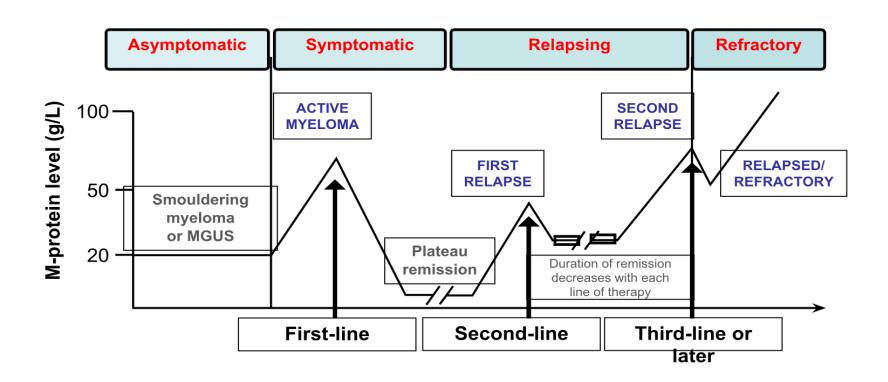


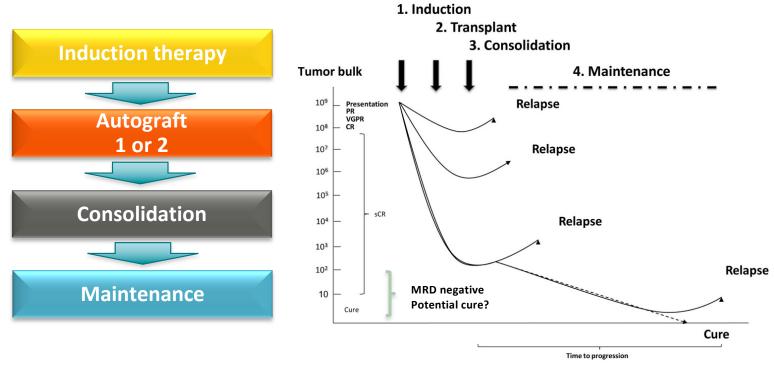
Come si inseriscono i nuovi farmaci Alessandro Corso



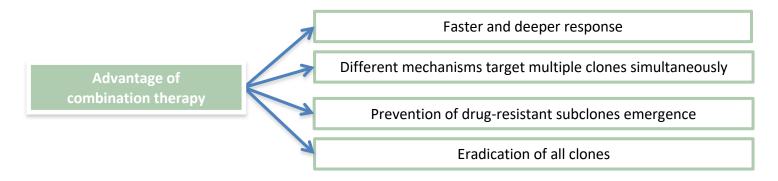
Dichiarazione obbligatoria sui conflitti di interesse

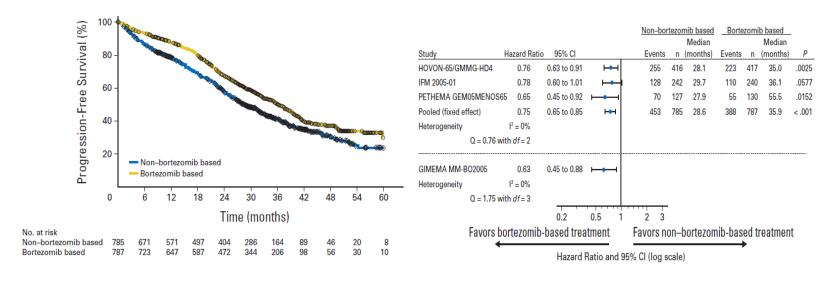
Ai sensi dell'art. 3.3 sul Conflitto di Interessi, pag. 18, 19 dell'Accordo Stato-Regione del 19 aprile 2012, dichiaro che negli ultimi due anni ho avuto i seguenti rapporti anche di finanziamento con soggetti portatori di interessi commerciali in campo sanitario:

- Celgene
- Janssen-Cilag
- Amgen
- Takeda
- BMS


Natural History of MM

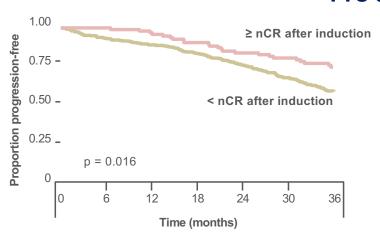
Hajek R. Strategies for the Treatment of Multiple Myeloma in 2013: Moving Toward the Cure. In: Multiple Myeloma – A Quick Reflection on the Fast Progress, Prof. Roman Hajek (Ed.), InTech 2013; doi:10.5772/55366.


Treatment paradigm for autotransplant-eligible patients


- maximize the speed and depth of tumour burden reduction
- quickly reverse disease-related complications
- prolong disease control

Cavo M, et al. Blood 2011;117(23):6063-73 Cavo M, et al. Blood 2012;120(1):9-19 Morgan GJ, et al. Blood. 2013;122(8):1332-4 Kumar S, et al. Lancet Oncology 2016;17:e328-46

Induction: 3 drugs regimen

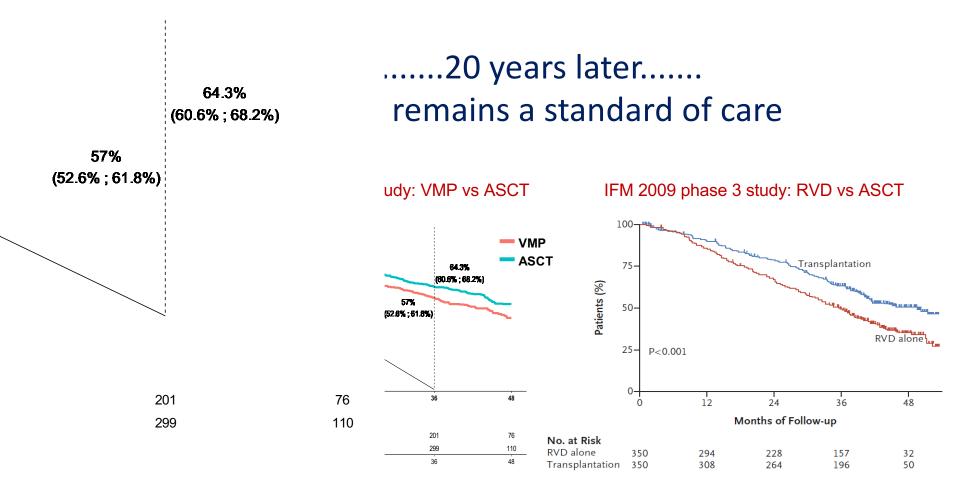


Meta-analysis bortezomib-based induction vs non bortezomib

STARTING FROM INDUCTION:

