VIRTUAL **26 MARZO 2021**

Trattamento della malattia oligometastatica e oligo-progressiva. Stato dell'arte e prospettive in termini di studi clinici

NSCLC

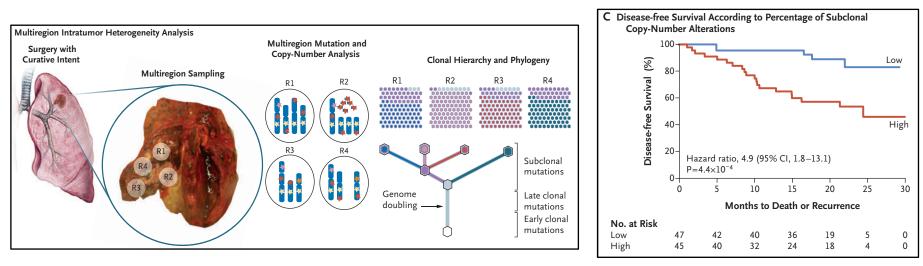
Stefano Vagge MD, PhD

U.O.C. Radioterapia Oncologica IRCCS Ospedale Policlinico San Martino, Genova

VIRTUAL 26 MARZO 2021

Disclosures

Advisory boards or speakers' fee


- Astra Zeneca

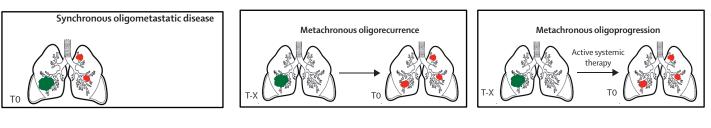
- Accuray International

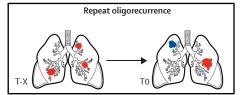
- -Roche

Metastases is an evolutionary process in NSCLC

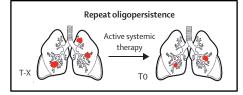
Jamal- Hanjani N Engl J Med 2017

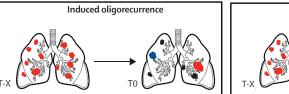
Metastases is an evolutionary process

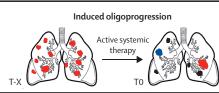

The direct metastases therapy principle

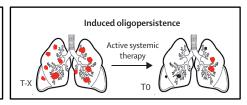

Jang- Gun Radiat Oncol J 2019 Tuarjlic Science 2017 Correa Cancer J 2016


Indeed we can define the oligometastatic disease (OMD)

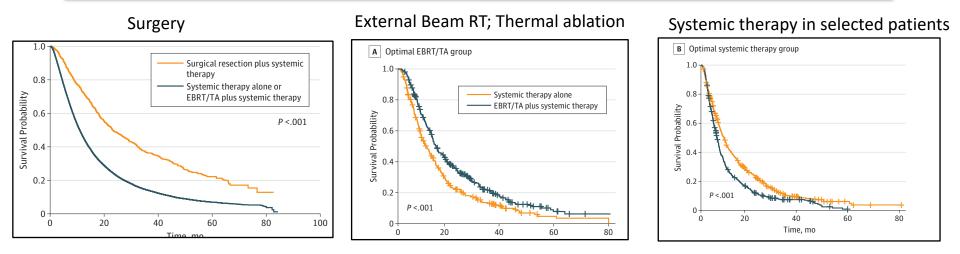








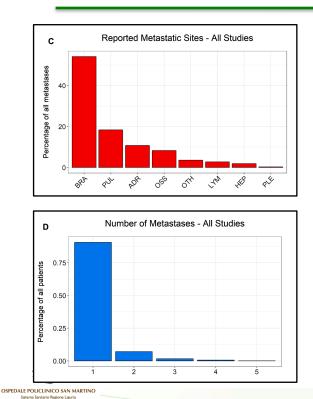
OSPEDALE POLICLINICO SAN MARTINO Sistema Sanitario Regione Liguria

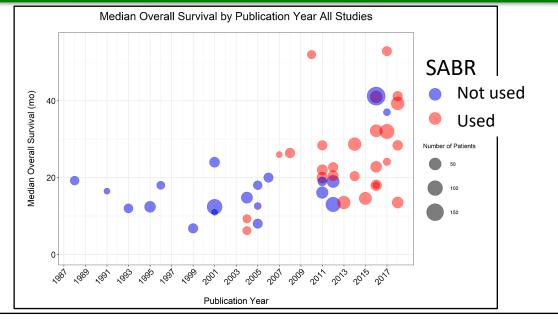


Guckemberger Lancet Oncol 2020

Registry data suggest the efficacy of local treatment in NSCLC OMD

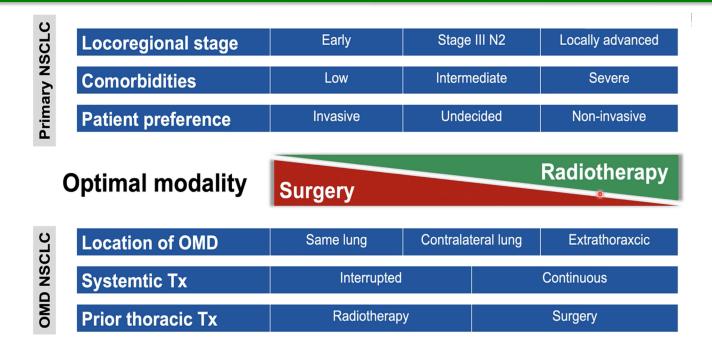
Local treatment + systemic therapy vs systemic therapy alone in stage IV NSCLC from NCD


