n=10)	0	0	10	0

IFN vs DAAs

	DAA (n=66)	IFN (n=100)	Р
Sex – n (%) Male Female	29 (44) 37 (56)	41 (41) 59 (59)	0.642
Age (years), median (range)	61 (40-83)	62 (24-77)	0.170
Age $< 60 / \ge 60 - yr (\%)$	31 (47) / 35 (53)	41 (41) / 59 (59)	0.523
Diagnosis – n (%) MZL Non MZL	53 (80) 13 (20)	60 (60) 40 (40)	0.007
Stage – n (%) Limited (I-II) Advanced (III-IV)	7 (11) 59 (89)	10 (10) 90 (90)	>0.900
Nodal involvement – n (%)	36 (55)	55 (55)	>0.900
Extranodal involvement* – n (%)	27 (41)	38 (38)	0.747
N° of involved extrnodal sites, n (%) 1 ≥2	21 (78) 6 (22)	33 (87) 5 (13)	0.504
ECOG performance status $\geq 1 - n$ (%)	22 (34)	24 (24)	0.214
Hemoglobin $<12 \text{ g/dl} - n (\%)$	21/65 (32)	31/96 (32)	>0.900
Platelets $<100 \text{ x } 10^{9}/\text{L} - \text{n} (\%)$	8/65 (12)	14/96 (15)	0.816
LDH > UNL - n (%)	10/58 (17)	17/96 (18)	>0.900
β_2 -microglobulin > UNL - n (%)	30/42 (71)	31/59 (52)	0.066
Serum monoclonal component – n (%)	23 (35)	35 (35)	>0.900
Cryoglobulin – n (%)	27 (41)	34 (34)	0.412
Albumin less than 3.5 g/dl – n (%)	6/58 (10)	10/90 (11)	>0.900
HCV genotype – n (%) 1 2 3-4	38/65 (59) 19/65 (29) 8/65 (12)	37 (39) 52 (55) 6 (6)	0.005

Frigeni et al Leukemia 2019

IFN vs DAAs

- Duration of therapy longer with IFN (median 28 w vs 12, p<0.001)
- SVR rate higher among pts treated with DAAs (98% vs 81%, p<0.001).
- In the IFN group, six pts discontinued treatment due to toxicity vs 0 with DAA
- ORR was similar in the two groups
- 18 the pts treated with IFN obtained a higher rate of CR than pts treated with DAAs (48% vs 19 21%, p=0.001)

IFN vs DAAs

Frigeni et al Leukemia 2019
Guidelines

ESMO Consensus guidelines marginal zone lymphoma

Dreyling et al, Ann Onc 2013

1.11 Consensus statement

In patients with NMZL or SMZL and concurrent HCV-related chronic hepatitis who do not need immediately conventional treatment of lymphoma, antiviral treatment with pegylated interferon and ribavirin should be considered as first treatment

"the panel recommends initial antiviral therapy in asymptomatic patients with lowgrade HCV-positive indolent B-cell NHL"

Review

International therapeutic guidelines for patients with HCV-related extrahepatic disorders. A multidisciplinary expert statement*

Anna Linda Zignego ^{a,*}, Manuel Ramos-Casals ^b, Clodoveo Ferri ^c, David Saadoun ^{n,o,p,q}, Luca Arcaini ^d, Dario Roccatello ^{e,f}, Alessandro Antonelli ^g, Anne Claire Desbois ^{n,o,p,q}, Cloe Comarmond ^{n,o,p,q}, Laura Gragnani ^a, Milvia Casato ^h, Peter Lamprecht ⁱ, Alessandra Mangia ^j, Athanasios G Tzioufas ^k, Zobair M Younossi ^{l,m}, Patrice Cacoub ^{n,o,p,q}, on behalf of the ISG-EHCV:

SRV and hematological maligancies

A Cumulative incidence of hematologic malignancies or MGUS

B Cumulative incidence of colon cancer or prostate cancer

C Cumulative incidence of hematologic malignancies or MGUS

D Cumulative incidence of colon cancer or prostate cancer

Ioannou et al Hepatol Comm 2019

A multicenter study to evaluate the anti-viral activity of an interferon-free treatment with ledipasvir/sofosbuvir (G1 and G4) and sofosbuvir/velpatasvir (G2 and G3) for patients with hepatitis C virus-associated indolent B-cell lymphomas

ID Study: FIL_BArT (B-cell lymphoma Antiviral Treatment)

EudraCT number: 2015-004830-81

STUDY COORDINATOR

Luca Arcaini Hematology, University of Pavia

> PATHOLOGY REVIEW Marco Paulli, Pavia

MOLECULAR STUDIES

Simone Ferrero, Torino

WRITING COMMITTEE

Alessandro Pulsoni, Roma

Carlo Visco, Vicenza

Sara Rattotti, Pavia

Anna Linda Zignego, Firenze

Michele Merli, Varese

Aula Scarpa, Teatro Anatomico, Università di Pavia (1758)