Achievement of high-quality response prognosticates for extended PFS after ASCT

Variable	HR (95% CI)	p value
Absence of $t(4;14) \pm del(17p)$	0.51 (0.36–0.73)	< 0.0001
B2-m ≤ 3.5 mg/L	0.47 (0.33–0.67)	0.0020
Response to induction ≥ nCR	0.98 (0.97–0.99)	0.0187

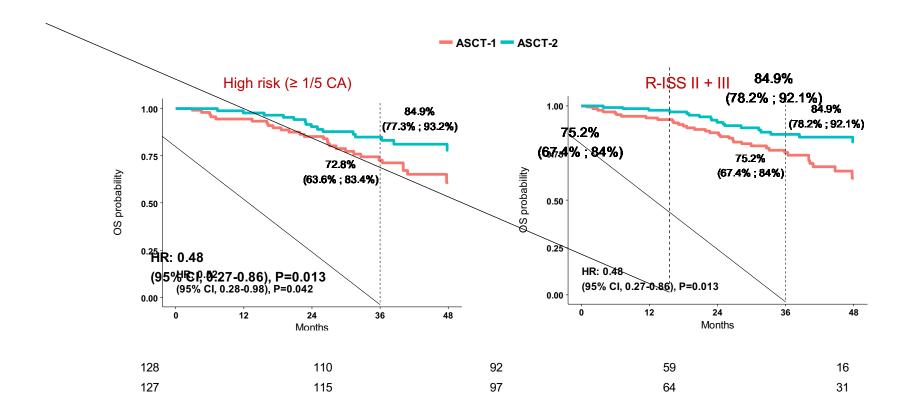

n-free	1.0			≥VGPR	after indu	ction
ressio	0.6 -				`	
n prog	0.4 -	< VGPR a	after indu	ction	~~L	
Proportion progression-free	0.2 -	p < 0.0001			ኒ	
ш.	0	10	20	30	1 40	50
	•		Time (months)		

Variable	RR (95% CI)	p value
t(4;14) ± del(17p)	1.5 (1.0-2.1)	0.0621
ISS stage 2 and 3	1.8 (1.4–2.4)	< 0.0001
Response to induction < VGPR	2.3 (1.6–3.2)	< 0.0001

Cavo M, et al. Lancet. 2010;376:2075-85 Updated with unpublished data from Cavo M et al. Moreau P, et al. Blood 2011;117:3041-4

Intensification

- Limits
 - Not univocal data from studies although the depth of response maintains its relevance
- In favour
 - Better control of disease at the time of transplant
- Cons
 - Delay of transplant
 - Possible toxicity or severe side effects with the intensification therapy
- Open issues
 - When?
 - If < PR
 - Before or after mobilization?
 - Before>after
 - Which scheme?
 - KRd/DRd
 - How long?
 - To the best response

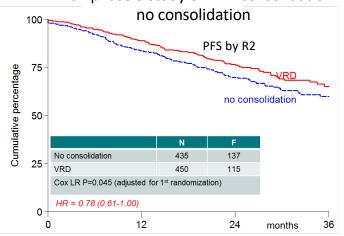


Median follow-up: 37.8 months

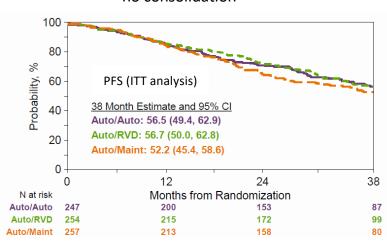
Median follow-up: 43.5 months

MORE IS BETTER IN SPECIFIC SUBGROUPS OF PATIENTS

OS by randomization in high risk subgroups

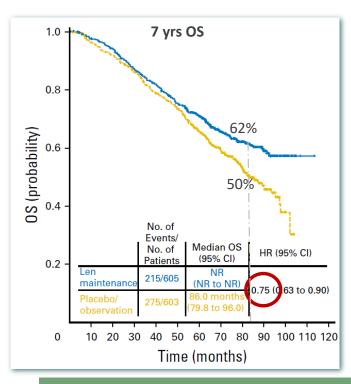


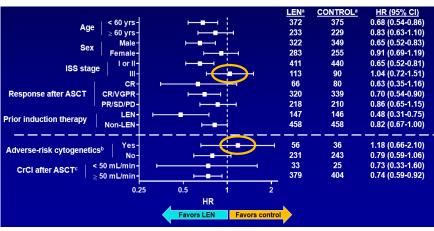
Consolidation


Improve response/deeper following therapy by administration of treatment for a limited period