• 34887 pts


DALE POLICUNICO SAN

Sistema Sanitario Regione Ligu

- up to 1 distant metastases to bone, brain , liver and lung
- small T and N1 and oligometastases are in favor of EBRT/TA
- median EQD2 (10) 46.9 Gy (IQR 39-70)
- Local treatment to the primary tumor


Systematic review suggesting the efficacy of SABR in NSCLC OMD

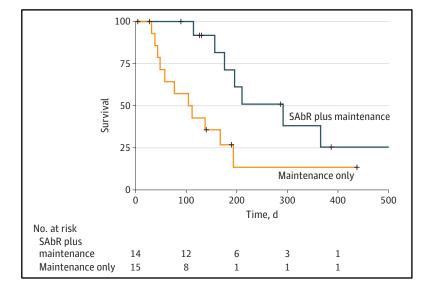
There is a shift in treatment modality for metastases directed treatment and OS benefit

Delineating the best modality of local treatment in NSCLC heterogeneous scenario

with the courtesy of M. Guckenberger

Phase II-III RCTs suggest the efficacy of local treatment in OMD

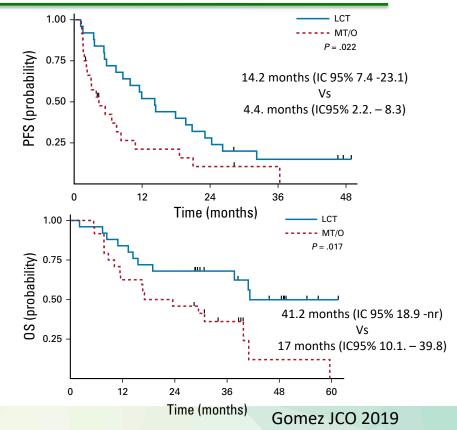
Study	# patients	Tumor origin	HR PFS	HR OS	Treatment
lyengar Jama Oncol 2018	N= 29	NSCLC	0.30	-	SABR + HypoFx
Gomez JCO 2019	N= 49	NSCLC	0.30	0.41	SABR + Surgery + CRT
Palma JCO 2020	N= 18*	NSCLC*	0.48 *?	0.47*?	SABR
Wang ASCO 2020	N= 133	NSCLC	0.62*	.068*	SABR


Total 229 patients

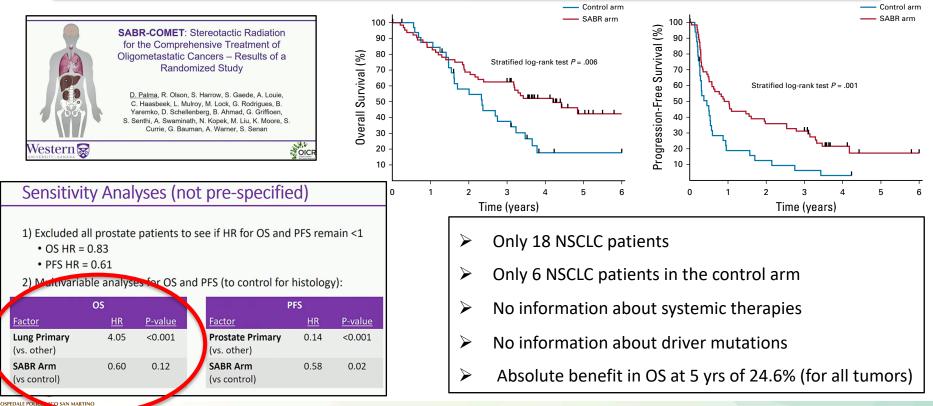
Study	RT dose	# metastases	HR PFS	RT site	Prior therapy
lyengar Jama Oncol 2018	45 Gy / 15 fx 20-24 Gy / 1 fx 33 Gy /3 fx 30-37.5 /5 fx	< = 5	0.30	Primary and metastases	After 4-6 Platinum based CT
Gomez JCO 2019	60-66 Gy / 30-33 fx 45-60 Gy / 15 fx 30-70 Gy /10 fx 50 Gy /4 fx 18– 20 / 1 fx	< = 3	0.30	Primary and metastases	After 4 Platinum based CT After target x EGFR After target x ALK
Palma JCO 2020	60 Gy / 8 fx 35 Gy / 5 fx 54 Gy /3 fx 18 – 24 Gy /1 fx	<= 5 Max 3 x organ	0.48	All known disease Primary controlled	at diagnosis of OMD
Wang ASCO 2020	25– 40 Gy / 5 fx	<= 5 Max 2 x organ	0.62	All disease site & primary controlled	Concomitant with TKI (only EGR m)

RCTs suggest the efficacy of local treatment in NSCLC OMD

- early trial closure (limited number of patients)
- single institution
- 40% pretreated with WBRT
- 64% pretreated with Carbo + Pemetrexed or Carbo +
 Paclitaxel
- 65% maintenance therapy with Pemetrexed
- 7 patients treated on the primary
- Local failure was detected in 0/14 vs 6/15 in for SABR

