

Progetto Ematologia Romagna

Trapianto autologo in tutti i pazienti?

Lucia Pantani

Istituto di Ematologia "Seràgnoli" Università degli Studi di Bologna

DIPARTIMENTO DI MEDICINA SPECIALISTICA. Diagnostica e sperimentale

• In the '90s, high-dose melphalan plus autologous stem-cell transplantation (ASCT) demonstrated better rates of complete response (CR) and longer overall survival (OS) compared to conventional chemotherapy, primarily in patients younger than 65 years¹

• The addition of novel agents like IMiDs and PIs as induction therapy before and as consolidation/maintenance therapy after ASCT has led to a further improvement in CR rates, PFS and OS²

• ASCT is currently considered the standard of care for fit newly diagnosed MM patients

²Harousseau et al. J Clin Oncol. 2010;28:4621-29 Sonneveld et al. JCO 2012 30(24):2946-55 Cavo et al. Lancet 2010;379:2075-85 Rosinol et al. Blood 2012;120:1589-96

¹Attal M, N Engl J Med. 1996; 335(2):91–97 Child JA, N Engl J Med. 2003; 348(19):1875-83

PROGETTO EMATOLOGIA – ROMAGNA Ravenna, 10 ottobre 2020

Sequential blocks of therapy

2020

Continued cytoreduction Sustained suppression of disease burden

Key endpoints

Maximize the rate and depth of response, beyond the level of detectable MRD

Sustain MRD negativity and prevent or delay clinical relapse

Increase PFS and OS, possibly offering a chance of cure to a fraction of patients

> Cavo M et al. Blood 2011;117(23):6063-73 Kumar S, et al. Lancet Oncology 2016;17:e328-46 Gay F et al. Haematologica 2018;103(2): 197-211

GIMEMA-MMY-3006 study: long-term analysis

median follow-up surviving patients: 124 months

2020

32% reduction in the risk of death with incorporation of VTD into double ASCT

Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

For younger patients (<65 years or fit patients <70 years in good clinical condition), induction followed by high-dose therapy (HDT) with autologous stem cell transplantation (ASCT) is the standard treatment.

Treatment of Multiple Myeloma: ASCO and CCO Joint Clinical Practice Guideline J Clin Oncol 2019; 37:1228-1263

Upfront transplant should be offered to all transplant-eligible patients.

nsive NCCN Guidelines Version 2.2020 Multiple Myeloma

Category 1 evidence supports proceeding directly after induction therapy to high-dose therapy and stem cell transplant. All candidates for high-dose chemotherapy must have sufficient liver, renal, pulmonary, and cardiac function. Chronologic age alone or a specific age cut off is not optimal to determine transplant eligibility.

Moreau P, Ann Oncol, 2017;28(suppl_4):iv52-iv61 - NCCN Guidelines Version2,2020 Multiple Myeloma - Mikhael J, J Olin Oncol 2019. 37(14):1228-1263.

ASCT in patients with renal impairment

- Several reports have shown that high-dose therapy with stem cell support is feasible in MM and RI, even in dialysis
- RI does not to affect the CD34+ yield or their engraftment
- Melphalan clearance is renal function-dependent as the drug is both secreted and reabsorbed by the renal tubules; HDM 100-140 mg/sm should be used when CrCl is < 60 ml/min
- ASCT is associated with increased mucositis and an increased risk of TRM for pts with RI (>4%) compared with pts without RI at the time of transplantation (<1%)
- Retrospective analyses have reported a ≥ 25% improvement in RI in one third of pts, a 15% to 20% probability of dialysis independence, and a 5-year OS of nearly 35%

Badros et al. Br J Haematol 2001;114:822-829 San Miguel et al. Hematol J 2000;1:28-36 Lee et al. Bone Marrow Transplant 2004;33:823-828 Parikh et al. Biol Blood Marrow Transplant 2009;15:812-816 Dimopoulos et al, J Clin Oncol,2016;34:1544-57