VTD: upgrade to CR by 30% VRD: upgrade CR 38% vs 26%

EMN02 phase 3 study of VRD consolidation vs

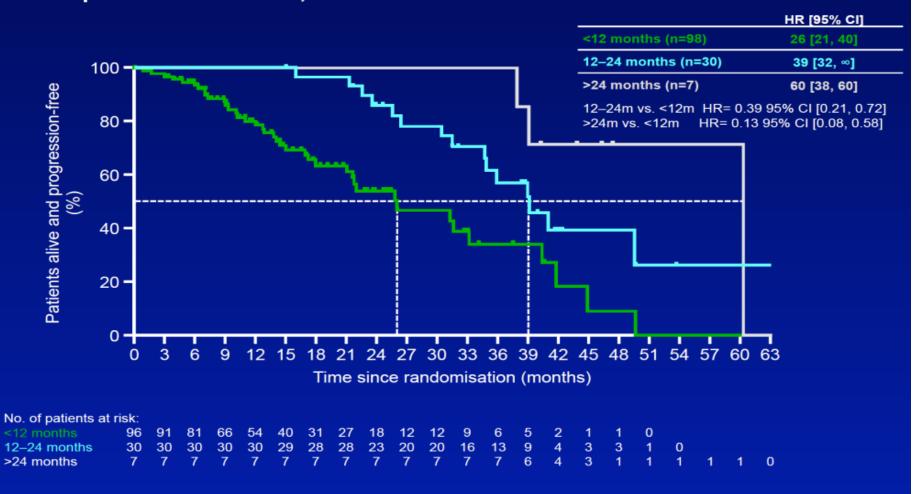

STaMINA phase 3 study of VRD consolidation vs no consolidation


	EMN02	STAMINA
Induction regimen (%)	VCD (100)	VCD (13.4); VRD (57)
Pre-planned induction thp (mths)	2–3	2–12
Failure to receive double ASCT (%)	19.8	32
Double ASCT plus Consolidation (%)	50	0
Maintenance therapy	Len (10 mg)	Len (10-15 mg)

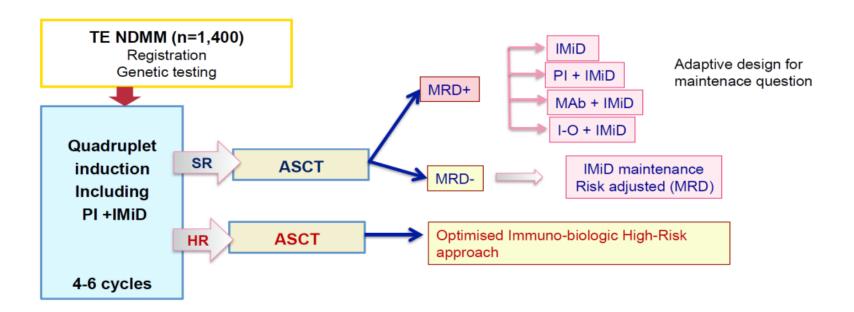
act 242;

Lenalidomide maintenance: Meta-Analysis of phase 3 trials

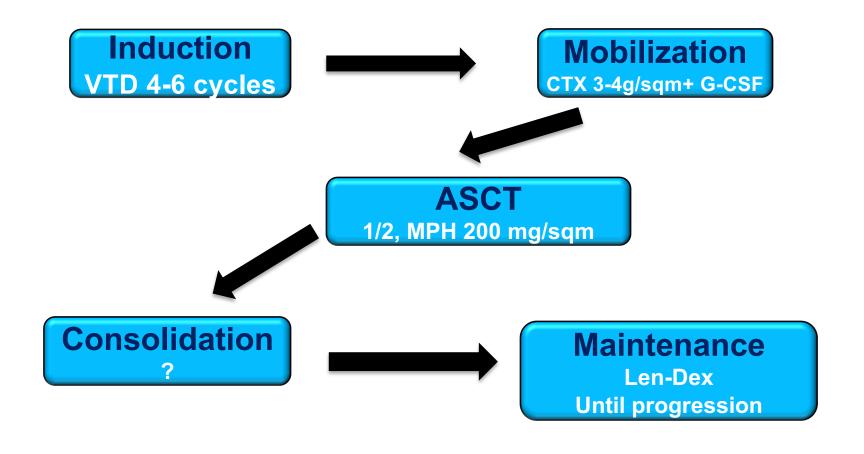
OS subgroup analysis



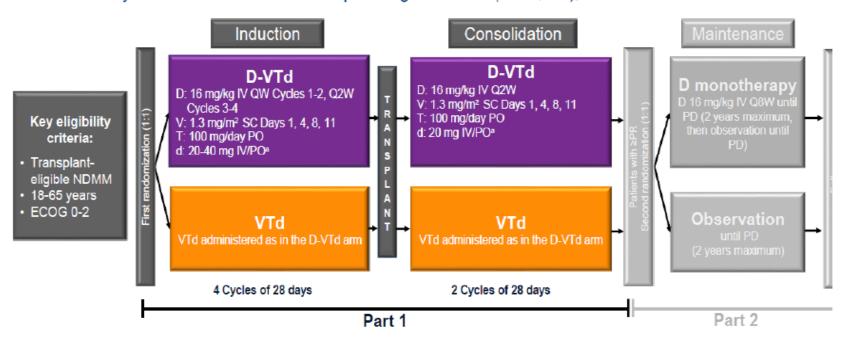
Attal M, et al. Presented at ASCO 2016:abstract 8001; McCarthy PL, et al. J Clin Oncol. 2017


- **Lenalidomide** maintenance is EMA-approved for the treatment of patients with newly-diagnosed MM who have undergone ASCT
- Thalidomide maintenance post ASCT is AIFA-approved (L.648)
- Some patient populations may benefit from alternative regimens