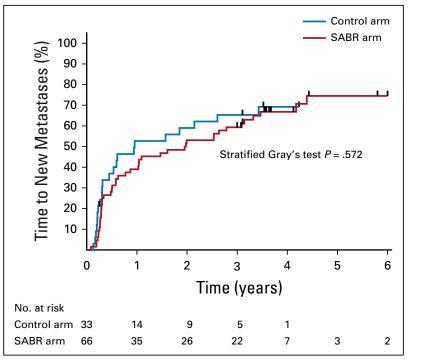


M+ sites prior chemotherapy <= 2 vs >2 1 Yr PFS 100% vs 38%


Iyengar JAMA Oncology 2018

RCTs suggest the efficacy of local treatment in NSCLC OMD

- early trial closure (limited number of patients)
- > multicentric
- 30% presented CNS metastases
- 80% of patients were EGFR/ALK WT
- > 38% of all relapsed patients progressed as OMD
- Local treatment to all the site of disease
- Aggressive consolidation therapy leads to PFS gain
- # of metastatic site < 2 in 68% of patients</p>



RCTs suggest the efficacy of local treatment in *NSCLC* **OMD**

Palma JCO 2020

RCTs suggest the efficacy of local treatment in NSCLC OMD

time to new metastases is the same

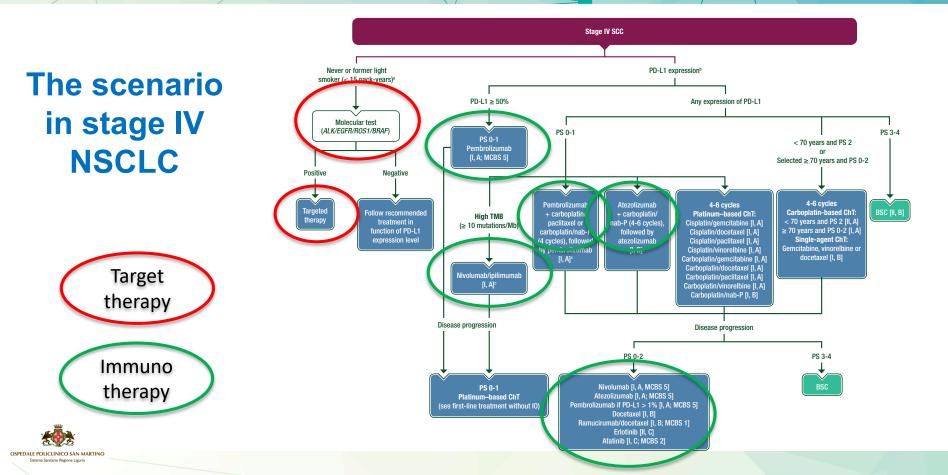
between the 2 arms

- the new metastases after SABR were seeded before the treatment
- This principle enforce the potential of new
 SABR at oligoprogression

The long-term survival goal in NSCLC

- Systemic control (CT; CT + IT; TKI)
- Brain control (TKI; IT; PCI)
- Locoregional control (CT-RT; S; CT-RT-IT; CT-S)
- Local control (RT; SABR; S; RA; SABR+IT)
- Treatment related events (Acute and late toxicity)

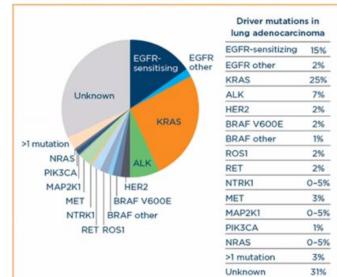
Comorbidities


The long-term survival goal in NSCLC

Systemic control (CT; CT + IT; TKI)

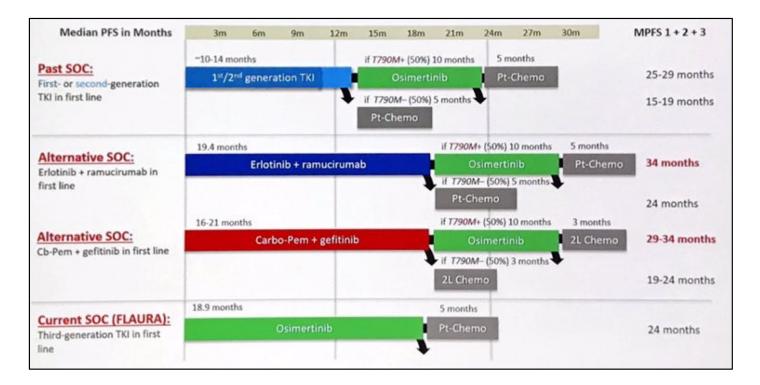
- Brain control (TKI; IT; PCI)
- Locoregional control (CT-RT; S; CT-RT-IT; CT-S)
- Local control (RT; SABR; S; RA; SABR+IT)
- Treatment related events (Acute and late toxicity)