2020

PROGETTO EMATOLOGIA – ROMAGNA Ravenna, 10 ottobre 2020

ASCT in elderly patients

Trends in autologous hematopoietic cell transplantation for multiple myeloma in Europe: increased use and improved outcomes in elderly patients in recent years

1996-2000

2001-2005

2006-2010

0

1991-1995

Day-100 all-cause mortality

	60-64		6	5–69	≥	: 70
Calendar period	%	95% CI	%	95% CI	%	95% CI
1991–1995 1996–2000 2001–2005 2006–2010	3.9 3.6 2.4 1.8	2.9–5.3 2.5–5.2 1.7–3.3 1.3–2.5	8.0 4.1 2.7 2.1	6.9–9.3 2.9–5.7 2.0–3.6 1.6–2.8	NA ^a 4.0 2.4 2.4	

Auner et al. Bone Marrow Transplantation (2015) 50, 209-215

ASCT in elderly patients

Prospective studies of upfront ASCT for older patients with NDMM

	Ref. 1	Ref. 2	Ref. 3	Ref. 4	Ref. 5
Nº pts	95	126	102	56	434
Age (median)	65 (51-70)	NA	67 (46–74)	67.4 (64–74)	65 (60–72)
Induction (n° cycles)	VAD (2)	VAD (2)	Bort-based (4)	Bort-based (4–6)	50% Bort-based (4) 50% No induction
High-dose therapy	MEL 100	MEL 100	MEL 100	MEL 200 (64%) MEL 140 (36%)	MEL 140
ASCT (n°)	2	2	2	1	2
Len maintenance	No	No	Yes	No	No
TRM (%)	5	9	5 (<70 ys) 19 (70-75 ys)	0	1.4 (ASCT-1) 0 (ASCT-2)
PFS (median mos or %)	28	19.4	48	76% at 2 ys	20 (induction) 21.4 (no induction)
OS (median mos or %)	58	38.3	68% at 5 ys	88% at 2 ys	53.4 (induction) 55.9 (no induction)

¹Palumbo et al, Blood 2004; 04:3052-57; ²Facon et al, Lancet 2007, 370:1209-18; ³Gay et al, Blood 2013, 122:1376-83; ⁴Garderet et al, Haematologica 2016, 101:1390-97; ⁵Straka et al, Haematologica 2016; 101:1398-06.

Remarkable results obtained in the non-transplant setting with novel agent-based treatment have raised questions as to the role of upfront *versus* delayed ASCT

Prospective studies: early vs delayed ASCT

	Intensification phase					N° (%) nts	
Induction Control Arm ASCT Arm (n° pts) Maintenance		PFS (mos) (Control vs ASCT)	OS at 4 years (Control vs ASCT)	receiving salvage ASCT			
RD x 4 cycles	RCD x 6 cycles (129)	MEL 200 x 1 or 2 (127)	R±P until PD	28.6 vs 43.3 (HR 2.51, p<0.0001)	73% vs 86% (HR 2.40, p=0.004)	43	
RD x 4 cycles	MPR x 6 cycles (132)	MEL 200 x 2 (141)	R or observation until PD	22.4 vs 43.0 (HR 0.44, p<0.001)	65.3% vs 81.6% (HR 0.55, p=0.02)	62.8	
VRD x 3 cycles	VRD x 8 cycles (331)	MEL 200 x 1 + VRD x 2 cycles (323)	R until PD	36 vs 50 (HR 0.65, p<0.001)	82% vs 81% (p=0.43)	79	
VCD x 3-4 cycles	VMP x 4 cycles (495)	MEL 200 x 1 or 2 (702)	R until PD	42 vs 57 (HR 0.73, p<0.001)	71% vs 75% (p=0.36)	63	

Gay F, Lancet Oncol 2015;16:1617-29 – Palumbo A, N Eng J Med 2014;371(10):895-905 – Attal M, N Eng J Med 2017;376:1311-20 – Cavo M, Lancet Haematol 2020;7:e456–68