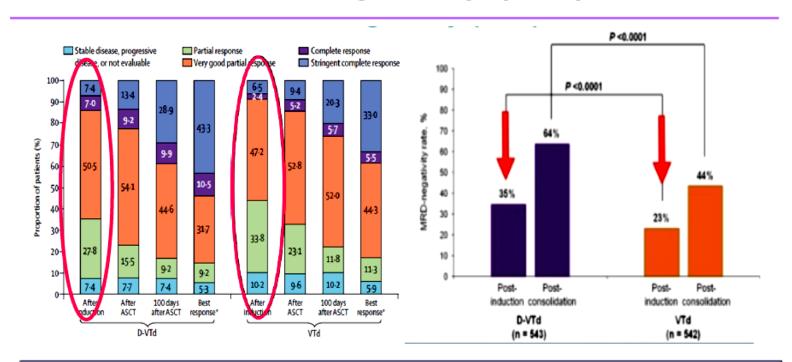
Duration of therapy


Comparison <12 months, 12–24 months and >24 months

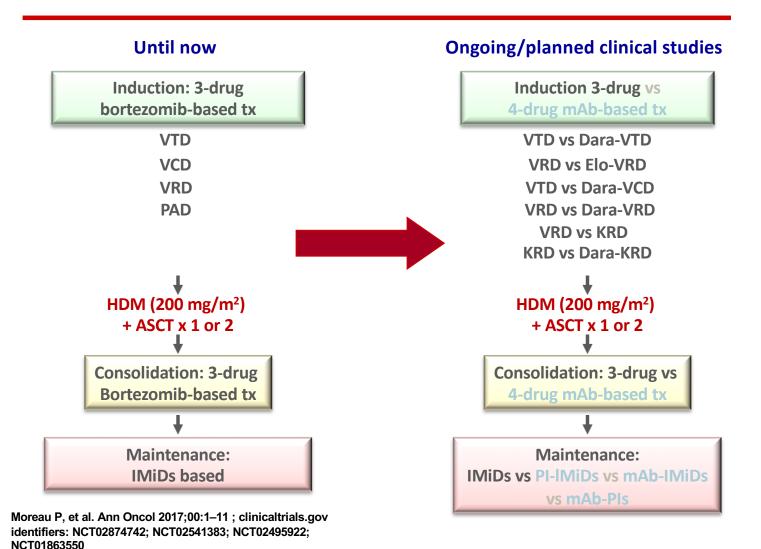
MRD-optimised Therapy in transplant-eligible (NCRI Myeloma XV; CI K Yong/M Cook)



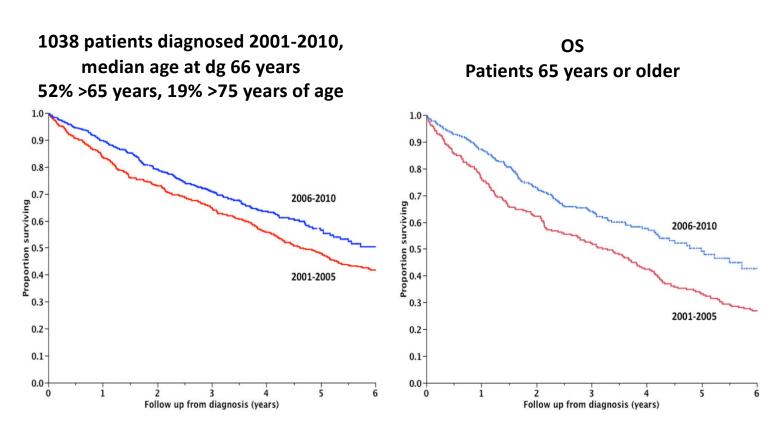
Current frontline treatment for symptomatic patient who are elegible for ASCT


Phase 3 CASSIOPEIA Study Design

Phase 3 study of D-VTd versus VTd in transplant-eligible NDMM (N = 1,085), 111 sites from the 9/2015 to 8/2017

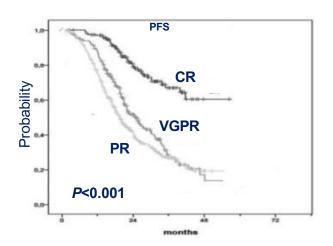

Endpoint primario: SCR a 100 giorni dall'ASCT

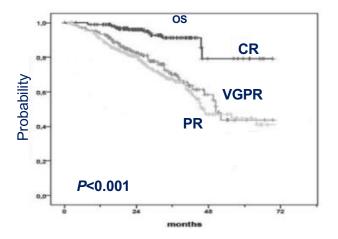
Post-induction rates of response and MRD-negativity (10⁻⁵)


Early (post-induction) significant difference in MRD-negativity rates for D-VTD versus VTd

THE FUTURE FOR THE PATIENTS!

Introduction of novel agents has improved overall survival in MM




The improvement was primarily seen among patients over 65 years; the 6-year OS improving from 31% to 56%; P<0.001

Treatment goals

CR is associated with long-term outcome in elderly MM patients treated with novel agents

3 randomized European trials GIMEMA, HOVON and GEM groups (N=1175) First-line treatment: MP (n=332), MPT (n=332), VMP (n=257), VMPT-VT (n=254)

Significant benefit also seen when analysis is restricted to patients >75 years old

Elderly Transplant not eligible patients are a very heterogenous group

Very fit: active, regular exercise

Vulnerable: can perform limited activities, doesn't need help

Mildly frail: needs help for household tasks

Severely frail: dependent on other people

Moderately fit: not regularly active but routinely walking

Moderately frail: needs partial help for personal care

Palumbo A. et al. Blood. 2011:118:4519-29.

Frailty status definition and treatment goals, treatment options and dose adjustments based on frailty status in NDMM elderly patients

	FIT	INTERMEDIATE	FRAIL
IMWG-frailty	0	1	2-5
index score	CCI ≥2 :1		
	IADL <5: 1		
	ADL <4: 1		
	Age 76-80: 1, >80:2		
Revised	0-3	4-6	7-9
myeloma	Age 60-69		
comorbidity	KPS: 80-90%: 2, <70%: 3		
index (R-MCI)	Renal disease: eGFR		
	<60:1		
	Lung disease:		
	moderate/severe:1		
	Frailty: moderate or		
	severe:1 ± cytogenetic		
	unfavourable: 1		
MAYO	0	1 (Stage I)	3
FRAILTY	Age ≥ 70: 1	2 (Stage II)	
INDEX	ECOG PS $\geq 2:1$		
	NT-proBNP ≥ 300 mg/L		
Goal of Treatment	Efficacy: deep response	Balance efficacy and toxicity	Conservative approach, low toxicity
Treatment Options	 Full dose therapy ASCT Triplet regimens:	Full or reduced dose therapy Doublet regimens Rd Vd Reduced-dose triplet	Reduced dose therapy Reduced dose doublet regimens: Rd, Vd Palliative + supportive care