Comorbidities



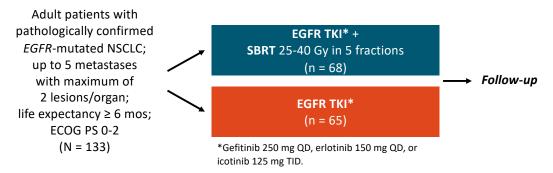
Tyrosine Kinase Inhibitors

Mutations in NSCLC


DRIVER MUTATIONS IN LUNG ADENOCARCINOMA

ALK Crizotinib;	Alectinib; Ceritinib; Lorlatinib; Brigatinib
ROS1 Crizotinib; (Cabozantinib; Ceritinib; Lorlatinib; Entrectinib; Ropotrectinib, DS-6051b
BRAF Vemurafen	ib, Dabrafenib; Dabrafenib + Trametinib
NTRK1 Entrectinib	Larotrectinib; loxo-195; DS-6051b; repotrectinib
	ab emtansine; Afatinib; Neratinib-temsirolimus; Dacomitinib; Poziotinib; TAK-788; DS-8201a
RET Selpercatir	ib; Cabozantinib; Apatinib; Vandetanib; Ponatinib; Lenvatinib; BLU-667

Tyrosine Kinase Inhibitors



RCTs suggest the efficacy of local treatment in NSCLC OMD

SINDAS Interim Analysis: Study Design

Multicenter, open-label, randomized phase III trial in China (January 2016 - June 2019)

- Primary endpoint: PFS
- Secondary endpoint: OS

Wang. ASCO 2020. Abstr 9508.

Other endpoint: safety

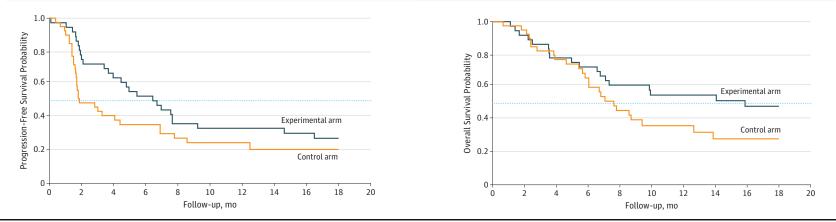
Wang ASCO 2020

RCTs suggest the efficacy of local treatment in NSCLC OMD

SINDAS Interim Analysis: PFS and OS

Median Outcome, Mos	EGFR TKI + SBRT (n = 68)	EGFR TKI Only (n = 65)	HR
PFS (primary endpoint)	20.2	12.5	0.618 (95% CI: 0.394-0.969; log-rank <i>P</i> < .001)
OS (secondary endpoint)	25.5	17.4	0.682 (95% CI: 0.456-1.001; log-rank <i>P</i> < .001)

 After median follow-up of 19.6 mos, EGFR TKI + SBRT significantly prolonged PFS and OS vs EGFR TKI only



What for immunotherapy and NSCLC OMD?

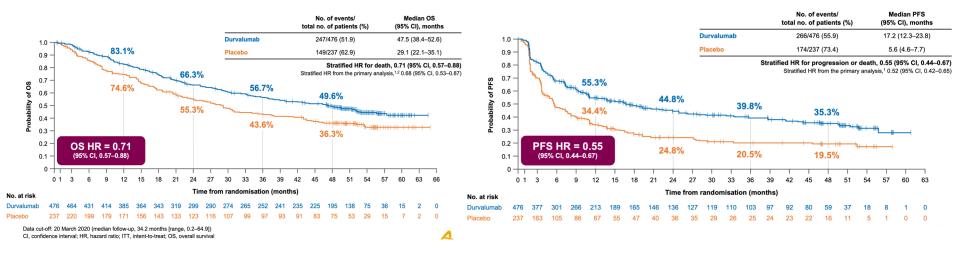
- RCT for SABR + immunotherapy and OMD in NSCLC ?
- Is there any "abscopal" improvement in disease response with SABR and OMD?
- Is there any synergic effect for local control between SABR and IT in OMD?

PEMBRO alone vs **PEMBRO-RT** randomized **PHASE** II

➢ 8 Gy x 3 fx

OSPEDALE POLICLINICO SAN MARTINO Sistema Sanitario Regione Liguria

- Median PFS for SABR was 6.6 months (IC95% 4– 14.6) vs 1.9 (IC95% 1.7-6)
- Median OS for SABR was 15.9 months (IC95% 7.1 nr) vs 7.6 (IC95% 6 13.9)
- Is this the "abscopal" effect
 - A significant PFS and OS benefit (HR 0.49 and HR 0.49) in PDL-1 negative subgroup


The long-term survival goal in NSCLC

- Systemic control (CT; CT + IT; TKI)
- Brain control (TKI; IT; PCI)
- Locoregional control (CT-RT; S; CT-RT-IT; CT-S)
- Local control (RT; SABR; S; RA; SABR+IT)
- Treatment related events (Acute and late toxicity)

Comorbidities

The revolution of IT in stage III NSCLC

PACIFIC

Faivre-Finn C et al, ESMO 2020

More OMD after CT-RT + IT?