PROGETTO EMATOLOGIA – ROMAGNA Ravenna, 10 ottobre 2020

Prespecified subgroup analyses of PFS

SUBGROUPS	Transplant Median PFS	VMP 5 [mos]		HR	95% CI
Age ≤ 55 years	61.1	37.2	⊢ 1	0.62	[0.48 ; 0.80]
Age > 55 years	56.1	43.5		0.80	[0.66 ; 0.98]
ISSI	NR	50.8		0.74	[0.57 ; 0.96]
ISS II+III	46.0	36.2		0.72	[0.59 ; 0.87]
Standard-risk cytogenetics	NR	46.7	F	0.70	[0.56 ; 0.87]
High-risk cytogenetics	37.3	20.3	H	0.63	[0.46 ; 0.88]
R-ISS I	NR	59.2		0.69	[0.47 ; 1.02]
R-ISS II	51.7	37.0		0.72	[0.58 ; 0.88]
R-ISS III	30.0	13.1	·•	0.48	[0.30 ; 0.78]
Hemoglobin ≥ 10.5 g/dL	NR	47.2	·	0.74	[0.60 ; 0.91]
Hemoglobin < 10.5 g/dL	43.6	33.5	—	0.72	[0.57 ; 0.91]
Platelet count ≥ 150 x 10^3/mL	61.7	44.0	H-B1	0.72	[0.61 ; 0.85]
Platelet count < 150 x 10^3/mL	31.3	22.2	·	0.71	[0.48 ; 1.04]
Plasma cells < 60%	NR	45.9		0.71	[0.57 ; 0.88]
Plasma cells ≥ 60%	45.3	36.2		0.72	[0.57 ; 0.91]
LDH < Upper limit	58.6	42.6		0.72	[0.61 ; 0.86]
LDH > Upper limit	43.4	26.7		0.61	[0.41 ; 0.91]
			0.35 0.50 0.71	1.7	
			 ASCT better 	VMP better	•••••

EMN02/HO95 phase 3 study ASCT vs novel agent-based therapy:

2020

No OS benefit with ASCT, but the follow-up is still too short

Cavo et al. Lancet Haematol 2020;7:e456-68

ASCT vs novel agent-based therapy: IFM 2009 phase 3 study

No significant difference in OS

Attal M, et al. NEJM 2017; 376: 1311-1320

Outcome	RVD-Alone Group (N=350)	Transplantation Group (N = 350)	Adjusted P Value†
Best response during the study — no. (%)			0.02
Complete response	169 (48)	205 (59)	
Very good partial response	101 (29)	102 (29)	
Partial response	70 (20)	37 (11)	
Stable disease	10 (3)	6 (2)	
Complete response — no. (%)	169 (48)	205 (59)	0.03
Complete response or very good partial response — no. (%)	270 (77)	307 (88)	0.001
Minimal residual disease not detected during the study — no./ total no. with complete or very good partial response (%)‡	171/265 (65)	220/278 (79)	<0.001

ASCT vs novel agent-based therapy: FORTE phase 2 trial

*20 mg/m² on days 1-2, cycle 1 only. *Carflizomib 70 mg/m² days 1, 15 every 28 days up to 2 years for patients that have started the maintenance treatment from 6 months before the approval of Amendment 5.0 onwards.
R1 randomization 1; R2, Randomization 2; IQR, interquantle range K, carflizomib, C, cyclophosphamide; R, lenalidomide; d, dexamethasone; d, days; ASCT.autologous stem-cell transplantation; R, lenalidomide; KR, carflizomib,

lenalidomide. NDMM, newly diagnosed multiple myeloma; VGPR, very good partial response.