1Line Trials NoASCT - Summary

Trial	No. Cycles treatment (months)		CR	ORR	mPFS
VMP VISTA	8 bw + 5 ow	9,5	30%	70%	21.7m
VMP Gimema	9 ow	9	30%	85%	24.8m
RD	Until Progression	18,4	20%	81%	26m
RD18	18	16,6	14%	73%	21m
MPT	18	15,4	9%	62%	21.9m

Impact of DEPTH of response on OUTCOMES

	Rd continuous in FIRST (MM-020)*1,2		VMP in VISTA*1,2
≥VGPR	48.2%	≥VGPR	41%
DoR	≥VGPR patients: 49.0 months CR: 59.1 months ≥PR: 31.5 months	DoR	CR: 24.0 months PR: 19.9 months
TTNT	CR/VGPR: 69.5 months	TTNT	CR: 37.8 months for VMP

^{1.} Bahlis NJ, et al. Leukemia 2017; Epub ahead of print; 2. Facon T, et al. Presented at ASH 2016 (Abstract 241).

^{1.} San Miguel JF, et al. N Engl J Med 2008;359:906-17; 2. Harousseau J-L, et al. Blood 2010;116:3743-50.

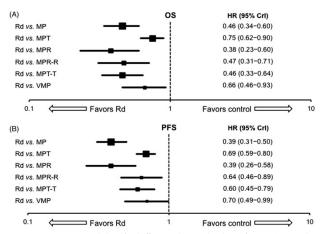


Figure 3. Mixed treatment comparison survival data: fixed-effects analyses with Rd as reference. (A) overall survival (OS); (B) progression free survival (PFS). Crl: credible interval; HR: hazard ratio; MP: melphalan and prednisone; MPR: melphalan and prednisone with lenalidomide; MPR-R: melphalan and prednisone with lenalidomide followed by lenalidomide maintenance; MPT: melphalan and prednisone with thalidomide; MPT-T: melphalan and prednisone with thalidomide followed by thalidomide maintenance; Rd: lenalidomide and low-dose dexamethasone: VMP: melphalan and prednisone with bortezomib.

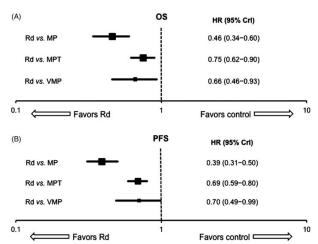
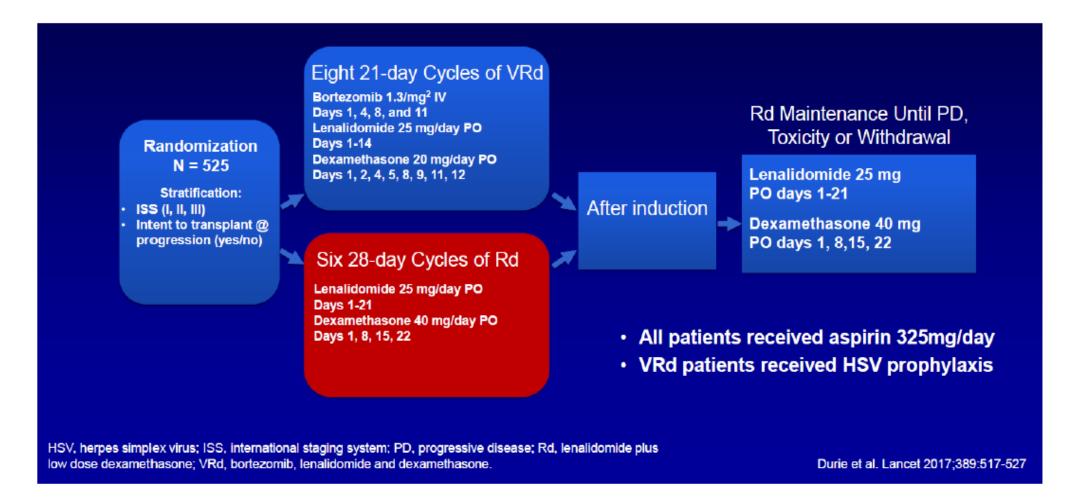
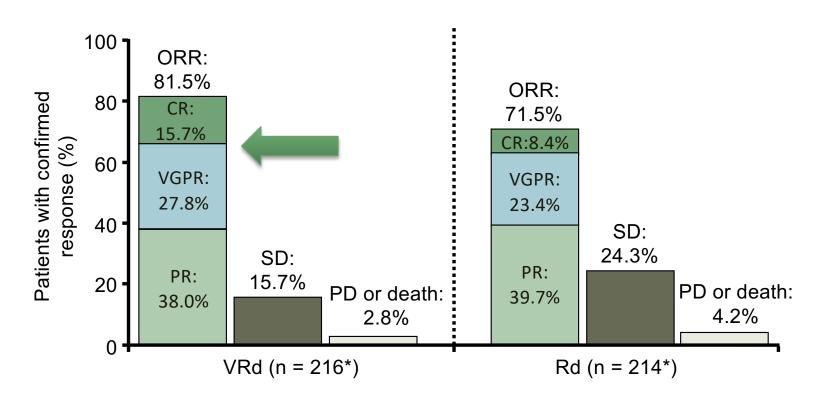


Figure 2. Mixed treatment comparison survival data: fixed effects analyses with Rd as reference. (A) overall survival (OS); (B) progression free survival (PFS). Crl: credible interval; HR: hazard ratio; MP: melphalan and prednisone; MPT: melphalan and prednisone with thalidomide; Rd: lenalidomide and low-dose dexamethasone; VMP: melphalan and prednisone with bortezomib.