New Extrathoracic Lesions at First Progression per Site (BICR)*

· The patterns of extrathoracic lesion numbers per organ were similar regardless of treatment

BRAIN	No. of pa	atients (%)	(EEE)	LYMPH NODES	No. of pa	itients (
No. of new brain lesions	Durvalumab (n=26)	Placebo (n=26)		No. of new lymph node lesions	Durvalumab (n=3)	Pla (r
1	12 (46.2)	9 (34.6)		1	1 (33.3)	1 (
2	8 (30.8)	9 (34.6)		2	1 (33.3)	1 (3
3-5	6 (23.1)	5 (19.2)		3-5	0	1 (3
>5	0	3 (11.5)		>5	1 (33.3)	
BONE	No. of pa	atients (%)		LIVER	No. of pa	atients (9
						Pla
No. of new bone lesions	Durvalumab (n=6)	Placebo (n=3)		No. of new liver lesions	Durvalumab (n=6)	
						(r
	(n=6)	(n=3)		lesions	(n=6)	(r 3 (
lesions 1	(n=6) 6 (100)	(n=3) 2 (66.7)		lesions 1	(n=6) 0	(r 3 (
lesions 1 2	(n=6) 6 (100) 0	(n=3) 2 (66.7) 0		lesions 1 2	(n=6) 0 0	(r 3 (r 2 (·

Patient	Brain	Thorax	Abdominal	Osseous	Local-Regional Failure?	Distant Metastasis?	Abutive Candidat
1	N	Y	N	N	Marginal	N	Y
2	Y	Y	N	Y	In-Field	Y	N
3	N	Y	N	N	Marginal	Y	Y
4	N	Y	N	N	Out-of-Field	Y	N
5	N	Y	N	N	Marginal	Y	Y
6	N	Y	Y	N	In-Field	Y	N
7	N	Y	N	Y	In-Field	Y	N
8	N	Y	N	N	In-Field	Y	N
9	Y	Y	Y	N	In-Field	Y	N
10	N	Y	N	N	Marginal	Y	Y
11	Y	N	N	N	N	Y	Y
12	N	Y	N	N	N	Y	Y
13	N	N	Y	N	N	Y	Y
14	N	Y	Y	N	N	Y	N
15	N	Y	Y	N	N	Y	Y
16	Y	N	N	N	N	Y	Y
17	N	Y	N	N	N	Y	N
18	N	Y	N	N	N	Y	N

more than 50% of PD are candidate to focal ablation

The long-term survival goal in NSCLC

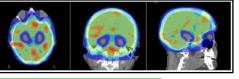
- Systemic control (CT; CT + IT; TKI)
- Brain control (TKI; IT; PCI)
- Locoregional control (CT-RT; S; CT-RT-IT; CT-S)
- Local control (RT; SABR; S; RA; SABR+IT)
- Treatment related events (Acute and late toxicity)

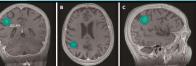
Comorbidities

SRS in limited # brain metastases

Long-Term Survival in Patients With Synchronous, Solitary Brain Metastasis From Non–Small-**Cell Lung Cancer Treated With Radiosurgery** (Flannery IJROBP 2007)

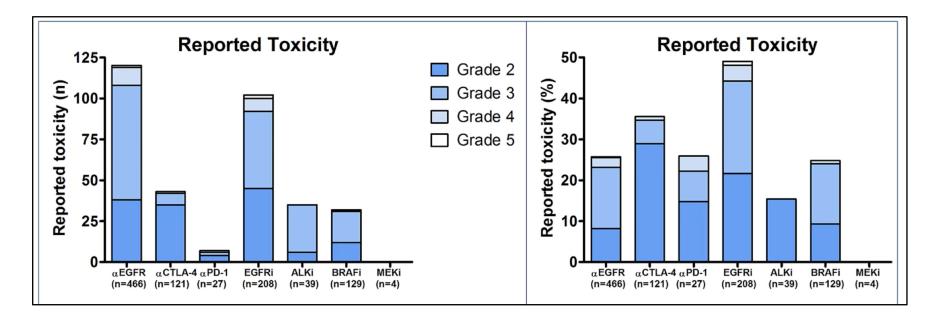
In metastatic NSCLC, approximately 30% of patients will have brain metastases at first diagnosis


PCI in high risk brain metastases NSCLC


PRoT- BM randomize Phase II trial (Arrieta et al IGRBOP 2021)

- Patients harboring EGFR mutations, ALK rearrangements or elevated CEA
- Standard of care plus PCI 25 Gy / 10 Fx vs standard of care
- The 24 months CBM was 7% vs 38% in favor of PCI (HR 0.12)

VIRTUAL 26 MARZO 2021


The long-term survival goal in NSCLC

- Systemic control (CT; CT + IT; TKI)
- Brain control (TKI; IT; PCI)
- Locoregional control (CT-RT; S; CT-RT-IT; CT-S)
- Local control (RT; SABR; S; RA; SABR+IT)
- Treatment related events (Acute and late toxicity)

Comorbidities

SABR for oligometastases

Kroze Cancer treatment Rew 2017

Toxicity from RCTs

Study	# patients	Tumor origin	HR PFS	HR OS	Toxicity
lyengar Jama Oncol 2018	N= 29	NSCLC	0.30	-	Similar in the 2 arms
Gomez JCO 2019	N= 49	NSCLC	0.30	0.41	No grade 4 and equal in the groups
Palma JCO 2020	N= 18*	NSCLC*	0.48 *?	0.47*?	3 pts G5- Iong term OK
Wang ASCO 2020	N= 133	NSCLC	0.62*	.068*	Slightly worse in SABR but no significative

Kroze Cancer treatment Rew 2017

UID. OLLO

Original Study


The NIPRO Study: An Observational, Retrospective, Multicenter Study on the Safety of the Radiotherapy and Immunotherapy Combination for Advanced-Stage NSCLC