2020

	KRd_ASCT	KRd_12	р					
Pre-maintenance MRD negativity								
Overall	158 (58%)	157 (54%)	-					
RISS II/III	92 (51%)	94 (49%)	-					
Persistent 1-year MRD negativity								
Overall*	72 (90%)	64 (78%)	na					
RISS II/III	41 (90%)	33 (72%)	na					
Early relapse (≤18 mos from random1)								
Overall	12 (7.6%)	26 (16.6%)	0.015					
RISS II/III	11 (12%)	22 (23.4%)	0.05					

*available pts: 77% and 75%, respectively

Multivariate Logistic Regression Model

	OR	95% CI	P-value	early relapse
R-ISS II/III vs R-ISS I	3.78	1.71-8.35	0.001	
KRd-ASCT vs KRd12	0.41	0.19-0.88	0.022	
MRD negative (10 ⁻⁵)	0.21	0.12-0.40	<0.001	Reduced risk of
				early relapse

Gay F, et al. J Clin Oncol. 2019;37 Suppl:8002. Presented at ASCO 2019.

ASCT EMN02/HO95 phase 3 study

PFS

Cavo et al. Lancet Haematol 2020;7:e456-68

Single vs double ASCT

BMT CTN 0702 ph.2 trial (STaMINA)

NO DIFFERENCE BETWEEN STUDY ARMS

	EMN02	STAMINA
Newly diagnosed (%)	100	85
Induction regimen (%)	VCD (100)	VCD (14) / VRD (55)
Length of induction therapy (months)	2-3	2-14
Failure to receive double ASCT (%)	19.8	32
Consolidation therapy (%)	Yes (50)	NO (100)
Maintenance therapy	Len (10 mg)	Len (10-15) mg
PFS at 36-38 mos (%) - All patients - High-risk patients*	73.6 64.9	56.5 42.2

Cavo M, IMWG 2019

STaMINA: PFS by Treatment Received

PFS BENEFIT FOR AUTO/AUTO ARM; esp. in HR GROUP

Stadtmauer EA, JCO 2019;37:589-597 - Hari P, ASCO 2020 oral presentation

Single vs double ASCT

Pooled analysis of 3 ph.3 EU studies

Single vs double ASCT Pooled analysis of 3 ph.3 EU studies

MULTIVARIATE COX REGRESSION ANALYSIS (not including therapy)							
Variables affecting PFS	HR	95% CI	P value				
High-Risk cytogenetic	1.565	1.235-1.985	<0.001				
ISS II-III	1.427	1.159-1.758	0.001				
Best response <cr< td=""><td colspan="2">1.831 1.497-2.241</td><td><0.001</td></cr<>	1.831 1.497-2.241		<0.001				
		RISK SCORE LEVELS					
HR-cyto Best <cr ii-iii<="" iss="" th=""><th>LOW (0/3)</th><th>INTERMEDIATE (1/3)</th><th>HIGH (≥2/3)</th></cr>	LOW (0/3)	INTERMEDIATE (1/3)	HIGH (≥2/3)				
otal pts, nr (%)	132 (20,1%)	277 (42,2%)	248 (37,7%)				

Survival according to risk

PFS and OS by ISS II-III + HR-Cyto + best < CR

	ASCT-1		ASCT-2				
	N pts	Median PFS	N pts	Median PFS	HR	95% CI	P-value
Low-Risk	55	74	77	NR	0.66	0.41-1.07	0.093
Intermediate-Risk	133	49.8	144	53.9	0.87	0.65-1.17	0.357
High-Risk	112	20.2	136	31.7	0.71	0.54-0.93	0.008

	N pts	Median OS	N pts	Median OS	HR	HR	P-value
Low-Risk	55	NR	77	NR	0.91	0.42-1.98	0.810
Intermediate-Risk	133	110.2	144	NR	0.79	0.54-1.14	0.210
High-Risk	112	47.8	136	79.8	0.58	0.42-0.80	0.001