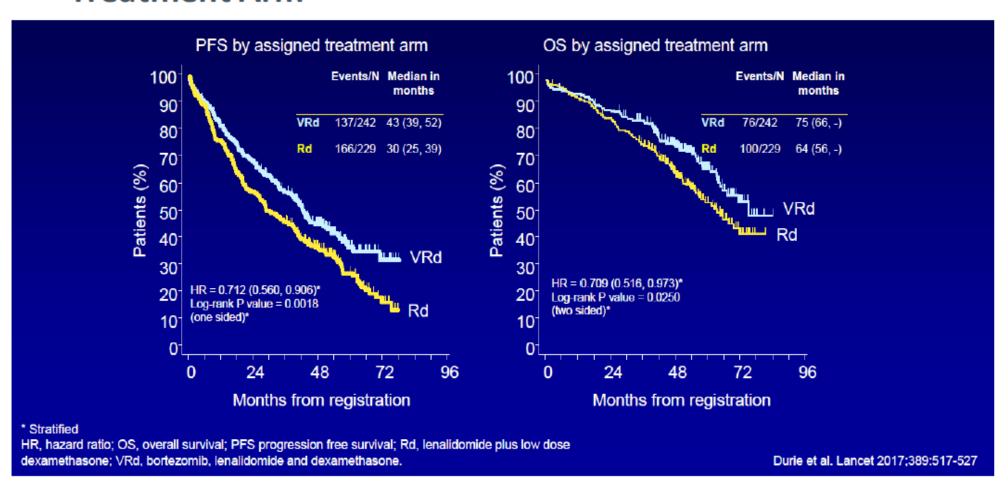

A systematic literature review and network metaanalysis of treatments for patients with untreated multiple myeloma not eligible for stem cell transplantation

The present NMA results indicate that the Rd regimen is a more effective treatment option for ndMM patients ineligible for transplantation compared with melphalan-containing regimens VMP, MPT and MP. These results reinforce the improved OS and PFS benefit reported for Rd directly compared with MPT.


Although no NMA was conducted on safety outcomes, the proportion of patients discontinuing treatment due to AEs and the reported grade 3/4 AEs from the 11 studies included in the sensitivity analysis was overall higher in triplet combinations compared with doublets.

In addition to favorable efficacy and safety parameters,[5] the Rd regimen has shown significant improvements in clinically relevant quality of life measurements,[43] which is of considerable value in the context of elderly patients with an incurable disease such as MM.

VRd vs Rd SWOG S0777: Study Design



SWOG S0777 Study Design

*Assessable.

VRd vs Rd SWOG S0777: PFS and OS by Assigned Treatment Arm

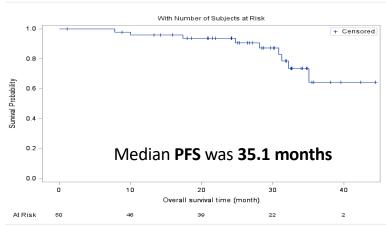
A Phase 2 Study of Modified Lenalidomide, Bortezomib, and Dexamethasone in Transplant-Ineligible Multiple Myeloma

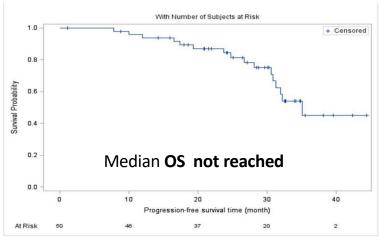
Induction (cycles 1-9)

Repeat q35 days × 9 cycles

Lenalidomide 15 mg po days 1-21 Bortezomib 1.3 mg/m² sc* days 1, 8, 15, 22 Dexamethasone 20 mg po days 1, 2, 8, 9, 15, 16, 22, 23 (patients ≤75 years) Dexamethasone 20 mg po days 1, 8, 15, 22 (patients >75 years old)

Consolidation (cycles 10-15)

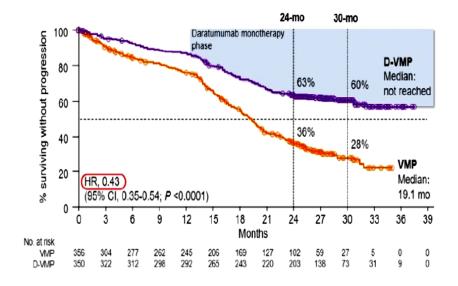

Repeat q28 days × 6 cycles


Lenalidomide 15 po days 1-21 (or last tolerated dose as of cycle 9) Bortezomib 1.3 mg/m² sc days 1, 15 (or last tolerated dose as of cycle 9)

Best Overall Response	N=50	96
Stringent Complete Response	6	12
Complete Response	16	32
Very Good Partial Response	11	22
Partial Response	10	20
Minimal Response	1	2
Stable Disease	3	6
Not Evaluable I	3	6
ORR.	43	86
VGPR or better	33	66

IReceived less than 4 cycles of therapy

median time to response was 1.1 months.