Marco Perna,¹ Vieri Scotti,¹ Patrizia Ciammella,² Paolo Borghetti,³ Elisa D'angelo,⁴ Niccolò Giaj Levra,⁵ Alessandra Fozza,⁶ Matteo Mariotti,¹ Viola Salvestrini,¹ Federica Bertolini,⁷ Stefano Vagge,⁸ Maria Taraborrelli,⁹ Lorenzo Falcinelli,¹⁰ Alessandra Taddeo,³ Roberto Rossi,² Gianluca Costantino,³ Luca Frassinelli,⁴ Andrea Riccardo Filippi,¹¹ Carlo Greco,¹² Davide Franceschini,¹³ Domenico Genovesi,⁹ Frank Lohr,⁴ Stefano Maria Magrini,³ Filippo Alongi,^{14,15} Lorenzo Livi,¹ Alessio Bruni⁴

The Quality of Life

Quality of Life Outcomes After Stereotactic Ablative Radiation Therapy (SABR) Versus Standard of Care Treatments in the Oligometastatic Setting: A Secondary Analysis of the SABR-COMET Randomized Trial

Olson R IJROBP 2019

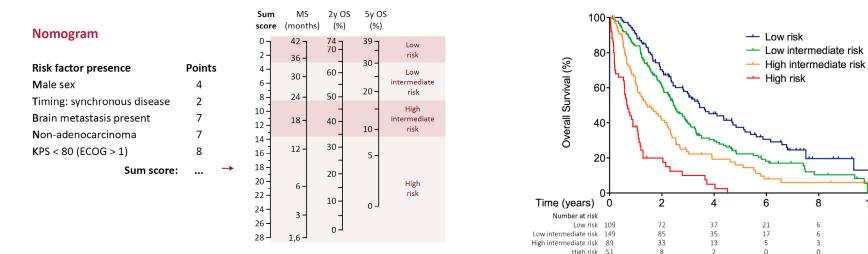
8

6

6

3

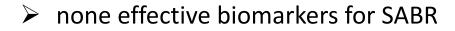
0


10

0

2

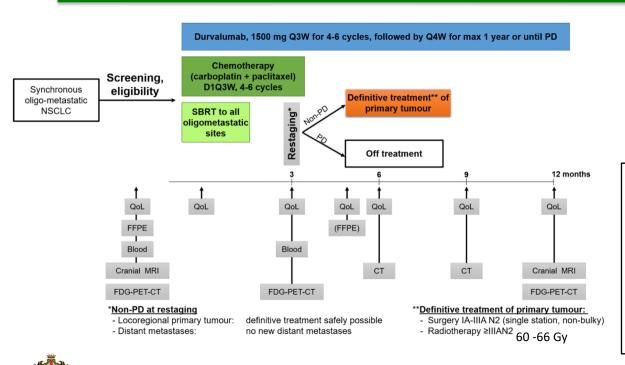
0


Predictive and Prognostic models for SABR and NSCLC

The METABANK

OSPEDALE POLICUNICO SAN MARTINO

Sistema Sanitario Regione Liguria


Van Den Begin, Radiother Oncol 2019

Upcoming clinical research in NSCLC

NSCLC	NCT02417662	NCT0313771	NCT03391869	NCT02759783	NCT03721341*	NCT03862911	NCT03410043	NCT03965468
Estimated completion	August 2022	April 2022	December 2022	October 2024	January 2029	May 2029	January 2023	December 2021
Number of patients	340	378	270	245	159	297	143	47
Study type	Phase III	Phase II/III	Phase III	Phase II/III	Phase III	Phase III	Phase II	Phase II
Number of metastases	1-3	1-3	> 1	1-3	4-10	1-3	> 1	1-3 + primary

Upcoming clinical research

CHESS

Immunotherapy, <u>Ch</u>emotherapy, Radioth<u>e</u>rapy and <u>S</u>urgery for <u>S</u>ynchronous Oligo-metastatic NSCLC

- multicenter single arm phase II
- Primary endpoint PFS
- Secondary endpoint: pattern of disease progression, DPFS, ORR, response to induction, duration of response, toxicity and QoL
- SAAK & SLCG (P.I. Guckenberger)

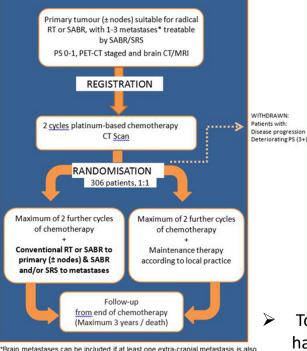
Upcoming clinical research

NRG LU 002

Patients with metastatic NSCLC having completed 4 cycles or courses of first- line/induction systemic therapy Restaging studies reveal no evidence of progression and limited (≤ 3 discrete sites) metastatic disease, all of which must be amenable to SBRT +/- Surgery	S T R A T I F Y	Histology: Squamous vs. Non-squamous Systemic Therapy: Immunotherapy vs Cytotoxic Chemotherapy	R A N D O M I Z E	Arm 1: Maintenance systemic therapy alone Arm 2: SBRT or SBRT and Surgery to all sites of metastases (≤ 3 discrete sites) plus irradiation (SBRT or hypofractionated RT) of the primary site followed by maintenance systemic therapy. All Arm 2 patients, even if treated with Surgery, must have one site of disease (metastasis or primary) treated with radiation.
--	-----------------	---	-------------------	--