2020

ASCT in the context of new novel combinations

2020

Responses and MRD status 100 days after ASCT

	D-VTd (n=543)	VTd (n=542)	p value*
Overall response			
Stringent complete response	157 (29%)	110 (20%)	0.0010
Complete response or better	211 (39%)	141 (26%)	<0.0001
Very good partial response or better	453 (83%)	423 (78%)	0.024
MRD-negative status (10 ⁻⁵)†			
MRD negative regardless of response	346 (64%)	236 (44%)	<0.0001
MRD negative and complete response or better‡	183 (34%)	108 (20%)	<0.0001
MRD negative and very good partial response or better‡	338 (62%)	231 (43%)	<0.0001

ASCT & novel combinations: CASSIOPEIA phase 3 study

PFS from 1st randomization

2020

53% reduction in the risk of progression or death in the D-VTd arm

PFS in prespecified subgroups

Subgroup	D-VTd no. of progre or deaths	VTd ssion events s/total no.	Hazard Ratio (95% CI)		
Sex					
Male	28/316	58/319	⊢∙⊣∣	0.49 (0.31–0.77)	
Female	17/227	33/223	⊢∙−┤	0.44 (0.24-0.79)	
Age					
<50 years	5/83	22/90		0.24 (0.09-0.64)	
≥50 years	40/460	69/452	⊢●┤	0.54 (0.36-0.79)	
Site					
IFM	41/452	78/457	⊢●┤│	0.51 (0.35–0.74)	
HOVON	4/91	13/85		0.27 (0.09–0.81)	
ISS disease stage					
I	13/204	25/228	⊢ ●− 	0.56 (0.29–1.10)	
II	20/255	48/233	⊢∙⊣	0.35 (0.21–0.58)	
III	12/84	18/81	⊢∙+₁	0.66 (0.32–1.39)	
Cvtogenetic profile a	t trial entrv				
High risk	15/82	22/86	+●+	0.67 (0.35–1.30)	
Standard risk	30/460	69/454	H+H	0.41 (0.26–0.62)	
			0.1 0.5 1 ● D-VTd Better VI	d Better	

Moreau P, Lancet 2019; 394: 29-38

ASCT & novel combinations: GRIFFIN phase 2 study

MRD-negativity (10-5) rates over time

Voorhees PM, Blood. 2020;136(8):936-945

ASCT & novel combinations: GRIFFIN phase 2 study

MRD-negative (10⁻⁵) status*	D-RVd, n (%)	RVd, n (%)	Odds ratio (95% CI)†	P‡
Intent-to-treat population MRD-negative MRD-negative with ≥CR	53/104 (51.0) 49/104 (47.1)	21/103 (20.4) 19/103 (18.4)	4.07 (2.18-7.59) 3.89 (2.07-7.33)	<.0001 <.0001
In patients achieving \geq CR	49/79 (62.0)	19/59 (32.2)	3.57 (1.72-7.44)	.0006
MRD-evaluable population	53/77 (68.8)	21/65 (32.3)	4.47 (2.19-9.11)	<.0001

MRD status at last follow-up (median 22 mos) and subgroup analysis of MRD negativity (10⁻⁵)

RVd D-RVd Subgroup minimal residual disease negative, n (%) Odds Ratio (95% CI) Sex Male 10/60 (16.7) 26/58 (44.8) 4.06 (1.73-9.54) ⊢•− 11/43 (25.6) 27/46 (58.7) 4.13 (1.68-10.19) Female Age <65 yr 16/75 (21.3) 38/76 (50.0) 3.69 (1.81-7.52) ⊢•− ≥65 yr 5/28 (17.9) 15/28 (53.6) 5.31 (1.57-17.97) ISS disease stage 6/50 (12.0) 25/49 (51.0) 7.64 (2.75-21.19) Ш 10/37 (27.0) 20/40 (50.0) 2.70 (1.04-7.01) 5/14 (35.7) 8/14 (57.1) ш 2.40 (0.52-10.99) Type of multiple myeloma 11/52 (21.2) 29/55 (52.7) 4.16 (1.78-9.73) lgG **—** Non-IgG 10/51 (19.6) 22/46 (47.8) 3.76 (1.53-9.26) Cytogenetic risk High risk 4/14 (28.6) 6/16 (37.5) H 1.50 (0.32-6.99) 17/83 (20.5) 45/82 (54.9) Standard risk 4.72 (2.37-9.40) H+H ECOG PS score 0 5/40 (12.5) 21/39 (53.8) 8.17 (2.64-25.25) 1 or 2 16/62 (25.8) 32/62 (51.6) 3.07 (1.44-6.53) 10 100