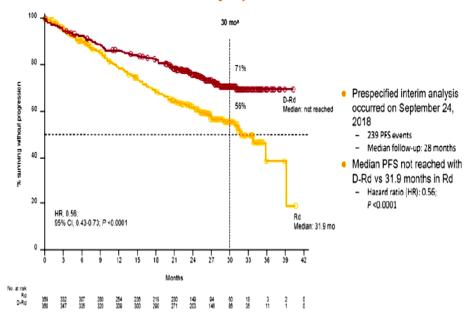

Cross-trial Comparisons: Transplant-ineligible NDMM

	VIS	STA	FI	RST	SWOO	S0777	VRd-Lite	ALCYONE		MAIA			
	VMP	MP	Rd	MPT	VRd	Rd	VRd-Lite	D-VMP	VMP	D-Rd	Rd		
mFU, months	16.	3	4	45 84 30 28		5 84 30 28		28					
mPFS, months	18	14	26	22	41	30	35	NR	19	NR	32		
PFS HR (95% CI) p-value	0.61 (0.49 p=0.0	-	0.69 (0.9 p<	59-0.80) 0.001	0.71 (0.56-0.91) ^d p=0.0018								13-0.72) .0001
ORR, %	74	39	81	67	90	72	86	91	74	93	81		
≥VGPR	41	8	48	30	75	32	66	73	50	79	53		
≥CR	33	4	21	12	24	8	44	45	25	48	25		
MRD-neg rate (10 ⁻⁵), %	NA	NA	NA	NA	NA	NA	NA	27	7	24	7		
mOS, months	56.4f	43.1	59.1	49.1	NR	64	NR	NR	NR	NR	NR		
OS HR (95% IC) P value	0.69 P = 0.000	04	0.78 (0.6 p=0	57-0.92) .0023	0.70 (0.5 p=0		NA	NA		0.78 (0.56-1.1)			

Dara goes to first line: initially in the elderly patients

ALCYONE study: updated PFS

Median (range) follow-up: 27.8 (0-39.2) months



HR, hazard ratio; Cl, confidence interval; *Kaplan-Meier estimate; PFS, progression-free sunvival; HR, hazard ratio; mo, months; D, daratumumab; V, bortezomib; M, melphalan; P, prednisone; Cl, confidence interval; mo, months.

Meletios A. Dimopoulos, CD38 targeted treatment of MM, oral presentation, 17th IMW, Boston 2019; MA Dimopoulos et al., ASH 2018 Annual Meeting, abstract #156.

Dara goes to first line: initially in the elderly patients

MAIA study: updated PFS

Meletios A. Dimopoulos, CD38 targeted treatment of MM, oral presentation, 17th IMW, Boston 2019; T Facon et al., N Engl J Med 2019; 380:2104-5.

HR, hazard ratio; CI, confidence interval; "Kaplan-Meier estimate; PFS, progression-free survival.

Efficacy: PFS in Prespecified Subgroups

	D-	VMP Median		MP Median				D-\	/MP		MP		
	n	(mos)	n	(mo)		HR (95% CI)		n	Median (mo)	n	Median (mo)		HR (95% CI)
Sex					 	· · ·	Baseline hepatic		()		()	!	111 (00 70 01)
Male	160	30.9	167	18.9	H⊕H	0.50 (0.37-0.68)	function	201	NIE	202	10.1	i	0.45 (0.40.0.57)
Female -	190	NE	189	19.8	P	0.38 (0.28-0.52)	Normal Impaired	301 46	NE NE	303 52	19.4 13.5	₩	0.45 (0.46-0.57) 0.41 (0.23-0.72)
Age <75 years ≥75 years	246 104	NE 32.2	249 107	19.0 20.1	₩	0.41 (0.32-0.53) 0.51 (0.34-0.75)	ISS staging 	69 139	NE NE	67 160	24.7 18.3	H 	0.47 (0.28-0.79) 0.43 (0.31-0.60)
Race							III	142	NE	129	18.2	ю н !	0.43 (0.31-0.60)
White	297	NE	304	19.3	•	0.46 (0.37-0.58)	Type of MM	007	NE	040	40.5		0.44 (0.04.0.54)
Other	53	NE	52	18.9	₩	0.32 (0.17-0.58)	IgG Non-IgG ^{a,b}	207 82	NE 30.9	218 83	18.5 21.3	H ⊕ - H	0.41 (0.31-0.54) 0.58 (0.38-0.89)
Region Europe Other	289 61	NE NE	295 61	19.1 19.0	H	0.47 (0.38-0.60) 0.28 (0.15-0.52)	Cytogenetic risk High risk Standard risk	53 261	19.2 NE	45 257	18.0 18.9		0.78 (0.49-1.26) 0.34 (0.26-0.45)
Baseline renal function (CrCl)							ECOG performance status						,
>60 mL/min	200	NE	211	19.1	H e H	0.45 (0.34-0.60)	0 33	78	NE	99	20.1	ı⊷ı	0.39 (0.25-0.62)
≤60 mL/min	150	NE	145	18.9	HH ¦	0.42 (0.30-0.59)	1-2	272	NE	257	18.8	lel ¦	0.45 (0.35-0.58)
					0.0 1.0	2.0 Favor VMP						.0 1.0 ← — — — — — — — — — — — — — — — — — — —	2.0 →
				⊢avoi	D-VIVIE	Favor vivir					ravori	J-VIVIF FA	VOI VIVIE

Efficacy: PFS in Prespecified Subgroups

	D-Rd	Rd	_	HR (95% CI)		D-Rd	Rd	<u>_</u>	HR (95% CI)
	N	N				N	N		
Sex			l I		Baseline CrCl			į	
Male	189	195	ŀ <mark>⊕ĺ</mark>	0.65 (0.46-0.93)	>60 mL/min	206	227	●	0.52 (0.36-0.74)
Female	179	174	 ● -	0.47 (0.32-0.69)	≤60 mL/min	162	142	 	0.60 (0.41-0.87)
Age			 		Type of MM				
<75 years	208	208	← İ	0.50 (0.35-0.71)	lgG	225	231	●	0.74 (0.53-1.03)
≥75 years	160	161	₩	0.63 (0.44-0.92)	Non-lgG	74	76	 İ	0.32 (0.18-0.55)
Race			i i		Cytogenetic risk			I I	
White	336	339		0.55 (0.42-0.72)	High risk	48	44	 -	0.85 (0.44-1.65)
Other	32	30	⊢ • ┼I	0.68 (0.31-1.49)	Standard risk	271	279	 ←	0.49 (0.36-0.67)
Region					Baseline hepatic			j	
North America	101	102	ŀ ◆ I	0.65 (0.41-1.04)	Normal	335	340	 e -¦	0.51 (0.39-0.68)
Other	267	267	⊌¦	0.52 (0.38-0.71)	Impaired	31	29	⊢	1.08 (0.49-2.38)
ISS staging			ļ		ECOG score			l İ	
1	98	103	⊢ • ∔	0.59 (0.31-1.11)	0	127	123	 -	0.49 (0.29-0.81)
II	163	156	₩	0.43 (0.29-0.64)	1	178	187	l●i	0.63 (0.44-0.90)
III	107	110	l⊕i∣	0.72 (0.48-1.09)	≥2	63	59	├	0.51 (0.29-0.89)
			Limmin	11111111					11111111
		0	.1 1	10				0.1 1	10
		Favo	r D-Rd F	avor Rd			Fav	or D-Rd F	avor Rd