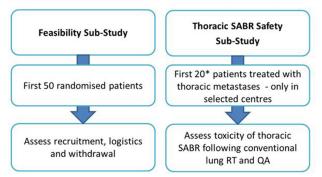
Maintenance Systemic Therapy Versus Local Consolidative Therapy (LCT) Plus Maintenance Systemic Therapy For Limited Metastatic Non-Small Cell Lung Cancer (NSCLC): A Randomized Phase II/III Trial

Phase 2/3 multi-center: maintenance chemotherapy or


SBRT + maintenance chemotherapy

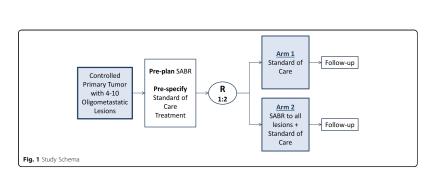
- Primary histology: all NSCLC
- Primary outcome measure: PFS
- ➢ P.I.: Yengar P.

Upcoming clinical research

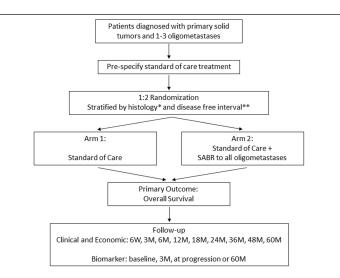

present

Contractor or an and the second

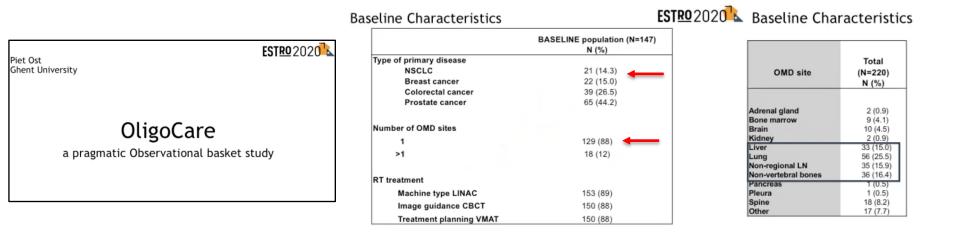
Sistema Sanitario Regione Liguria


The **SARON trial:** a multicentre, randomised controlled phase III trial comparing the addition of stereotactic ablative radiotherapy and radical radiotherapy with standard chemotherapy alone for oligometastatic non-small cell lung cancer

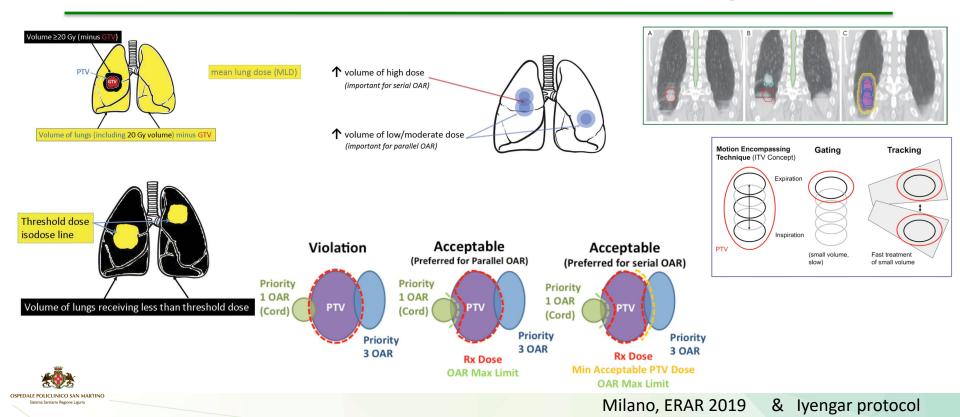
SUB-STUDIES WITHIN OVERALL STUDY


To investigate the impact the addition RT using SABR/ SRS or conventional RT has on OS in oligometastatic NSCLC that are treated with first-line standard systemic therapy.

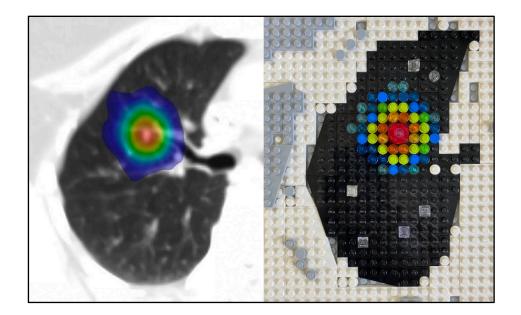
Upcoming clinical research


SABR-COMET-10

SABR-COMET-3


Upcoming clinical research when time for RCTs results is too far

the use of registries is useful to detect a treatment efficacy in routine clinical practice


New technical issues for multiple targets

Conclusions

- There is EBM on local treatments impact for OMD in NSCLC
- > The majority of the "local treatment" and the most suitable strategy is SABR
- High local control in NSCLC OMD
- Safe combination with systemic therapies
- Waiting for phase III to increase # of patients
- > More information are needed for precise patients selection and fractionation schedules
- > What is the optimal timing to integrate SABR in the oncogenic driven era?
- How big will the impact of NSCLC OMD be in the radiotherapy departments?