RVd better

D-RVd better

Progression Free Survival

Voorhees PM, Blood. 2020;136(8):936-945

Ongoing trials

GMMG-HD6 phase 3 trial (NCT02495922)

EMN18 phase 3 trial (NCT03896737)

Main inclusion criteria

- NDMM ≤ 65 years
- LVEF \ge 40%, creatinine cl. \ge 30 mL/minute
- measurable disease

Primary end-points:

- PFS of Dara-VCD vs VTD and dara-ixa vs ixa
- MRD negativity rate pre and during maintenance by NGS

Risk- and MRD status- adapted therapies

Correlation between quality of response and better survival

MRD negativity as a surrogate marker for PFS and OS

Can MRD-response modulate patients' risk at diagnosis?

OS according to achievement of MRD negativity among patient subgroups

al (%) 75 patients with adverse prognosis shift into a favorable one upon achieving deep responses to treatment

HR 95% CI P 100 0.25 to 0.44 < .001 0.26 to 0.46 < .001

.014

< 001

< .001

< .001

< .001

< .001

Progression-free survival according to FISH and NGF

2020

Isa-KRd in front-line treatment of high-risk MM

2020

Primary endpoint: MRD-negativity /flow, 10-5, after consolidation Secondary endpoint: Progression Free Survival

Interim analysis: 50 pts

Characteristic	N=50	Characteristic	N=50
Median age (range), years	58 (42-82)	ISS	
Arm A	58 (42-69)	Stage II	28 (56%)
Arm B	77 (72-82)	Stage III	22 (44%)
male/female	21/29	High-risk cytogenetics**	
ECOG performance status		Del 17p*	26 (52%)
0	21 (42%)	t(4;14)	19 (38%)
1	23 (46%)	t(14;16)	5 (12%)
2	6 (12%)	> 3 copies +1q21	21 (42%)

Best response to therapy, 6 induction cycles

- Overall response rate (ORR, ≥ PR): 100%
- ≥ VGPR : 90%; CR/sCR: 46%
 - Arm A: 41/46 ≥ VGPR
 - Arm B: all (n = 4) VGPR
- Arm A: MRD-assessment in 33 patients
 during induction
 - 20 patients MRD negative
 - 11 patients MRD positive
 - 2 not assessable

MRD response-adapted Dara-KRd sequential therapy in transplant-eligible NDMM patients

Dara-KRd dosing: D 16 mg/m² on days 1,8,15,22 (days 1,15 of Cycles 3-6; Day 1 Cycle > 6); K 56 mg/m² days 1,8,15; R 25 mg days 1-21; d 40 mg PO Days 1,8,15,22. *1 VCD cycle permitted.

2020

Primary Endpoint: MRD-negative remission

Response rates

MRD assessment after each treatment phase; pts with confirmed (2nd) MRD-negative status (< 10⁻⁵) entered treatment-free observation phase with MRD assessment at 24 and 72 wks after EOT

MRD rates

Costa LJ et al, EHA 2020

*del17p, t(4;14) or t(14;16)

Conclusions

- Upfront ASCT is currently the gold standard intensification therapy for fit NDMM patients
- Double ASCT following short-term induction improves outcomes, especially in patients with high-risk cytogenetic abnormalities
- Modern induction and post-ASCT consolidation therapies (PI+IMiDs, with or without an added mAb) ultimately result in high rates of MRD negativity
- New highly-effective novel 4-drug combinations could further question the role of upfront ASCT, especially in low risk patients
- Treatment based on risk profile and MRD status as the first step towards individualized therapy