D-Rd significantly reduced the risk of progression or death across the majority of subgroups

CLARION: Phase 3 Carfilzomib, Melphalan, Prednisone (KMP) vs. Bortezomib, Melphalan, Prednisone (VMP) in Newly Diagnosed MM

1:1

Study Population

Newly Diagnosed MM (N = 882)
Transplant-ineligible
≥ 18 years of age

LVEF ≥ 40%

Primary endpoint: PFS

Secondary endpoint: OS, ORR,

DOR, safety, HR-QOL

KMP*
Carfilzomib
20/36** mg/m2 IV D1, 2, 8, 9, 22, 23,
29, 30
Melphalan
9 mg/m2 D1-4
Prednisone
60 mg/m2 D1-4

Nine 42-day Cycles

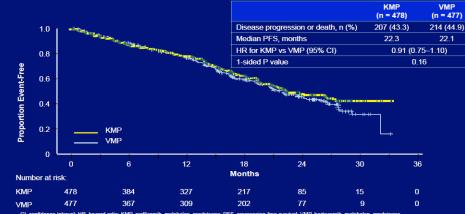
VMP

Bortezomib
1.3 mg/m2 D1, 4, 8, 11, 22, 25, 29, 32
Cycles 1-4 then D1, 8, 22, 29 Cycles

5-9

Melphalan

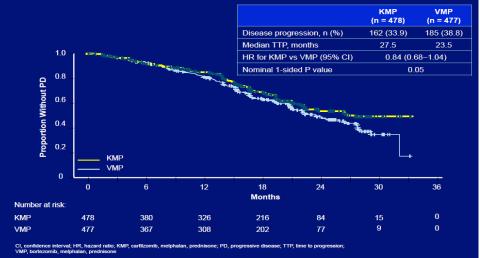
9 mg/m2 D1-4 Prednisone


60 mg/m2 D1-4

^{*}Dexamethasone 4 mg given on Days 8, 9, 22, 23, 29, 30 in Cycle 1

^{* * 20} mg/m2 on Day 1, 2 of Cycle 1; then 36 mg/m2 on all subsequent days and cycles Available at www.clinicaltrials.gov NCT01818752

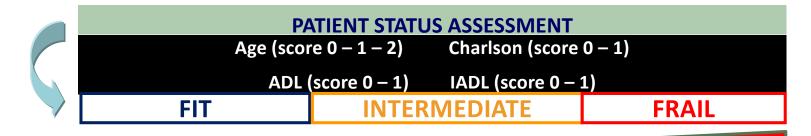
CLARION STUDYPrimary Endpoint: Progression-Free Survival


- Median follow-up time: 22.2 months for KMP and 21.6 months for VMP
- The absence of PFS difference was consistent across subgroups

Ci, confidence interval, rik, nazard ratio, kmp, carrizomio, melphalan, prednisone, PFS, progression-free survival,

CLARION STUDY

Time to Progression


acon T, et al. Presented at: 16th International Myeloma Workshop; New Delhi, India; March 1-4, 20

CLARION STUDY AEs of Interest

	KMP (r	ı = 474)	VMP (n = 470)			
AE, %	All Grade	Grade ≥ 3	All Grade	Grade ≥ 3		
Acute renal failure ^a	13.9	7.4	6.2	2.1		
Cardiac failure ^a	10.8	8.2	4.3	2.8		
Ischemic heart diseaseª	3.0	2.1	1.9	1.3		
Hypertension ^a	24.7	10.1	8.1	3.6		
Dyspnea ^b	18.1	3.6	8.5 0.6			
Grade 5 AE	6	.5	4.3			
Leading to treatment discontinuation	17	7.5	15.5			

*Standardized MedDRA Queries Narrow Search. High-level term.
AE, adverse event, KMP, cardizomib, melphalan, prednisone; MedDRA, Medical Dictionary for Regulatory Activities; VMP, bortezomib, melphalan, predniso

Treatment goals in elderly MM based on frailty

Co-morbidities, organ function

Life expectancy

Impaired functional status

Deep remission

Balance efficacy/safety

Do not harm

Goal

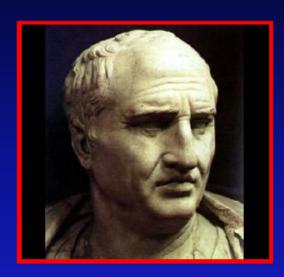
CR/MRD-negativity

Good response

QoL

Priority

Efficacy


Combination of efficacy/safety

Low toxicity

CONCLUSIONS

- ✓ VMP and Rd are still the two milestones of the first line treatment of MM patients not eligible to transplant
- ✓ VRD seems to be the best choice in fit elderly patients giving very good results with an acceptable toxicity
- ✓ Carfilzomib based schemes can be adopted in fit elderly patients with caution adjusting doses and schedules
- ✓ Dara- based combinations will completely change the scenario
- √ Respice senectute
- ✓ Although a frailty evaluation <u>balancing</u> the efficacy and tolerability is crucial in the treatment choice in this setting this do not justify a **forgoing attitude** in elderly patients

NEMO EST TAM SENEX QUI SE ANNUM NON PUTET POSSE VIVERE

(Cicero, De Senectute, VII, 24)