Thanks

The importance of imaging to assess the OMD in NSCLC

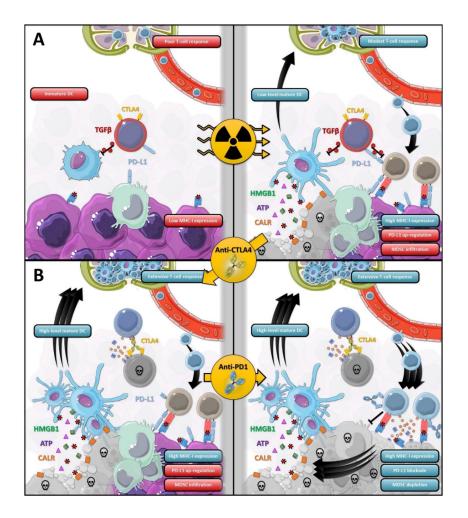


TABLE 2 | Selected ongoing trials of SBRT treatment in oligometastatic NSCLC. Title Estimated Patients Study design completion Stereotactic Ablative Radiotherapy for Oligometastatic 340 Phase 3 multi-center: chemotherapy alone (standard platinum August 2022 Non-small Cell Lung Cancer (SARON). A Randomized based doublet chemotherapy or chemotherapy + radical Phase III Trial, (53) radiotherapy (conventional RT and SABR) Institution: University College London Primary histology; all NSCLC ClinicalTrials.gov identifier: NCT02417662 1-3 oligometastatic lesions Primary outcome measure: OS Maintenance Systemic Therapy vs. Local Consolidative 300 Phase 2/3 multi-center: maintenance chemotherapy or SBRT + April 2022 Therapy (LCT) Plus Maintenance Systemic Therapy for maintenance chemotherapy Limited Metastatic Non-small Cell Lung Cancer Primary histology; all NSCLC (NSCLC): A Randomized Phase II/III Trial (NRG LU-002) 1-3 oligometastatic lesions Institution: NRG Oncology Primary outcome measure: PFS ClinicalTrials.gov identifier: NCT03137771 Randomized Phase III Trial of Local Consolidation 270 Phase 3 multi-center: systemic treatment only with nivolumab and December 2022 Therapy (LCT) After Nivolumab and Ipilimumab for ipilimumab or induction nivolumab and ipilimumab followed by Immunotherapy-Naive Patients With Metastatic local consolidative therapy with surgery and/or radiotherapy Non-small Cell Lung Cancer (LONESTAR) -Strategic Primary histology; all NSCLC Alliance: BMS >1 oligometastatic lesions Institution: M.D. Anderson Cancer Center Primary outcome: OS ClinicalTrials.gov identifier: NCT03391869 A Randomized Trial of Conventional Care vs. 245 Phase 2/3 multi-center: standard of care or standard of care + October 2024 Radioablation (Stereotactic Body Radiotherapy) for SBBT Extracranial Oligometastases (CORE) Primary histology; breast, prostate, or NSCLC Institution: Royal Marsden NHS Foundation Trust 1-3 oligometastatic lesions ClinicalTrials.gov identifier: NCT02759783 Primary outcome measure: PFS A Bandomized Phase III Trial of Stereotactic Ablative 159 Phase 3 multi-center: stereotactic ablative radiotherapy, plus January 2029 Radiotherapy for the Comprehensive Treatment of 4-10 standard of care treatment; chemotherapy, immunotherapy, Oligometastatic Tumors (SABR-COMET 10) hormones, or observation given at the discretion of the treating Institution: Lawson Health Research Institute oncoloaist ClinicalTrials.gov identifier: NCT03721341 Various histology including NSCLC 4 to 10 oligometastatic lesions Primary outcome: OS Randomized Phase II Trial of Local Consolidation 143 Phase 2 multi-center; osimertinib followed by local consolidative January 2023 Therapy (LCT) After Osimertinib for Patients With EGFR therapy with surgery and/or radiotherapy or maintenance Mutant Metastatic Non-small Cell Lung Cancer (NSCLC) osimertinib alone (NORTHSTAR) Primary histology: NSCLC Institution: M.D. Anderson Cancer Center >1 oligometastatic lesion ClinicalTrials.gov identifier: NCT03410043 Primary outcome: PFS A Multicentre Single Arm Phase II Trial Assessing the 47 Phase 2 multi-center: durvalumab, carboplatin/paclitaxel December 2021 Efficacy of Immunotherapy, Chemotherapy and chemotherapy, followed by SBRT to all oligometastases, Stereotactic Radiotherapy to Metastases Followed by Restaging at 3 months Definitive local treatment with surgical Definitive Surgery or Radiotherapy to the Primary Tumor, resection of primary tumor or RT 60-66 Gy to the primary tumor if in Patients With Synchronous no disease progression. Oligo-metastatic NSCLC 1-3 oligometastatic lesions Institution: European Thoracic Oncology Platform Primary outcome: PFS ClinicalTrials.gov identifier: NCT03965468

RT, radiotherapy; SBRT, stereotactic body radiation therapy; SABP, stereotactic ablative radiotherapy; OS, overall survival; PFS, progression free survival.